1
|
Abstract
The ecohydrological-separation (ES) hypothesis is that the water used for plant transpiration and the water used for streams and groundwater recharge comes from distinct subsurface compartmentalized pools. The ES hypothesis was first proposed in a study conducted in the Mediterranean climate region, based on the stable isotope method in 2010. To date, the ES hypothesis has proven to be widespread around the world. The ES hypothesis is a new understanding of the soil water movement process, which is different from the assumption that only one soil reservoir in the traditional hydrology. It is helpful to clear the water sources of plants and establish a new model of the ecohydrological process. However, the theoretical basis and mechanism of the ES hypothesis are still unclear. Therefore, we analyzed the characteristics of ES phenomenon in different climatic regions, summarized the research methods used for the ES hypothesis, concluded the definitions of tightly bound water and mobile water, discussed the mechanism of isotopic differences of different reservoirs and their impacts on ES evaluation and pointed out the existing problems of the ES hypothesis. Future research should focus on the following three aspects: (a) detailed analysis of ES phenomenon characteristics of different plant species in different climatic regions; (b) further understanding of the ES phenomenon mechanism; (c) improvement of the experimental methods.
Collapse
|
2
|
Cernusak LA. Gas exchange and water-use efficiency in plant canopies. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:52-67. [PMID: 30428160 DOI: 10.1111/plb.12939] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
In this review, I first address the basics of gas exchange, water-use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water-use efficiency in northern Australian tree species. In general, C3 plants face a trade-off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water-use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water-use efficiency. This may explain why community-level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water-use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water-use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole-plant water-use efficiency. Finally, I discuss the role of water-use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2 . In coming decades, increases in plant water-use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.
Collapse
Affiliation(s)
- L A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Australia
| |
Collapse
|
3
|
Vincent-Barbaroux C, Berveiller D, Lelarge-Trouverie C, Maia R, Máguas C, Pereira J, Chaves MM, Damesin C. Carbon-use strategies in stem radial growth of two oak species, one Temperate deciduous and one Mediterranean evergreen: what can be inferred from seasonal variations in the δ13C of the current year ring? TREE PHYSIOLOGY 2019; 39:1329-1341. [PMID: 31100150 DOI: 10.1093/treephys/tpz043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.) and a Mediterranean evergreen (Quercus ilex L.) oak. The sapwood carbon reserves, phloem sucrose contents, stem respired CO2 efflux and their respective carbon isotope compositions (δ13C) were recorded over 1 year, in the native area of each species. The seasonal δ13C variation of the current year ring was determined in the total ring throughout the seasons, as well as in slices from the fully mature ring after the growth season (intra-ring pattern). Although the budburst dates of the two oaks were similar, the growth of Quercus ilex began 50 days later. Both species exhibited growth cessation during the hot and dry summer but only Q. ilex resumed in the autumn. In the deciduous oak, xylem starch storage showed clear variations during the radial growth. The intra-ring δ13C variations of the two species exhibited similar ranges, but contrasting patterns, with an early increase for Q. petraea. Comparison between δ13C of starch and total ring suggested that Q. petraea (but not Q. ilex) builds its rings using reserves during the first month of growth. Shifts in ring and soluble sugars δ13C suggested an interspecific difference in either the phloem unloading or the use of fresh assimilate inside the ring. A decrease in ring δ13C for both oaks between the end of the radial growth and the winter is attributed to a lignification of ring cell walls after stem increment. This study highlighted the differences in carbon-use during ring growth for evergreen and deciduous oaks, as well as the benefits of exploring the process using natural 13C abundance.
Collapse
Affiliation(s)
- Cécile Vincent-Barbaroux
- Laboratoire Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, USC, Orléans cedex 2, France
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Berveiller
- Laboratoire Ecologie Systématique et Evolution, UMR, Université Paris-Sud, CNRS, AgroparisTech, Orsay, France
| | - Caroline Lelarge-Trouverie
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment, Orsay, France
| | - Rodrigo Maia
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Cristina Máguas
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - João Pereira
- Centro de Estudos Florestais Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Manuela M Chaves
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claire Damesin
- Laboratoire Ecologie Systématique et Evolution, UMR, Université Paris-Sud, CNRS, AgroparisTech, Orsay, France
| |
Collapse
|
4
|
Liu H, Wei Y, Wei S, Jiang T, Zhang S, Guo B. δ2H of wheat and soil water in different growth stages and their application potentialities as fingerprints of geographical origin. Food Chem 2017; 226:135-140. [DOI: 10.1016/j.foodchem.2017.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
5
|
Mihoub I, Ghashghaie J, Badeck FW, Robert T, Lamothe-Sibold M, Aid F. Intraspecific variability of carbon isotope discrimination and its correlation with grain yield in safflower: prospects for selection in a Mediterranean climate. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2016; 52:577-591. [PMID: 26982084 DOI: 10.1080/10256016.2016.1142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
The goals of the present study were to obtain a first estimate of intraspecific variability of carbon isotope discrimination (Δ) in safflower, a thistle-like herbaceous plant, and to determine the statistical relationship between Δ and grain yield as well as its components in a collection of 45 accessions of different origins. Grain yield and aboveground biomass, harvest index, average grain weight, and Δ (measured on the bulk leaf organic matter) were investigated in experimental field conditions. A large variability was noted for all traits but a principal component analysis (PCA) allowed to identify several homogeneous groups of accessions. Average grain yield per plant varied between 1 and 39 g. Δ varied between 21.3 and 25.2 ‰, i.e. a large variation of 3.9 ‰. In our experiment, the variation of Δ was not significantly related to that of grain yield in the whole accession sample. However, we found contrasting trends for this relation within accession groups. These initial results motivate further experiments to assess more in depth correlation between Δ and yield in safflower and are encouraging regarding the possibility of using Δ as an effective selection index in safflower to obtain genotypes that efficiently consume water. This study also highlighted one accession that combines the two characters required in the Mediterranean regions, i.e. high yield performance and high water-use efficiency.
Collapse
Affiliation(s)
- Imane Mihoub
- a Laboratoire de Biologie et Physiologie des Organismes (LBPO) , Université des Sciences et de la Technologie Houari-Boumediene (USTHB) , Bab Ezzouar, Alger , Algeria
| | - Jaleh Ghashghaie
- b Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay , Orsay , France
| | - Franz W Badeck
- c CREA-GPG, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Genomics Research Centre (GPG) , Fiorenzuola d'Arda , Italy
| | - Thierry Robert
- b Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay , Orsay , France
| | - Marlène Lamothe-Sibold
- d Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Sorbonne Paris-Cite , Orsay , France
- e Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Fatiha Aid
- a Laboratoire de Biologie et Physiologie des Organismes (LBPO) , Université des Sciences et de la Technologie Houari-Boumediene (USTHB) , Bab Ezzouar, Alger , Algeria
| |
Collapse
|
6
|
Brand WA, Douthitt CB, Fourel F, Maia R, Rodrigues C, Maguas C, Prohaska T. Gas Source Isotope Ratio Mass Spectrometry (IRMS). SECTOR FIELD MASS SPECTROMETRY FOR ELEMENTAL AND ISOTOPIC ANALYSIS 2014. [DOI: 10.1039/9781849735407-00500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gas source isotope ratio mass spectrometry is usually referred to as isotope ratio mass spectrometry (IRMS) or stable-isotope ratio mass spectrometry (SIRMS). IRMS is a conventional method for measuring isotope ratios and has benefited from more than 65 years of research and development. Modern mass spectrometers are all based on gas source isotope ratio mass spectrometry field mass separators. More recently, the development of high-resolution sector field devices has added a new dimension to IRMS. Modern instruments achieve a high sample throughput, which is a prerequisite, e.g., for ecosystem studies where usually a large number of samples needs to be analysed and high precision is required. IRMS is used specifically for the measurement of stable-isotope ratios of a limited number of elements (C, H, N, O and S) after transfer into a gaseous species. Si, Cl, Br and Se can be added to the list even though their applications are limited compared to the other isotope systems. A concise overview of the technical background is given here as well as numerous applications of this technique in earth and geosciences, paleoclimate research, cosmochemistry, environmental sciences and life sciences.
Collapse
Affiliation(s)
| | | | - Francois Fourel
- Laboratoire de Géologie de Lyon, CNRS-UMR 5276, Université Claude Bernard Lyon 1 Ecole Normale Supérieure de Lyon France
| | | | - Carla Rodrigues
- Diverge Grupo Nabeiro Innovation Centre, R&D Projects Portugal
| | | | - Thomas Prohaska
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Chemistry, Division of Analytical Chemistry, VIRIS Laboratory for Analytical Ecogeochemistry Tulln Austria
| |
Collapse
|
7
|
|
8
|
|
9
|
Soil crusts and disturbance benefit plant germination, establishment and growth on nutrient deficient sand. Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|