1
|
Lv D, Shen Y, Peng Y, Liu J, Miao F, Zhang J. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling. PLoS One 2015; 10:e0135223. [PMID: 26263390 PMCID: PMC4532511 DOI: 10.1371/journal.pone.0135223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 01/25/2023] Open
Abstract
MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.
Collapse
Affiliation(s)
- Dan Lv
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province, China
| | - Yaqin Peng
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province, China
| | - Jiane Liu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
2
|
Mu J, Tai X, Iyer SS, Weissman JD, Singer A, Singer DS. Regulation of MHC class I expression by Foxp3 and its effect on regulatory T cell function. THE JOURNAL OF IMMUNOLOGY 2014; 192:2892-903. [PMID: 24523508 DOI: 10.4049/jimmunol.1302847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ, and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4(+)CD25(+) T regulatory cells than in conventional CD4(+)CD25(-) T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IFN response element and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4(+)CD25(+) T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function.
Collapse
Affiliation(s)
- Jie Mu
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
3
|
Lee N, Iyer SS, Mu J, Weissman JD, Ohali A, Howcroft TK, Lewis BA, Singer DS. Three novel downstream promoter elements regulate MHC class I promoter activity in mammalian cells. PLoS One 2010; 5:e15278. [PMID: 21179443 PMCID: PMC3001478 DOI: 10.1371/journal.pone.0015278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/09/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MHC CLASS I TRANSCRIPTION IS REGULATED BY TWO DISTINCT TYPES OF REGULATORY PATHWAYS: 1) tissue-specific pathways that establish constitutive levels of expression within a given tissue and 2) dynamically modulated pathways that increase or decrease expression within that tissue in response to hormonal or cytokine mediated stimuli. These sets of pathways target distinct upstream regulatory elements, have distinct basal transcription factor requirements, and utilize discrete sets of transcription start sites within an extended core promoter. METHODOLOGY/PRINCIPAL FINDINGS We studied regulatory elements within the MHC class I promoter by cellular transfection and in vitro transcription assays in HeLa, HeLa/CIITA, and tsBN462 of various promoter constructs. We have identified three novel MHC class I regulatory elements (GLE, DPE-L1 and DPE-L2), located downstream of the major transcription start sites, that contribute to the regulation of both constitutive and activated MHC class I expression. These elements located at the 3' end of the core promoter preferentially regulate the multiple transcription start sites clustered at the 5' end of the core promoter. CONCLUSIONS/SIGNIFICANCE Three novel downstream elements (GLE, DPE-L1, DPE-L2), located between +1 and +32 bp, regulate both constitutive and activated MHC class I gene expression by selectively increasing usage of transcription start sites clustered at the 5' end of the core promoter upstream of +1 bp. Results indicate that the downstream elements preferentially regulate TAF1-dependent, relative to TAF1-independent, transcription.
Collapse
Affiliation(s)
- Namhoon Lee
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cellular, Molecular, Developmental Biology and Biophysics, NIH-Johns Hopkins University, Bethesda, Maryland, United States of America
| | - Shankar S. Iyer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jie Mu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jocelyn D. Weissman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anat Ohali
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - T. Kevin Howcroft
- Division of Cancer Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Brian A. Lewis
- Metabolism Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Dinah S. Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Metabolism Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Howcroft TK, Raval A, Weissman JD, Gegonne A, Singer DS. Distinct transcriptional pathways regulate basal and activated major histocompatibility complex class I expression. Mol Cell Biol 2003; 23:3377-91. [PMID: 12724398 PMCID: PMC154244 DOI: 10.1128/mcb.23.10.3377-3391.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of major histocompatibility complex (MHC) class I genes is regulated by both tissue-specific (basal) and hormone/cytokine (activated) mechanisms. Although promoter-proximal regulatory elements have been characterized extensively, the role of the core promoter in mediating regulation has been largely undefined. We report here that the class I core promoter consists of distinct elements that are differentially utilized in basal and activated transcription pathways. These pathways recruit distinct transcription factor complexes to the core promoter elements and target distinct transcription initiation sites. Class I transcription initiates at four major sites within the core promoter and is clustered in two distinct regions: "upstream" (-14 and -18) and "downstream" (+12 and +1). Basal transcription initiates predominantly from the upstream start site region and is completely dependent upon the general transcription factor TAF1 (TAF(II)250). Activated transcription initiates predominantly from the downstream region and is TAF1 (TAF(II)250) independent. USF1 augments transcription initiating through the upstream start sites and is dependent on TAF1 (TAF(II)250), a finding consistent with its role in regulating basal class I transcription. In contrast, transcription activated by the interferon mediator CIITA is independent of TAF1 (TAF(II)250) and focuses initiation on the downstream start sites. Thus, basal and activated transcriptions of an MHC class I gene target distinct core promoter domains, nucleate distinct transcription initiation complexes and initiate at distinct sites within the promoter. We propose that transcription initiation at the core promoter is a dynamic process in which the mechanisms of core promoter function differ depending on the cellular environment.
Collapse
Affiliation(s)
- T Kevin Howcroft
- Experimental Immunology Branch, National Cancer Institute/NIH, Building 10, Room 4B-17, 10 Center Drive, MSC 1360, Bethesda, MD 20892-1360, USA.
| | | | | | | | | |
Collapse
|
5
|
Brown GD, Morris DR, Meruelo D. Conservation of the H-2 BF1 binding motif 5' of the H-2Ds, Ks and Dq genes. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1997; 24:241-57. [PMID: 9306093 DOI: 10.1111/j.1365-2370.1997.tb00018.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological consequences of radiation leukaemia virus (RadLV) infection include the stimulation of H-2 antigen expression soon after injection of the virus. Early studies demonstrated that resistance to RadLV-induced leukaemia in certain mouse strains is mediated by genes in the H-2D region of the major histocompatibility complex (MHC). Recent studies have shown that elevated H-2Dd expression on the thymocyte cell surface of resistance mouse strains results from increased mRNA transcription and is correlated with elevated levels of a DNA-binding activity that recognizes a short DNA sequence 5' of the start of transcription for the H-2Dd gene. This binding activity has been termed H-2 binding factor 1 (H-2 BF1) and is found exclusively in the thymus. In an effort to examine the H-2 genes of RadLV-susceptible mice for the presence of the H-2 BF1 binding target, we have cloned class I genes from the highly susceptible B10.S mouse strain and have identified both the Ds and the Ks genes. The entire genomic sequence for the Ds gene has been determined and is reported here. In addition, the 5' regulatory region of the previously cloned Dq gene has been sequenced; mice of the Dq haplotype are also susceptible to RadLV-induced leukaemia. In this report, we show that the H-2 BF1 DNA binding sequence is present 5' of each of these three class I genes.
Collapse
Affiliation(s)
- G D Brown
- Department of Pathology, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
6
|
In vivo function of regulatory DNA sequence elements of a major histocompatibility complex class I gene. Mol Cell Biol 1992. [PMID: 1620117 DOI: 10.1128/mcb.12.7.3078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I genes are expressed in nearly all somatic tissues, although their level of expression varies. By analysis of a set of promoter deletion mutants introduced into transgenic mice, a complex regulatory element, consisting of overlapping enhancer and silencer activities, is demonstrated to function as a tissue-specific regulator of class I expression. The enhancer activity predominates in lymphoid tissues but not in nonlymphoid tissues. In contrast to the tissue-specific functions of the complex regulatory element, a second novel silencer element is shown to function in both lymphoid and nonlymphoid tissues. The complement of DNA-binding factors in different cell lines is shown to correlate with the levels of class I expression.
Collapse
|
7
|
Maguire JE, Frels WI, Richardson JC, Weissman JD, Singer DS. In vivo function of regulatory DNA sequence elements of a major histocompatibility complex class I gene. Mol Cell Biol 1992; 12:3078-86. [PMID: 1620117 PMCID: PMC364522 DOI: 10.1128/mcb.12.7.3078-3086.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Major histocompatibility complex class I genes are expressed in nearly all somatic tissues, although their level of expression varies. By analysis of a set of promoter deletion mutants introduced into transgenic mice, a complex regulatory element, consisting of overlapping enhancer and silencer activities, is demonstrated to function as a tissue-specific regulator of class I expression. The enhancer activity predominates in lymphoid tissues but not in nonlymphoid tissues. In contrast to the tissue-specific functions of the complex regulatory element, a second novel silencer element is shown to function in both lymphoid and nonlymphoid tissues. The complement of DNA-binding factors in different cell lines is shown to correlate with the levels of class I expression.
Collapse
Affiliation(s)
- J E Maguire
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|