1
|
Glutathione inhibits antibody and complement-mediated immunologic cell injury via multiple mechanisms. Redox Biol 2017; 12:571-581. [PMID: 28390315 PMCID: PMC5384323 DOI: 10.1016/j.redox.2017.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
Antioxidant glutathione (GSH) plays an important role in the regulation of immunity. However, little is known about its effects on humoral immunity, especially its action on effector molecules like antibody and complement. Given that these molecules contain abundant disulfide bonds, we speculated that GSH might influence the action of these proteins via its thiol function. Using a model of a glomerular mesangial cell (MC) lysis induced by antibodies plus complement, we addressed this hypothesis. Exposure of rat MCs to anti-Thy-1 antibody plus complement or anti-MC rabbit serum caused a complement-dependent cell lysis, which was completely blocked by GSH. Moreover, GSH potently prevented the antibody-mediated agglutination of red blood cells and aggregation of antibody-sensitized microspheres. Further analysis revealed that GSH inhibited antibody binding to antigens and promoted the conversion of the antibodies to its reduced forms. GSH also potently inhibited the formation and deposition of C5b-9 in MCs and suppressed both the classic and alternative complement activation pathway. Lastly, GSH attenuated P38 activation, an oxidative sensitive kinase that partially mediated the antibody- and complement-dependent MC lysis. Depletion of GSH via inhibiting gamma-glutamylcysteine synthetase or xCT transporter augmented P38 activation and sensitized MCs to the cell lysis. Collectively, our results indicate that GSH protects cells from immunological cell damage via mechanisms involving inhibition of antibody binding to the antigens, suppression of complement activation and augmentation of cellular defense mechanism. Our study provides novel mechanistic insights into the actions of GSH in the regulation of immune responses and suggests that GSH might be used to treat certain immune disorders. Little information is available regarding the role of GSH on humoral immunity. GSH inhibited antibody-triggered and complement-mediated immune responses. GSH interfered with antibody binding to cell surface antigens via its thiol function. GSH inhibited both the classic and alternative complement activation pathways. GSH increased cell resistance to immunological injury via inhibition of P38.
Collapse
|
2
|
Tegla CA, Cudrici C, Patel S, Trippe R, Rus V, Niculescu F, Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 2012; 51:45-60. [PMID: 21850539 DOI: 10.1007/s12026-011-8239-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, School of Medicine, University of Maryland, 655 W. Baltimore Street, BRB 12-033, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Iozzo RV, Chakrani F, Perrotti D, McQuillan DJ, Skorski T, Calabretta B, Eichstetter I. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis. Proc Natl Acad Sci U S A 1999; 96:3092-7. [PMID: 10077642 PMCID: PMC15900 DOI: 10.1073/pnas.96.6.3092] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ectopic expression of decorin in a wide variety of transformed cells results in growth arrest and the inability to generate tumors in nude mice. This process is caused by a decorin-mediated activation of the epidermal growth factor receptor, which leads to a sustained induction of endogenous p21(WAF1/CIP1) (the cyclin-dependent kinase inhibitor p21) and growth arrest. However, mice harboring a targeted disruption of the decorin gene do not develop spontaneous tumors. To test the role of decorin in tumorigenesis, we generated mice lacking both decorin and p53, an established tumor-suppressor gene. Mice lacking both genes showed a faster rate of tumor development and succumbed almost uniformly to thymic lymphomas within 6 months [mean survival age (T50) approximately 4 months]. Mice harboring one decorin allele and no p53 gene developed the same spectrum of tumors as the double knockout animals, but had a survival rate similar to the p53 null animals (T50 approximately 6 months). Ectopic expression of decorin in thymic lymphoma cells isolated from double mutant animals markedly suppressed their colony-forming ability. When these lymphoma cells were cocultured with fibroblasts derived from either wild-type or decorin null embryos, the cells grew faster in the absence of decorin. Moreover, exogenous decorin proteoglycan or its protein core significantly retarded their growth in vitro. These results indicate that the lack of decorin is permissive for lymphoma tumorigenesis in a mouse model predisposed to cancer and suggest that germ-line mutations in decorin and p53 may cooperate in the transformation of lymphocytes and ultimately lead to a more aggressive phenotype by shortening the tumor latency.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Lassiter HA, Walz BM, Wilson JL, Jung E, Calisi CR, Goldsmith LJ, Wilson RA, Morgan BP, Feldhoff RC. The administration of complement component C9 enhances the survival of neonatal rats with Escherichia coli sepsis. Pediatr Res 1997; 42:128-36. [PMID: 9212048 DOI: 10.1203/00006450-199707000-00020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine the significance of neonatal C9 deficiency, an animal model was developed in the rat. By rocket immunoelectrophoresis, the concentration of C9 in pooled adult rat serum was 224 +/- 7.2 microg/mL. In contrast, the concentration of C9 in pooled serum from 1-d-old rats was only 43 +/- 3.8 microg/mL and increased during the first 3 wk of life to 170 +/- 20 microg/mL. Similarly, the capacities of neonatal rat serum to kill two pathogenic strains of Escherichia coli and to lyse sensitized sheep erythrocytes were diminished compared with adult serum but increased during the first 3 wk of life. Supplemental human C9 significantly enhanced the bactericidal and hemolytic activity of neonatal rat serum. The capacity of neonatal rats to survive after the intrapulmonary injection of E. coli was positively correlated with the serum C9 concentration, bactericidal activity, and hemolytic activity. In 2-d-old rats infected with E. coli, the intraperitoneal administration of human C9 significantly enhanced survival and also enhanced the protective effect of intraperitoneal human IgG antibodies. The data indicate that C9 deficiency predisposed neonatal rats to invasion by E. coli. The neonatal rat appears to be a suitable model with which to investigate the significance of C9 deficiency.
Collapse
Affiliation(s)
- H A Lassiter
- Department of Pediatrics, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Rong L, Bates P. Analysis of the subgroup A avian sarcoma and leukosis virus receptor: the 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of Tva is sufficient to mediate viral entry. J Virol 1995; 69:4847-53. [PMID: 7609052 PMCID: PMC189298 DOI: 10.1128/jvi.69.8.4847-4853.1995] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genes encoding the receptor for subgroup A Rous sarcoma viruses (tva) were recently cloned from both chicken and quail cells (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Previous work suggested that only the extracellular domain of Tva interacts with the virus (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993). Tva is a small membrane-associated protein containing in its extracellular domain a 40-amino-acid region which is closely related to the low-density lipoprotein receptor (LDLR) repeat motif. To determine the region of the Tva extracellular domain responsible for viral receptor function, we created chimeric proteins containing various regions of the Tva extracellular domain fused with a murine CD8 membrane anchor. Analysis of these proteins demonstrates that any chimera containing the Tva LDLR repeat motif can specifically bind the envelope protein of subgroup A avian sarcoma and leukosis viruses. Furthermore, NIH 3T3 cell lines expressing these chimeric proteins were efficiently infected by subgroup A avian sarcoma and leukosis virus vectors. Our results demonstrate that the 40-residue-long LDLR repeat motif of Tva is responsible for viral receptor function.
Collapse
Affiliation(s)
- L Rong
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
7
|
Iozzo RV, Cohen IR, Grässel S, Murdoch AD. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 1994; 302 ( Pt 3):625-39. [PMID: 7945186 PMCID: PMC1137278 DOI: 10.1042/bj3020625] [Citation(s) in RCA: 309] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R V Iozzo
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
8
|
Chapter 21. Potentlal Therapeutic Modifiers of the Complement Cascade. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1992. [DOI: 10.1016/s0065-7743(08)60419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
9
|
Affiliation(s)
- E R Podack
- Department of Microbiology and Immunology, University of Miami, School of Medicine, FL 33103
| |
Collapse
|
10
|
Sauer H, Pratsch L, Fritzsch G, Bhakdi S, Peters R. Complement pore genesis observed in erythrocyte membranes by fluorescence microscopic single-channel recording. Biochem J 1991; 276 ( Pt 2):395-9. [PMID: 2049070 PMCID: PMC1151104 DOI: 10.1042/bj2760395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The formation and opening of single complement pores could be directly observed in erythrocyte ghosts by confocal laser-scanning microscopy employing the recently introduced method of fluorescence microscopic single-channel recording. Resealed sheep erythrocyte ghosts were incubated with human complement. By limiting the concentration of C8, the eighth component of complement, the fraction of cells rendered permeable for the small polar fluorescent probe Lucifer Yellow was varied between 0.50 and 0.90. Under each condition the flux rate, k, of Lucifer Yellow was determined for a substantial number of ghosts. By analysing the sample population distribution of k the flux rate k1 of ghosts with a single pore was found to be (4.8 +/- 1.1) x 10(-3) s-1 consistent with a pore radius of about 3.5 nm (35 A). The genesis of single complement pores was studied by continuous influx measurements while triggering pore formation by a temperature shift. Pore genesis was found to be a very slow process, proceeding on a time scale of several minutes. During pore genesis the influx curves had a sigmoid shape, which excluded the possibility that the pore was preformed on the membrane surface and subsequently inserted. However, the influx curves could be well simulated by a model which assumed that pores grow stepwise by sequential incorporation of C9 monomers. The model predicts conditions under which the incorporation of single monomers can be directly revealed.
Collapse
Affiliation(s)
- H Sauer
- Max-Planck-Institut für Biophysik, Frankfurt, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
11
|
Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol 1990. [PMID: 1697030 DOI: 10.1128/mcb.10.9.4506] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a cDNA encoding a cysteine-rich, acidic integral membrane protein (CRAM) of the parasitic protozoa Trypanosoma brucei and Trypanosoma equiperdum. Unlike other membrane proteins of T. brucei, which are distributed throughout the cell surface, CRAM is concentrated in the flagellar pocket, an invagination of the cell surface of the trypanosome where endocytosis has been documented. Accordingly, CRAM also locates to vesicles located underneath the pocket, providing evidence of its internalization. CRAM has a predicted molecular mass of 130 kilodaltons and has a signal peptide, a transmembrane domain, and a 41-amino-acid cytoplasmic extension. A characteristic feature of CRAM is a large extracellular domain with a roughly 66-fold acidic, cysteine-rich 12-amino-acid repeat. CRAM is conserved among different protozoan species, including Trypanosoma cruzi, and CRAM has structural similarities with eucaryotic cell surface receptors. The most striking homology of CRAM is to the human low-density-lipoprotein receptor. We propose that CRAM functions as a cell surface receptor of different trypanosome species.
Collapse
|
12
|
Lee MG, Bihain BE, Russell DG, Deckelbaum RJ, Van der Ploeg LH. Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol 1990; 10:4506-17. [PMID: 1697030 PMCID: PMC361037 DOI: 10.1128/mcb.10.9.4506-4517.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have characterized a cDNA encoding a cysteine-rich, acidic integral membrane protein (CRAM) of the parasitic protozoa Trypanosoma brucei and Trypanosoma equiperdum. Unlike other membrane proteins of T. brucei, which are distributed throughout the cell surface, CRAM is concentrated in the flagellar pocket, an invagination of the cell surface of the trypanosome where endocytosis has been documented. Accordingly, CRAM also locates to vesicles located underneath the pocket, providing evidence of its internalization. CRAM has a predicted molecular mass of 130 kilodaltons and has a signal peptide, a transmembrane domain, and a 41-amino-acid cytoplasmic extension. A characteristic feature of CRAM is a large extracellular domain with a roughly 66-fold acidic, cysteine-rich 12-amino-acid repeat. CRAM is conserved among different protozoan species, including Trypanosoma cruzi, and CRAM has structural similarities with eucaryotic cell surface receptors. The most striking homology of CRAM is to the human low-density-lipoprotein receptor. We propose that CRAM functions as a cell surface receptor of different trypanosome species.
Collapse
Affiliation(s)
- M G Lee
- Department of Genetics and Development, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
13
|
Kontermann R, Deppisch R, Rauterberg EW. Several epitopes on native human complement C9 are involved in interaction with the C5b-8 complex and other C9 molecules. Eur J Immunol 1990; 20:623-8. [PMID: 1690659 DOI: 10.1002/eji.1830200324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ten monoclonal antibodies (mAb) against native human C9 exhibiting various inhibitory effects on the hemolytic activity of C9 (Bausback, J., Kontermann, R. and Rauterberg, E. W., Immunobiology 1988. 178: 58) were further analyzed regarding their reactivities with monomeric C9 (mC9), polymerized C9 (pC9), and the non-lytic SC5b-9 complex in enzyme-linked immunosorbent assay and with the membrane attack complex (MAC) generated on rabbit erythrocytes analyzed by flow cytometry. In addition, the inhibitory effects of mAb on zinc-induced C9 polymerization were investigated. One epitope of the C-terminal half of C9b exposed on the surface of pC9 and the MAC seems not to participate directly in lytic function or polymerization since no inhibitory effect of the respective mAb was observed. The nine other mAb directed against epitopes of the C9a part exhibit various inhibitory potentials. The mAb inhibit either hemolysis or polymerization, or both processes. Due to the reactivity with the tested antigens the mAb can be divided into two groups. mAb of the first group bind with nearly the same affinity to all four antigens, whereas mAb of the second group react preferentially with mC9 while their affinity to pC9, SC5b-9 and the MAC is reduced. Comparison of reaction patterns and inhibitory effects strongly suggest that different epitopes on the surface of native C9 are involved in interaction of C9 with C5b-8 and/or in C9-C9 interaction. The finding that mAb inhibiting polymerization of C9 in vitro have no inhibitory effect on hemolysis confirms that C9 polymers are no prerequisite for lysis.
Collapse
Affiliation(s)
- R Kontermann
- Institut für Immunologie, Universität Heidelberg, FRG
| | | | | |
Collapse
|