1
|
Shi W, Zhang F, Chen X, Wang S, Zhang H, Yang Z, Wang G, Zheng Y, Han Y, Sun Y, Gao A. Tumor-derived immunoglobulin like transcript 5 induces suppressive immunocyte infiltration in colorectal cancer. Cancer Sci 2022; 113:1939-1954. [PMID: 35377522 PMCID: PMC9207357 DOI: 10.1111/cas.15360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022] Open
Abstract
Infiltration of immunosuppressive cells in the tumor microenvironment (TME) induced colorectal cancer (CRC) progression and its resistance to immunotherapy. Identification of tumor-specific factors to modulate inhibitory immunocyte infiltration would provide alternative and novel targets for CRC immunotherapy. Immunoglobulin-like transcript (ILT) 5 is a negative regulator of myeloid cell activation. However, its expression and functional role in solid tumors is still unknown. Using human CRC tissues and cell lines, we found that ILT5 was highly expressed in CRC cells compared with normal colorectal epithelial cells. Enriched ILT5 in tumor cells was correlated with advanced tumor stages and poor patient survival. Our subsequent in vitro and in vivo studies revealed that tumor-derived ILT5 inhibited the infiltration of T cells, especially that of CD8+ T cells in the TME, creating suppressive T-cell contexture. Furthermore, ILT5 directed M2-like polarization of tumor-associated macrophages (TAMs). Inhibition of tumor-derived ILT5 restored the immunosuppressive T-cell and TAM contexture, and restricted CRC progression. Our findings identified ILT5 expression in solid tumor cells for the first time and raised ILT5 as a potential immunotarget and prognostic predictor in CRC.
Collapse
Affiliation(s)
- Wenjing Shi
- Jinan Central HospitalShandong UniversityJinanShandongChina
| | - Fang Zhang
- Department of OncologyJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiaozheng Chen
- Shandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| | - Shuyun Wang
- Phase I Clinical Research CenterShandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| | - Haiqin Zhang
- Department of OncologyJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Zijiang Yang
- Jinan Central HospitalShandong UniversityJinanShandongChina
| | | | - Yan Zheng
- Research Center of Translational MedicineJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yali Han
- Department of Radiation OncologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yuping Sun
- Phase I Clinical Research CenterShandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| | - Aiqin Gao
- Department of Thoracic Radiation OncologyShandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
2
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
3
|
Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092710. [PMID: 30208630 PMCID: PMC6163679 DOI: 10.3390/ijms19092710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, β2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Collapse
|
4
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
5
|
Role of PIR-B in autoimmune glomerulonephritis. J Biomed Biotechnol 2010; 2011:275302. [PMID: 20976309 PMCID: PMC2952822 DOI: 10.1155/2011/275302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/07/2010] [Indexed: 02/07/2023] Open
Abstract
PIR-B, an inhibitory receptor expressed on murine B cells and myeloid cells, regulates humoral and cellular immune responses via its constitutive binding to the ligand, MHC class I molecules, on the same cells (cis) or on different cells (trans). Although it has been speculated that PIR-B is important for maintaining peripheral tolerance, PIR-B single deficiency does not cause overt autoimmune diseases. Recently, however, the combination of its deficiency with the Fas lpr mutation was found to result in augmented production of autoantibodies such as IgG rheumatoid factor and anti-DNA IgG, leading to glomerulonephritis in mice. Although the precise molecular mechanism for the overall scenario is unclear, PIR-B was found to suppress TLR9-mediated production of naturally autoreactive antibodies by innate B cells or B-1 cells by inhibiting the activation of Bruton's tyrosine kinase. Thus, PIR-B is an important regulator of innate immunity mediated by TLR9 in B-1 cells, which can otherwise provoke autoimmunity when overactivated.
Collapse
|
6
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
7
|
Biassoni R, Bottino C, Cantoni C, Moretta A. Human natural killer receptors and their ligands. ACTA ACUST UNITED AC 2008; Chapter 14:14.10.1-14.10.23. [PMID: 18432872 DOI: 10.1002/0471142735.im1410s46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human Natural Killer Receptors and Their Ligands (Roberto Biassoni and Cristina Bottino, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy; Claudia Cantoni, Universita degli Studi di Genova, Istituto Giannina Gaslini, Genova, Italy; Alessandro Moretta, Universita degli Studi di Genova, Genova, Italy). Natural killer (NK) cells are a lymphocyte subpopulation that are important effectors of innate immune responses against infectious pathogens. They are thought to play an important role in host defense, not only against virally infected cells, but also in killing of tumor cells. Recent progress indicates that NK cells express an array of receptors, some of them clonally distributed, able to modulate the natural cytotoxicity. Three NK-specific activating receptors have been characterized; they belong to a novel receptor family called natural cytotoxicity receptors (NCR) and are represented by NKp46, NKp44, and NKp30. These receptors, upon engagement by their specific ligands, induce a strong activation of NK-mediated cytotoxic activity. This overview discusses the receptors (both activating and inhibitory) expressed by NK cells and their ligands. Finally, the dysfunction of one of these molecules occurring in a genetically inherited immunodeficiency is discussed.
Collapse
|
8
|
Masuda K, Kubagawa H, Ikawa T, Chen CC, Kakugawa K, Hattori M, Kageyama R, Cooper MD, Minato N, Katsura Y, Kawamoto H. Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J 2005; 24:4052-60. [PMID: 16292344 PMCID: PMC1356317 DOI: 10.1038/sj.emboj.7600878] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 10/25/2005] [Indexed: 12/19/2022] Open
Abstract
T cells are produced in the thymus from progenitors of extrathymic origin. As no specific markers are available, the developmental pathway of progenitors preceding thymic colonization remains unclear. Here we show that progenitors in murine fetal liver and blood, which are capable of giving rise to T cells, NK cells and dendritic cells, but not B cells, can be isolated by their surface expression of paired immunoglobulin-like receptors (PIR). PIR expression is maintained until the earliest intrathymic stage, then downregulated before the onset of CD25 expression. Unlike intrathymic progenitors, generation of prethymic PIR(+) progenitors does not require Hes1-mediated Notch signaling. These findings disclose a prethymic stage of T-cell development programmed for immigration of the thymus, which is genetically separable from intrathymic stages.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Homeodomain Proteins/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Liver/cytology
- Liver/embryology
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Transgenic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Notch/physiology
- Signal Transduction/physiology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription Factor HES-1
Collapse
Affiliation(s)
- Kyoko Masuda
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Hiromi Kubagawa
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Tomokatsu Ikawa
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ching-Cheng Chen
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Kiyokazu Kakugawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Masakazu Hattori
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Laboratory of Growth Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Max D Cooper
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshimoto Katsura
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| |
Collapse
|
9
|
Abstract
Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.
Collapse
|
10
|
Herren B, Burrows PD. B cell-restricted human mb-1 gene: expression, function, and lineage infidelity. Immunol Res 2003; 26:35-43. [PMID: 12403343 DOI: 10.1385/ir:26:1-3:035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The antigen receptor on B cells (B cell receptor [BCR]) consists of two noncovalently associated modules. Immunoglobulin genes created somatically during B cell development encode the antigen-specific component of the receptor. The Igalpha/beta heterodimer, encoded by the mb-1 and B29 genes, is necessary to escort the receptor complex to the plasma membrane. Following antigen engagement of the BCR, Igalpha/beta nucleates signal transduction and promotes endocytosis of bound antigen for intracellular degradation and presentation to helper T-cells. In this review, we outline the discovery of the mb-1 gene; summarize results from other laboratories on the function of Igalpha/beta in B cells; and conclude with our recent studies, which indicate that mb-1 is not a B-lineage-restricted gene as originally proposed.
Collapse
Affiliation(s)
- Bettie Herren
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
11
|
Abstract
gp49B1 is a member of the immunoglobulin (Ig) superfamily expressed on the surface of mast cells, macrophages, and activated natural killer cells. gp49B1 inhibits FcepsilonRI-induced activation of mast cells in vitro by virtue of two immunoreceptor, tyrosine-based inhibitory motifs that recruit the SHP-1 tyrosine phosphatase to the plasma membrane. We created gp49B1 null mice by targeted gene disruption, and found that IgE-dependent mast cell activation is augmented in these animals. Moreover, the ensuing anaphylactic reactions and inflammation are enhanced in the absence of gp49B1. Thus, gp49B1 innately counter-regulates mast cell activation mediated by Ig generated through the adaptive immune response in vivo.
Collapse
Affiliation(s)
- Howard R Katz
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Daheshia M, Friend DS, Grusby MJ, Austen KF, Katz HR. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J Exp Med 2001; 194:227-34. [PMID: 11457897 PMCID: PMC2193448 DOI: 10.1084/jem.194.2.227] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Accepted: 06/11/2001] [Indexed: 11/04/2022] Open
Abstract
gp49B1 is an immunoglobulin (Ig) superfamily member that inhibits FcstraightepsilonRI-induced mast cell activation when the two receptors are coligated with antibodies in vitro. The critical question of in vivo function of gp49B1 is now addressed in gene-disrupted mice. gp49B1-deficient mice exhibited a significantly increased sensitivity to IgE-dependent passive cutaneous anaphylaxis as assessed by greater tissue swelling and mast cell degranulation in situ. Importantly, by the same criteria, the absence of gp49B1 also resulted in a lower threshold for antigen challenge in active cutaneous anaphylaxis, in which the antigen-specific antibody levels were comparable in gp49B1-deficient and sufficient mice. Moreover, the absence of gp49B1 resulted in a significantly greater and faster death rate in active systemic anaphylaxis. These results indicate that gp49B1 innately dampens adaptive immediate hypersensitivity responses by suppressing mast cell activation in vivo. In addition, this study provides a new concept and target for regulation of allergic disease susceptibility and severity.
Collapse
Affiliation(s)
- Massoud Daheshia
- Department of Medicine, Harvard Medical School, the
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Daniel S. Friend
- Department of Medicine, Harvard Medical School, the
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Michael J. Grusby
- Department of Medicine, Harvard Medical School, the
- Department of Immunology and Infectious Disease, Harvard School of Public Health
| | - K. Frank Austen
- Department of Medicine, Harvard Medical School, the
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Howard R. Katz
- Department of Medicine, Harvard Medical School, the
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
13
|
Yoder JA, Mueller MG, Wei S, Corliss BC, Prather DM, Willis T, Litman RT, Djeu JY, Litman GW. Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc Natl Acad Sci U S A 2001; 98:6771-6. [PMID: 11381126 PMCID: PMC34428 DOI: 10.1073/pnas.121101598] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extensive, highly diversified multigene family of novel immune-type receptor (nitr) genes has been defined in Danio rerio (zebrafish). The genes are predicted to encode type I transmembrane glycoproteins consisting of extracellular variable (V) and V-like C2 (V/C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. Radiation hybrid panel mapping and analysis of a deletion mutant line (b240) indicate that a minimum of approximately 40 nitr genes are contiguous in the genome and span approximately 0.6 Mb near the top of zebrafish linkage group 7. One flanking region of the nitr gene complex shares conserved synteny with a region of mouse chromosome 7, which shares conserved synteny with human 19q13.3-q13.4 that encodes the leukocyte receptor cluster. Antibody-induced crosslinking of Nitrs that have been introduced into a human natural killer cell line inhibits the phosphorylation of mitogen-activated protein kinase that is triggered by natural killer-sensitive tumor target cells. Nitrs likely represent intermediates in the evolution of the leukocyte receptor cluster.
Collapse
Affiliation(s)
- J A Yoder
- Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Torkar M, Haude A, Milne S, Beck S, Trowsdale J, Wilson MJ. Arrangement of the ILT gene cluster: a common null allele of the ILT6 gene results from a 6.7-kbp deletion. Eur J Immunol 2000; 30:3655-62. [PMID: 11169408 DOI: 10.1002/1521-4141(200012)30:12<3655::aid-immu3655>3.0.co;2-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The leukocyte receptor cluster (LRC) is a highly polymorphic region of human chromosome 19q13.4 that encompasses at least 24 members of the immunoglobulin superfamily (Ig-SF). The centromeric end of the LRC contains eight Ig-SF loci, namely LAIR1 and seven ILT genes. All ILT genes conform to prototypic ILT gene structures. ILT6 is the only member of the ILT family that lacks a transmembrane and cytoplasmic domain. Close examination of the ILT6 genomic sequence reveals high similarity of this locus with the organization of activating ILT genes. However, the ILT6 transcript runs through the putative splice site of exon 8 that encodes for an extracellular stalk region, leading to a premature in-frame stop codon. Downstream of exon 8 are three pseudo exons that are not included in any of the known ILT6 transcripts, but share high homology to the equivalent region in activating ILT loci, suggesting that these genes have evolved from a common ancestral sequence. Comparison of two haplotypes over this region revealed a remarkable polymorphism with respect to the ILT6 gene which lacks exons 1-7 in one allele, reminiscent of the presence/absence variation displayed by the closely related and genetically linked KIR loci. Detailed sequence analysis of the two LAIR/ILT clusters suggests that the two complexes may have evolved from an inverted duplication.
Collapse
Affiliation(s)
- M Torkar
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, GB
| | | | | | | | | | | |
Collapse
|
15
|
Ott VL, Cambier JC. Activating and inhibitory signaling in mast cells: new opportunities for therapeutic intervention? J Allergy Clin Immunol 2000; 106:429-40. [PMID: 10984360 DOI: 10.1067/mai.2000.109428] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune responses are tightly controlled by the activities of both activating and inhibitory signals. At the cellular level, these signals are generated through engagement of membrane-associated receptors and coreceptors. The high-affinity IgE receptor FcepsilonRI is expressed on mast cells and basophils and, on cross-linking by multivalent antigen (allergen), stimulates the release of inflammatory mediators that induce acute allergic responses. Activation signals mediated by a variety of immune receptors (eg, B-cell receptor, T-cell receptor, and FcepsilonRI) are subject to negative regulation by a growing family of structurally and functionally related inhibitory receptors. Recent studies indicate that mast cells express multiple inhibitory receptors that may regulate FcepsilonRI-induced mast cell activation through similar mechanisms. The ability of inhibitory receptors to attenuate IgE-mediated allergic responses implicates them as potential targets for therapeutic intervention in the treatment of atopic disease. Indeed, coaggregation of activating and inhibitory receptors has been suggested as one possible mechanism to explain the beneficial effects of specific immunotherapy in the treatment of allergy. In this review we summarize the current knowledge of inhibitory receptors expressed in mast cells and the mechanisms through which they regulate mast cell function.
Collapse
Affiliation(s)
- V L Ott
- Department of Immunology, University of Colorado Health Sciences Center and, National Jewish Medical and Research Center, Denver, CO, USA
| | | |
Collapse
|
16
|
Dietrich J, Nakajima H, Colonna M. Human inhibitory and activating Ig-like receptors which modulate the function of myeloid cells. Microbes Infect 2000; 2:323-9. [PMID: 10758410 DOI: 10.1016/s1286-4579(00)00294-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is increasing evidence that myeloid cells express several receptor families, which include both inhibitory and stimulatory isoforms. The expression of receptor isoforms with similar specificities but opposite functions on the same cell is intriguing. What might be the interplay between these receptors? Some clues to the answer to this question may come from recent studies on two myeloid receptor families: the ILT/LIR/MIR (immunoglobulin-like transcript/leukocyte Ig-like receptor/monocyte/macrophage Ig-like receptor) and the SIRP (signal-regulatory protein).
Collapse
Affiliation(s)
- J Dietrich
- Basel Institute for Immunology, 487 Grenzacherstrasse, 4005, Basel, Switzerland
| | | | | |
Collapse
|
17
|
Abstract
This review focuses on recent findings on the structural features of inhibitory NK cell receptors containing immunoreceptor tyrosine-based inhibition motif (ITIM) and of NK cell activating receptors, both in human and mouse. First, the study of the inhibitory killer cell immunoglobulin-like receptors (KIR) unveiled the presence of intracytoplasmic ITIM and their capacity to recruit protein tyrosine phosphatases such as SHP-1 in vivo. A brief summary of the known SHP-1 targets may help us to understand the inhibition mediated by the KIR. The characterization of ITIM thus allowed the definition of a large group of inhibitory cell surface receptors. The second part of the review describes the known NK cell activating receptors. Most of them require association with ITAM-containing polypeptides in order to mediate cell activation.
Collapse
Affiliation(s)
- M Bléry
- Centre d'immunologie INSERM-CNRS de Marseille-Luminy, France.
| | | | | |
Collapse
|
18
|
Ho LH, Uehara T, Chen CC, Kubagawa H, Cooper MD. Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptor PIR-B. Proc Natl Acad Sci U S A 1999; 96:15086-90. [PMID: 10611342 PMCID: PMC24777 DOI: 10.1073/pnas.96.26.15086] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PIR-A and PIR-B are activating and inhibitory Ig-like receptors on murine B lymphocytes, dendritic cells, and myeloid-lineage cells. The inhibitory function of PIR-B is mediated via its cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, whereas PIR-A pairs with the Fc receptor common gamma chain to form an activating receptor complex. In these studies, we observed constitutive tyrosine phosphorylation of PIR-B molecules on macrophages and B lymphocytes, irrespective of the cell activation status. Splenocyte PIR-B molecules were constitutively associated with the SHP-1 protein tyrosine phosphatase and Lyn protein tyrosine kinase. In Lyn-deficient mice, PIR-B tyrosine phosphorylation was greatly reduced. Unexpectedly, tyrosine phosphorylation of PIR-B was not observed in most myeloid and B cell lines but could be induced by ligation of the PIR molecules. Finally, the phosphorylation status of PIR-B was significantly reduced in MHC class I-deficient mice, although not in mice deficient in TAP1 or MHC class II expression. These findings suggest a physiological inhibitory role for PIR-B that is regulated by endogenous MHC class I-like ligands.
Collapse
Affiliation(s)
- L H Ho
- Division of Developmental Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | | | | | |
Collapse
|