1
|
Radojević K, Kosec D, Perišić M, Pilipović I, Vidić-Danković B, Leposavić G. Neonatal androgenization affects the efficiency of β-adrenoceptor-mediated modulation of thymopoiesis. J Neuroimmunol 2011; 239:68-79. [PMID: 21940054 DOI: 10.1016/j.jneuroim.2011.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/25/2011] [Accepted: 08/31/2011] [Indexed: 01/29/2023]
Abstract
We tested the hypothesis that neonatal androgenization affects the efficacy of β-adrenoceptor (β-AR)-mediated fine tuning of thymopoiesis in adult female rats by modulating the thymic noradrenaline (NA) level and/or β-AR expression. In adult rats administered with 1000 μg testosterone enanthate at postnatal day 2 a higher density of catecholamine (CA)-synthesizing thymic cells, including thymocytes, and a rise in their CA content was found. In addition, in these animals increased thymic noradrenergic nerve fiber fluorescence intensity, reflecting their increased CA content, was detected. These changes were followed by an increase in thymic NA concentration. The rise in thymic NA content in thymic nerve fibers and cells was associated with changes in the expression of mRNA for enzymes controlling pivotal steps in NA biosynthesis (tyrosine hydroxylase, dopamine-β-hydroxylase) and inactivation (monoamine oxidase). In contrast, the thymic level of β(2)-AR mRNA on a per cell basis and the receptor surface density on thymocytes was reduced in testosterone-treated (TT) rats. As a consequence, 14-day-long treatment with propranolol, a β-AR blocker, was ineffective in modulating T-cell differentiation/maturation in TT rats. In conclusion, the study indicates the importance of the neonatal sex steroid milieu for shaping the immunomodulatory capacity of the thymic NA/β-AR signaling system in adult rats.
Collapse
Affiliation(s)
- Katarina Radojević
- Institute of Virology, Vaccines and Sera Torlak, 458 Vojvode Stepe, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
2
|
Leposavić G, Perisić M, Kosec D, Arsenović-Ranin N, Radojević K, Stojić-Vukanić Z, Pilipović I. Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. Brain Behav Immun 2009; 23:294-304. [PMID: 19028560 DOI: 10.1016/j.bbi.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/19/2008] [Accepted: 11/02/2008] [Indexed: 12/27/2022] Open
Abstract
Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterone on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCRalphabeta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic defeminization/masculinization of thymic (decreased CD4+CD8-TCRalphabeta(high)/CD4-CD8+TCRalphabeta(high) cell ratio) and peripheral blood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre Branislav Janković, Institute of Virology, Vaccines and Sera Torlak, 458 Vojvode Stepe, 11221 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
3
|
Leposavić G, Pejcić-Karapetrović B, Kosec D. Neonatal androgenization affects the intrathymic T-cell maturation in rats. Neuroimmunomodulation 2005; 12:117-30. [PMID: 15785114 DOI: 10.1159/000083584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 08/11/2004] [Indexed: 11/19/2022] Open
Abstract
The thymus structure, expression of CD4/CD8/TCRalphabeta on thymocytes and thymocyte proliferative and apoptotic indexes were analyzed in sexually immature 30-day-old and in sexually mature 60-day-old female rats neonatally androgenized (NA) by subcutaneous injection of 500 microg testosterone propionate/day on days 1-3 and in their vehicle-administered counterparts. The treatment affected normal thymus development. Thus, at 30 days of age, there was a reduction in the thymus weight, reflecting a decrease in the main thymic compartments. However, at 60 days of age, thymus weight did not significantly differ from that in age-matched controls, since the cortical volume enlargement was followed by a proportional decrease in the medullary volume. In rats of both ages, the changes in thymic compartments most likely reflected alterations in the size of both lymphoid and nonlymphoid components. Furthermore, in NA rats, substantial changes in thymocyte phenotypic characteristics were registered, in spite of their age. In both groups of NA rats, a decrease in the relative proportion of the least mature CD4-8-TCRalphabeta- cells and in that of CD4+8- TCRalphabeta-/TCRalphabeta(low) cells followed by an increase in the percentage of their successor CD4+8+TCRalphabeta-/TCRalphabeta(low) cells was detected. In addition, in 30-day-old NA rats, the relative proportions of CD4+8+TCRalphabeta(high) cells (just positively selected) and that of mature single positive (CD4+8- and CD4-8+) and CD4-8- double negative TCRalphabeta(high) cells, were reduced, while in 60-day-old NA rats only the percentage of CD4+8+TCRalphabeta(high) thymocytes was decreased. Thus, the study showed that the changes in the development of the hypothalamo-pituitary-gonadal axis induced by neonatal androgenization may affect the thymus development and intrathymic T-cell maturation.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Center 'Branislav Janković', Institute of Immunology and Virology 'Torlak', Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|
4
|
Rakotoarivelo C, Petite D, Lambard S, Fabre C, Rouleau C, Lumbroso S, de Weille J, Privat A, Carreau S, Mersel M. Receptors to steroid hormones and aromatase are expressed by cultured motoneurons but not by glial cells derived from rat embryo spinal cord. Neuroendocrinology 2004; 80:284-97. [PMID: 15677879 DOI: 10.1159/000083611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 10/21/2004] [Indexed: 11/19/2022]
Abstract
The aim of this study was to examine the expression of aromatase and receptors to steroid hormones in cultured motoneurons (MNs). We first developed an original method for obtaining rat MN cultures. Dissociated E15 rat spinal cords were purified using metrizamide and bovine serum albumin density gradients, and cells were then seeded on the culture substratum. We optimized the culture parameters and found that simple addition of rat muscle extract (ME) and conditioned culture medium (CM) from glial cell lines (GCL) derived from spinal cord were sufficient to obtain almost pure MN cultures. MNs were characterized by the presence of specific MN markers and electrophysiology. MNs could be kept alive for 2 weeks. We demonstrate that ME and CM are essential for MN development and survival respectively. Immunocytochemistry and aromatase activity assay indicated the presence of androgen and estrogen receptors as well as aromatase in MNs but not in GCL. This is the first report demonstrating the presence of both female and male sex hormone receptors and a key enzyme in steroid hormone metabolism in MNs and its absence in GCL, at least in our culture conditions. This in vitro model appears to be valuable for elucidating the impact of the sex hormone circuit in neuronal maturation. The relevance of this model for the comprehension of neurodegenerative diseases is discussed.
Collapse
Affiliation(s)
- Clovis Rakotoarivelo
- Unité 583, INSERM, Instituts des Neurosciences de Montpellier, Hôpital Saint-Eloi, 80, rue Augustin-Fliche, FR-34091 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
This special issue on steroids and glia represents the intersection of two emerging themes in the neurosciences: (a) Glia actively modulate and participate in brain function throughout life, and (b) glia are sensitive to steroid hormones. This overview begins by reviewing some of the basic principles of steroid hormone action on the brain and introducing the various glia that inhabit the peripheral and central nervous system. A prominent theme among the articles that follow is that glia may be direct targets for steroid hormones since they possess steroid receptors and the promoter region of glial-specific genes such as glutamine synthetase contain hormone-responsive elements. The articles in this special issue discuss evidence that glia may mediate steroid action on the nervous system in the context of (a) steroid metabolism, which may control the hormonal microenvironment of neurons both in the normal and injured brain; (b) brain development including sexual differentiation; (c) synaptic plasticity which may underlie the cyclic release of luteinizing hormone releasing hormone in the female rodent brain; (d) neural repair and aging; and (e) brain immune function. Another theme among these articles is that glia influence neurons via specific secreted and cell-surface molecules, and that steroids affect this mode of communication by altering the level of glial production of these signaling molecules and/or the sensitivity of neurons to such signals.
Collapse
Affiliation(s)
- C L Jordan
- Department of Psychology, University of California, Berkeley, California 94720-1650, USA
| |
Collapse
|
6
|
Suzuki M, Yoshida S, Nishihara M, Takahashi M. Identification of a sex steroid-inducible gene in the neonatal rat hypothalamus. Neurosci Lett 1998; 242:127-30. [PMID: 9530922 DOI: 10.1016/s0304-3940(98)00008-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
By the cDNA subtraction between cDNA preparations from androgenized and intact neonate rats hypothalami, granulin/ epithelin (grn) gene was identified as a gene enriched by androgenization. Strong grn mRNA signals were detected by in situ hybridization in the ventromedial nucleus (VMH) and the arcuate nucleus (ARC) of the hypothalamus of a 5-day-old male. The grn gene expression level in the hypothalamus was similar between males and females at birth. At 10 days of age, this level was maintained in males, but decreased to 1/4 in females. Thus, grn can be the gene of which expression in the VMH and ARC is sustained by endogenous androgen in male neonates.
Collapse
Affiliation(s)
- M Suzuki
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Chowen JA, García-Segura LM, González-Parra S, Argente J. Sex steroid effects on the development and functioning of the growth hormone axis. Cell Mol Neurobiol 1996; 16:297-310. [PMID: 8818398 DOI: 10.1007/bf02088097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. The secretory pattern of growth hormone (GH) is sexually dimorphic in the adult rat. However, this difference between the sexes does not become apparent until after the onset of puberty, suggesting that pubertal sex steroids play an important role in the manifestation of this phenomenon. 2. We have addressed the question as to whether there exists a sexual dimorphism in the hypothalamic neuropeptides that regulate GH release from the anterior pituitary, i.e., somatostatin (SS) and growth hormone-releasing hormone (GHRH). In addition, we have investigated whether the developmental changes in the GH secretory pattern are correlated with changes in these neuropeptides. The effect of testosterone treatment on SS and GHRH neurons during both the neonatal period and adulthood have also been studied. 3. We have found that the synthetic capacity, as reflected in relative messenger RNA (mRNA) levels, of both SS and GHRH neurons changes throughout development in both male and female rats. These mRNA levels are sexually dimorphic at certain times during maturation and can be modulated by changes in testosterone levels, suggesting that sex steroid modulation of these two neuropeptide systems could at least partially account for the sexual dimorphism seen in the adult GH secretory pattern. 4. The neonatal steroid environment has also been suggested to be involved in the generation of the final adult GH secretory pattern, although the mechanisms underlying this effect are even less well understood. In support of the hypothesis that the neonatal steroid environment plays an important role in organizing the GH axis, we have found that the number of GHRH neurons in the adult brain, as well as their sensitivity to adult steroids, is modulated by neonatal testosterone treatment. The number of SS neurons in the periventricular and paraventricular nuclei were not modulated by neonatal steroids; however, the synthetic capacity of these neurons does appear to be influenced by the neonatal steroid environment. 5. These studies suggest that both the neonatal and adult sex steroid environments influence the adult GH secretory pattern by modulating GHRH and SS neurons.
Collapse
|
8
|
Chowen JA, Busiguina S, García-Segura LM. Sexual dimorphism and sex steroid modulation of glial fibrillary acidic protein messenger RNA and immunoreactivity levels in the rat hypothalamus. Neuroscience 1995; 69:519-32. [PMID: 8552246 DOI: 10.1016/0306-4522(95)00250-m] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By using the techniques of in situ hybridization histochemistry and immunocytochemistry, we have found that both glial fibrillary acidic protein messenger RNA levels and glial fibrillary acidic protein immunoreactive surface density in the arcuate nucleus and median eminence are modulated by both the neonatal and adult sex steroid environments. No effect was seen on the number of immunoreactive glia. Intact adult males had significantly higher glial fibrillary acidic protein messenger RNA levels and glial fibrillary acidic protein immunoreactive surface density than females. Both adult and neonatal castration of male animals significantly reduced glial fibrillary acidic protein messenger RNA levels and glial fibrillary acidic protein immunoreactive surface density. Neonatal and adult testosterone treatment increased both of these parameters in both sexes; however, there was no additive effect of the steroid treatments. Glial cells are involved in the proliferation, survival, migration and maturation of neurons, as well as in the modulation of synaptic connectivity, and therefore it follows that hormonal modulation of glia may mediate some of the known steroid effects on neurons. The data reported here show that astroglia are significantly influenced by both the neonatal and adult sex steroid environments and suggest that some of the steroid effects on neurons during both of these developmental periods may be mediated, at least in part, through modulation of glial cells.
Collapse
Affiliation(s)
- J A Chowen
- Instituto Cajal, C.S.I.C., Madrid, Spain
| | | | | |
Collapse
|
9
|
Gibbs RB, Pfaff DW. Effects of estrogen and fimbria/fornix transection on p75NGFR and ChAT expression in the medial septum and diagonal band of Broca. Exp Neurol 1992; 116:23-39. [PMID: 1313767 DOI: 10.1016/0014-4886(92)90173-n] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NGF receptor-expressing cells located in the basal forebrain have recently been shown to contain estrogen (E) receptors (Toran-Allerand and MacLusky. 1989. Soc. Neurosci. Abstr. 15: 954). In the present study, we have examined the effects of E-treatment on p75NGFR and choline acetyltransferase (ChAT) expression by neurons in the medial septum (MS) and the vertical (VDB) and horizontal (HDB) limbs of the diagonal band of Broca using immunocytochemical and in situ hybridization techniques. First, since E-treatment has been shown to affect neuronal survival and to stimulate synaptic reorganization and growth within various regions of the brain, we hypothesized that E-treatment might attenuate the loss of p75NGFR immunoreactivity (IR) which occurs in the MS and VDB following transection of the fimbria/fornix. Contrary to our hypothesis, E-treatment did not attenuate the effects of fimbria/fornix transection. In fact, E-treatment alone produced a significant decrease in the number of p75NGFR-IR cells detected in the MS. Subsequent experiments confirmed that chronic E-treatment produces a down-regulation of both p75NGFR-IR and p75NGFR mRNA in the MS and VDB. In the MS, estrogen appeared to affect a subpopulation of p75NGFR-expressing neurons which were also affected by fimbria/fornix transection since the effects of these two treatments were not additive. In addition, effects of E-treatment on p75NGFR-IR were sex-specific (observed in females but not in males) and were reversible in the MS after 2 weeks, but not after 4 weeks (allowing 2 weeks recovery), of E-treatment. A time-course analysis revealed that effects of E-treatment on p75NGFR-IR were not observed until after 16 days (MS) or 30 days (VDB) of E-treatment and were preceded by a significant and transient increase in ChAT expression in both the MS and VDB. The data are consistent with the possibility that continuous, long-term exposure to gonadal steroids may contribute to a loss of p75NGFR-expressing neurons with age. In addition, the data suggest that p75NGFR expression may play a role in regulating the functioning of specific basal forebrain cholinergic neurons. Different mechanisms by which E-treatment might influence ChAT and p75NGFR expression in brain are discussed.
Collapse
Affiliation(s)
- R B Gibbs
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, New York 10021
| | | |
Collapse
|
10
|
Gibbs RB, Mobbs CV, Pfaff DW. Sex steroids and fos expression in rat brain and uterus. Mol Cell Neurosci 1990; 1:29-40. [DOI: 10.1016/1044-7431(90)90039-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1990] [Indexed: 10/26/2022] Open
|
11
|
Jordan CL, Letinsky MS, Arnold AP. Critical period for the androgenic block of neuromuscular synapse elimination. JOURNAL OF NEUROBIOLOGY 1990; 21:760-7. [PMID: 2394990 DOI: 10.1002/neu.480210509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Juvenile androgen treatment during developmental synapse elimination changes the pattern of innervation in the adult levator ani (LA), an androgen-sensitive muscle (Jordan, Letinsky, and Arnold, 1989b). Most notably, such adult muscles contain an unusually high number of muscle fibers that are innervated by two or more axons indicating that these fibers are multiply innervated. Juvenile androgen treatment also increases the adult level of preterminal branching, the number of junctional sites per adult fiber, and the size of adult LA muscle fibers and motoneurons in the spinal nucleus of the bulbocavernosus (SNB). The present study was designed to determine when in development androgen treatment is most effective in maintaining multiple innervation in adulthood and whether there are different critical periods for the different effects of juvenile androgen treatment. Male rats were castrated on 7, 21, or 34 days after birth (roughly corresponding to the beginning, middle, and end of synapse elimination in the LA muscle) and treated daily with testosterone propionate for the next 2 weeks. All rats were sacrificed at 9 weeks and their spinal cords and LA muscles were stained and analyzed. Only during the first treatment period (7-20) did androgen treatment result in increased levels of multiple innervation at 9 weeks. During this period, androgen also increased the number of junctional sites per fiber and the size of SNB somata but did not influence the adult level of preterminal branching or the diameter of adult LA muscle fibers. Androgen treatment during the two later periods increased the level of preterminal branching and the size of LA muscle fibers without influencing the level of multiple innervation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C L Jordan
- Department of Psychology, University of California, Los Angeles 90024
| | | | | |
Collapse
|