1
|
The Possible Mechanism of Amyloid Transformation Based on the Geometrical Parameters of Early-Stage Intermediate in Silico Model for Protein Folding. Int J Mol Sci 2022; 23:ijms23169502. [PMID: 36012765 PMCID: PMC9409474 DOI: 10.3390/ijms23169502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
The specificity of the available experimentally determined structures of amyloid forms is expressed primarily by the two- and not three-dimensional forms of a single polypeptide chain. Such a flat structure is possible due to the β structure, which occurs predominantly. The stabilization of the fibril in this structure is achieved due to the presence of the numerous hydrogen bonds between the adjacent chains. Together with the different forms of twists created by the single R- or L-handed α-helices, they form the hydrogen bond network. The specificity of the arrangement of these hydrogen bonds lies in their joint orientation in a system perpendicular to the plane formed by the chain and parallel to the fibril axis. The present work proposes the possible mechanism for obtaining such a structure based on the geometric characterization of the polypeptide chain constituting the basis of our early intermediate model for protein folding introduced formerly. This model, being the conformational subspace of Ramachandran plot (the ellipse path), was developed on the basis of the backbone conformation, with the side-chain interactions excluded. Our proposal is also based on the results from molecular dynamics available in the literature leading to the unfolding of α-helical sections, resulting in the β-structural forms. Both techniques used provide a similar suggestion in a search for a mechanism of conformational changes leading to a formation of the amyloid form. The potential mechanism of amyloid transformation is presented here using the fragment of the transthyretin as well as amyloid Aβ.
Collapse
|
2
|
Cholesterol balance in prion diseases and Alzheimer's disease. Viruses 2014; 6:4505-35. [PMID: 25419621 PMCID: PMC4246236 DOI: 10.3390/v6114505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/08/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.
Collapse
|
3
|
Inayathullah M, Satheeshkumar KS, Malkovskiy AV, Carre AL, Sivanesan S, Hardesty JO, Rajadas J. Solvent microenvironments and copper binding alters the conformation and toxicity of a prion fragment. PLoS One 2013; 8:e85160. [PMID: 24386462 PMCID: PMC3874036 DOI: 10.1371/journal.pone.0085160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126), was determined using circular dichroism (CD) spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication). These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126) adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126) peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable β-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126) increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126) exhibited β-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu2+ ions inhibited the structural transition and fibril formation of the peptide in a cell free in vitro system. The fact that Cu2+ supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126) was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu2+ ions. The toxicity of PrP(111-126) to cultured astrocytes was reduced following the addition of Cu2+ ions, owing to binding affinity of copper towards histidine moiety present in the peptide.
Collapse
Affiliation(s)
- Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
| | - K. S. Satheeshkumar
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | - Andrey V. Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
| | - Antoine L. Carre
- Department of Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Senthilkumar Sivanesan
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jasper O. Hardesty
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- *
| |
Collapse
|
4
|
Huang L, Jin R, Li J, Luo K, Huang T, Wu D, Wang W, Chen R, Xiao G. Macromolecular crowding converts the human recombinant PrPC to the soluble neurotoxic beta-oligomers. FASEB J 2010; 24:3536-43. [PMID: 20400537 DOI: 10.1096/fj.09-150987] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders and are linked with the conversion of the cellular isoform of the prion protein (PrP(C)) into the abnormal beta-sheet-rich isoform. It is widely accepted that the soluble oligomers of beta-PrP are neurotoxic and that they are more pathologically significant. To unravel the molecular mechanism under the conversion process, it is critical to identify the factors that can promote the conversion from PrP(C) to the beta-oligomers. By recording circular dichroism spectra and performing a size-exclusion HPLC assay, we found that the conformation of the recombinant human prion protein (rPrP(C)) was converted from an alpha-helical conformation into beta-sheet oligomers under a macromolecular crowding condition. The soluble beta-oligomers of rPrP were resistant to proteinase K digestion and could bind to the dyes thioflavin T and 8-anilino-1-naphthalene sulfonate. Furthermore, by the 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, we showed that the soluble beta-oligomers were neurotoxic. These results suggest that macromolecular crowding, which has not been considered before, is a key intracellular factor in the formation of soluble neurotoxic beta-oligomers in prion diseases.
Collapse
Affiliation(s)
- Liqin Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Structural insights into alternate aggregated prion protein forms. J Mol Biol 2009; 393:1033-42. [PMID: 19720066 DOI: 10.1016/j.jmb.2009.08.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/11/2009] [Accepted: 08/22/2009] [Indexed: 11/21/2022]
Abstract
The conversion of the cellular form of the prion protein (PrP(C)) to an abnormal, alternatively folded isoform (PrP(Sc)) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies. In particular, ThT positive PrP aggregates produced from rec mouse PrP residues 89 to 230 lead to mostly oligomeric structures at low concentrations of guanidine hydrochloride, while more amyloidal structures were observed at higher concentrations of the denaturant. These findings highlight the presence of numerous and complex pathways in deciphering prion constraints for infectivity and toxicity.
Collapse
|
6
|
Yin S, Fan X, Yu S, Li C, Sy MS. Binding of recombinant but not endogenous prion protein to DNA causes DNA internalization and expression in mammalian cells. J Biol Chem 2008; 283:25446-25454. [PMID: 18622017 DOI: 10.1074/jbc.m800814200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant prion protein, rPrP, binds DNA. Both the KKRPK motif and the octapeptide repeat region of rPrP are essential for maximal binding. rPrP with pathogenic insertional mutations binds more DNA than wild-type rPrP. DNA promotes the aggregation of rPrP and protects its N terminus from proteinase K digestion. When rPrP is mixed with an expression plasmid and Ca(2+), the rPrP.DNA complex is taken up by mammalian cells leading to gene expression. In the presence of Ca(2+), rPrP by itself is also taken up by cells in a temperature- and pinocytosis-dependent manner. Cells do not take up rPrP(DeltaKKRPK), which lacks the KKRPK motif. Thus, rPrP is the carrier for DNA and the KKRPK motif is essential for its uptake. When mixed with DNA, a pentapeptide KKRPK, but not KKKKK, is sufficient for DNA internalization and expression. In contrast, whereas the normal cellular prion protein, PrP(C), on the cell surface can also internalize DNA, the imported DNA is not expressed. These findings may have relevance to the normal functions of PrP(C) and the pathogenic mechanisms of human prion disease.
Collapse
Affiliation(s)
- Shaoman Yin
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Xingjun Fan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Shuiliang Yu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Chaoyang Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120.
| |
Collapse
|
7
|
Laurent M. Bistability and the species barrier in prion diseases: stepping across the threshold or not. Biophys Chem 2007; 72:211-22. [PMID: 17029708 DOI: 10.1016/s0301-4622(98)00135-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/1998] [Accepted: 02/13/1998] [Indexed: 12/28/2022]
Abstract
The infectious agent of transmissible spongiform encephalopathies is thought to be a cellular protein, the prion protein, which undergoes, under some circumstances, a dramatic conformational change leading to pathogenesis. The conversion between the normal and pathogenic isoforms corresponds to a autocatalytic mechanism and the metabolism of the prion protein exhibits switches between a normal, stable steady state and a pathogenic one. When the disease can be transmitted between two species, a primary infection from a heterologous donor has to be followed by two passages in the same host species so that the incubation period is stabilized. Sometimes, no pathogenic isoform of the prion protein is detected after the first passage, although corresponding brain extracts remain infectious. The observation that three and only three passages are needed in order to stabilize the strain strongly suggests that, during the course of the primary infection by the heterologous donor, an intermediary conformational species is formed. Within this assumption, a common mechanism involving only conformational changes of the prion protein can give a unifying interpretation of the problem of species barrier, lag characteristics and apparent lack of detection of the pathogenic isoform after the first passage in experiments dealing with interspecies transmission of prion diseases.
Collapse
Affiliation(s)
- M Laurent
- Service d'Imagerie Cellulaire, URA D2227 CNRS, Bât. 440, Université Paris-Sud, Centre d'Orsay, 91405 Orsay Cedex, France.
| |
Collapse
|
8
|
Yin S, Pham N, Yu S, Li C, Wong P, Chang B, Kang SC, Biasini E, Tien P, Harris DA, Sy MS. Human prion proteins with pathogenic mutations share common conformational changes resulting in enhanced binding to glycosaminoglycans. Proc Natl Acad Sci U S A 2007; 104:7546-51. [PMID: 17456603 PMCID: PMC1863438 DOI: 10.1073/pnas.0610827104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation in the prion gene PRNP accounts for 10-15% of human prion diseases. However, little is known about the mechanisms by which mutant prion proteins (PrPs) cause disease. Here we investigated the effects of 10 different pathogenic mutations on the conformation and ligand-binding activity of recombinant human PrP (rPrP). We found that mutant rPrPs react more strongly with N terminus-specific antibodies, indicative of a more exposed N terminus. The N terminus of PrP contains a glycosaminoglycan (GAG)-binding motif. Binding of GAG is important in prion disease. Accordingly, all mutant rPrPs bind more GAG, and GAG promotes the aggregation of mutant rPrPs more efficiently than wild-type recombinant normal cellular PrP (rPrP(C)). Furthermore, point mutations in PRNP also cause conformational changes in the region between residues 109 and 136, resulting in the exposure of a second, normally buried, GAG-binding motif. Importantly, brain-derived PrP from transgenic mice, which express a pathogenic mutant with nine extra octapeptide repeats, also binds more strongly to GAG than wild-type PrP(C). Thus, several rPrPs with distinct pathogenic mutations have common conformational changes, which enhance binding to GAG. These changes may contribute to the pathogenesis of inherited prion diseases.
Collapse
Affiliation(s)
- Shaoman Yin
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Nancy Pham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Research Foundation, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Shuiliang Yu
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Chaoyang Li
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Poki Wong
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Binggong Chang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Shin-Chung Kang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Emiliano Biasini
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110; and
| | - Po Tien
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 10080, China
| | - David A. Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110; and
| | - Man-Sun Sy
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
- To whom correspondence should be addressed at:
School of Medicine, Case Western Reserve University, Room 5131, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106-7288. E-mail:
| |
Collapse
|
9
|
Pan T, Chang B, Wong P, Li C, Li R, Kang SC, Robinson JD, Thompsett AR, Tein P, Yin S, Barnard G, McConnell I, Brown DR, Wisniewski T, Sy MS. An aggregation-specific enzyme-linked immunosorbent assay: detection of conformational differences between recombinant PrP protein dimers and PrP(Sc) aggregates. J Virol 2005; 79:12355-64. [PMID: 16160162 PMCID: PMC1211538 DOI: 10.1128/jvi.79.19.12355-12364.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.
Collapse
Affiliation(s)
- Tao Pan
- Institute of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44107-1712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Satheeshkumar KS, Jayakumar R. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein. Biophys J 2003; 85:473-83. [PMID: 12829502 PMCID: PMC1303103 DOI: 10.1016/s0006-3495(03)74492-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Conformational transitions are thought to be the prime mechanism of amyloid formation in prion diseases. The prion proteins are known to exhibit polymorphic behavior that explains their ability of "conformation switching" facilitated by structured "seeds" consisting of transformed proteins. Oligopeptides containing prion sequences showing the polymorphism are not known even though amyloid formation is observed in these fragments. In this work, we have observed polymorphism in a 15-residue peptide PrP (113-127) that is known to form amyloid fibrils on aging. To see the polymorphic behavior of this peptide in different solvent environments, circular dichroism (CD) spectroscopic studies on an aqueous solution of PrP (113-127) in different trifluoroethanol (TFE) concentrations were carried out. The results show that PrP (113-127) have sheet preference in lower TFE concentration whereas it has more helical conformation in higher TFE content (>40%). The structural transitions involved in TFE solvent were studied using interval-scan CD and FT-IR studies. It is interesting to note that the alpha-helical structure persists throughout the structural transition process involved in amyloid fibril formation implicating the involvement of both N- and C-terminal sequences. To unravel the role of the N-terminal region in the polymorphism of the PrP (113-127), CD studies on another synthetic peptide, PrP (113-120) were carried out. PrP(113-120) exhibits random coil conformation in 100% water and helical conformation in 100% TFE, indicating the importance of full-length sequence for beta-sheet formation. Besides, the influence of different chemico-physical conditions such as concentration, pH, ionic strength, and membrane like environment on the secondary structure of the peptide PrP (113-127) has been investigated. At higher concentration, PrP (113-127) shows features of sheet conformation even in 100% TFE suggesting aggregation. In the presence of 5% solution of sodium dodecyl sulfate, PrP (113-127) takes high alpha-helical propensity. The environment-dependent conformational polymorphism of PrP (113-127) and its marked tendency to form stable beta-sheet structure at acidic pH could account for its conformation switching behavior from alpha-helix to beta-sheet. This work emphasizes the coordinative involvement of N-terminal and C-terminal sequences in the self-assembly of PrP (113-127).
Collapse
Affiliation(s)
- K S Satheeshkumar
- Bio-Organic Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | |
Collapse
|
11
|
Levy Y, Becker OM. Conformational polymorphism of wild-type and mutant prion proteins: Energy landscape analysis. Proteins 2002; 47:458-68. [PMID: 12001224 DOI: 10.1002/prot.10095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational transitions are thought to be the prime mechanism of prion diseases. In this study, the energy landscapes of a wild-type prion protein (PrP) and the D178N and E200K mutant proteins were mapped, enabling the characterization of the normal isoforms (PrP(C)) and partially unfolded isoforms (PrP(PU)) of the three prion protein analogs. It was found that the three energy landscapes differ in three respects: (i) the relative stability of the PrP(C) and the PrP(PU) states, (ii) the transition pathways from PrP(C) to PrP(PU), and (iii) the relative stability of the three helices in the PrP(C) state. In particular, it was found that although helix 1 (residues 144-156) is the most stable helix in wild-type PrP, its stability is dramatically reduced by both mutations. This destabilization is due to changes in the charge distribution that affects the internal salt bridges responsible for the greater stability of this helix in wild-type PrP. Although both mutations result in similar destabilization of helix 1, they a have different effect on the overall stability of PrP(C) and of PrP(PU) isoforms and on structural properties. The destabilization of helix 1 by mutations provides additional evidences to the role of this helix in the pathogenic transition from the PrP(C) to the pathogenic isoform PrP(SC).
Collapse
Affiliation(s)
- Yaakov Levy
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
12
|
Macario AJ, De Macario EC. Molecular chaperones and age-related degenerative disorders. INTERORGANELLAR SIGNALING IN AGE-RELATED DISEASE 2001. [DOI: 10.1016/s1566-3124(01)07018-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
13
|
Abstract
Improved understanding of amyloidogenic peptides and proteins such as prion proteins and Alzheimer's beta peptides has attracted much attention to the elucidation of the molecular mechanisms of such amyloidogenesis. As a representative, in the prion protein, the conformational transitions from alpha-helix to beta-structure undergo along with the amyloidogenesis in a self-catalytic manner. Moreover, recent studies by the de novo design of peptides and proteins as well as the amyloidogenesis of peptides and proteins including pathogenic protein mutants have provided insight into the conformational changes essential to amyloidogenesis and correct folding.
Collapse
Affiliation(s)
- H Mihara
- Department of Bioengineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
14
|
Kelly JW. The environmental dependency of protein folding best explains prion and amyloid diseases. Proc Natl Acad Sci U S A 1998; 95:930-2. [PMID: 9448261 PMCID: PMC33818 DOI: 10.1073/pnas.95.3.930] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- J W Kelly
- The Skaggs Institute of Chemical Biology and The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB 12, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Fedorov AN, Baldwin TO. GroE modulates kinetic partitioning of folding intermediates between alternative states to maximize the yield of biologically active protein. J Mol Biol 1997; 268:712-23. [PMID: 9175856 DOI: 10.1006/jmbi.1997.1007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The central issue of chaperone function is the mechanism whereby partitioning of folding polypeptides along the productive pathway may be maximized, while non-productive folding pathways are minimized. We have found that the GroE chaperone is capable of accelerating the rate of the productive pathway of bacterial luciferase alphabeta heterodimer formation. At intermediate temperatures at which the productive pathway and non-productive pathways leading to dimerization-incompetent monomeric forms of the subunits coexist, GroE enhances the yield of native enzyme while minimizing the yield of misfolded protein. These results suggest that GroE releases the subunits in forms capable of achieving the native structure faster than the forms initially bound by the chaperone. At higher temperatures, at which the native enzyme is stable but the dimerization reaction is diminished, GroE is unable to force the productive folding reaction to occur. However, the chaperone decreases the rate of formation of the heterodimerization-incompetent species, thereby enhancing the final yield of active enzyme when the temperature is reduced to the permissive range. Our results suggest a mechanism by which the chaperone functions to maximize the yield of the biologically active form of the protein while maintaining or even accelerating the essential rapid kinetics of folding reactions.
Collapse
Affiliation(s)
- A N Fedorov
- Center for Macromolecular Design, the Department of Biochemistry and Biophysics, Texas A&M University, College Station, 77843-2128, USA
| | | |
Collapse
|
16
|
Telling GC, Haga T, Torchia M, Tremblay P, DeArmond SJ, Prusiner SB. Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 1996; 10:1736-50. [PMID: 8698234 DOI: 10.1101/gad.10.14.1736] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transgenic mice overexpressing approximately eightfold the mouse (Mo) prion protein (PrP) gene carrying the P102L mutation of GSS developed neurodegeneration between 150 and 300 days of age, while controls expressing the wild-type MoPrP-A transgene at the same level remained healthy. Mice overexpressing the wild-type MoPrP-A transgene were highly susceptible to inoculated mouse prions, exhibiting abbreviated scrapie incubation times of 45 days. After crossing the mutant transgene onto a null (Prnp 0/0) background, the resulting Tg(MoPrP-P101L)Prnp 0/0 mice displayed a highly synchronous onset of illness at 145 days of age, which was shortened to 85 days upon breeding to homozygosity for the transgene array. Besides occasional PrP plaques and modest spongiform degeneration, Tg(MoPrP-P101L) mice suffered from a myopathy and a peripheral neuropathy. Disruption of the wild-type MoPrP gene increased the number of PrP plaques and the severity of spongiform degeneration. Brain extracts prepared from spontaneously ill transgenic mice transmitted disease to Tg196/Prnp 0/0 mice, expressing low levels of the mutant transgene. Our results demonstrate that the presence of wild-type PrP genes, the level of PrP transgene expression, and the sequence of the transgene can profoundly modify experimental prion disease.
Collapse
Affiliation(s)
- G C Telling
- Department of Neurology, University of California at San Francisco, 94143 USA
| | | | | | | | | | | |
Collapse
|