1
|
Hong Q, Wang S, Wang X, Han W, Chen T, Liu Y, Cheng F, Qin S, Zhao S, Liu Q, Cong Y, Huang Z. Vaccine Potency and Structure of Yeast-Produced Polio Type 2 Stabilized Virus-like Particles. Vaccines (Basel) 2024; 12:1077. [PMID: 39340107 PMCID: PMC11435573 DOI: 10.3390/vaccines12091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Poliovirus (PV) is on the brink of eradication due to global vaccination programs utilizing live-attenuated oral and inactivated polio vaccines. Recombinant PV virus-like particles (VLPs) are emerging as a safe next-generation vaccine candidate for the impending polio-free era. In this study, we investigate the production, antigenicity, thermostability, immunogenicity, and structures of VLPs derived from PV serotype 2 (PV2) wildtype strain and thermally stabilized mutant (wtVLP and sVLP, respectively). Both PV2 wtVLP and sVLP are efficiently produced in Pichia pastoris yeast. The PV2 sVLP displays higher levels of D-antigen and significantly enhanced thermostability than the wtVLP. Unlike the wtVLP, the sVLP elicits neutralizing antibodies in mice at levels comparable to those induced by inactivated polio vaccine. The addition of an aluminum hydroxide adjuvant to sVLP results in faster induction and a higher magnitude of neutralizing antibodies. Furthermore, our cryo-EM structural study of both sVLP and wtVLP reveals a native conformation for the sVLP and a non-native expanded conformation for the wtVLP. Our work not only validates the yeast-produced PV2 sVLP as a promising vaccine candidate with high production potential but also sheds light on the structural mechanisms that underpin the assembly and immunogenicity of the PV2 sVLP. These findings may expedite the development of sVLP-based PV vaccines.
Collapse
Affiliation(s)
- Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuxia Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoli Wang
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Wenyu Han
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Tian Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College, Fudan University, Shanghai 200032, China
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Yan Liu
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Fei Cheng
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Song Qin
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Shengtao Zhao
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Qingwei Liu
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhong Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Bujaki E, Farkas Á, Takács M. Echovirus 9 genetic diversity detected in whole-capsid genome sequences obtained directly from clinical specimens using next generation sequencing. Acta Microbiol Immunol Hung 2022; 69:233-240. [PMID: 35895489 DOI: 10.1556/030.2022.01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Abstract
Echovirus 9 (E9) has been detected in an increased number of symptomatic patient samples received by the National Enterovirus Reference Laboratory in Hungary during 2018 compared to previously reported years.
Formerly identified E9 viruses from different specimen types detected from patients of various ages and showing differing clinical signs were chosen for the detailed analysis of genetic relationships and potential variations within the viral populations. We used next generation sequencing (NGS) analysis of 3,900 nucleotide long amplicons covering the entire capsid coding region of the viral genome without isolation, directly from clinical samples.
Compared to the E9 reference strain, the viruses showed about 79% nucleotide and around 93% amino acid sequence similarity. The four new viral genome sequences had 1-20 nucleotide differences between them also resulting in 6 amino acid variances in the coding region, including 3 in the structural VP1 capsid protein. One virus from a patient with hand, foot, and mouth disease had two amino acid changes in the VP1 capsid protein. An amino acid difference was also detected in the non-structural 2C gene of one virus sequenced from a throat swab sample from a patient with meningitis, compared to the faecal specimen taken two days later. Two amino acid changes, one in the capsid protein, were found between faecal samples of meningitis patients of different ages.
Sequencing the whole capsid genome revealed several nucleotide and amino acid differences between E9 virus strains detected in Hungary in 2018.
Collapse
Affiliation(s)
- Erika Bujaki
- National Public Health Center, Department of Virology, Budapest, Hungary
| | - Ágnes Farkas
- National Public Health Center, Department of Virology, Budapest, Hungary
| | - Mária Takács
- National Public Health Center, Department of Virology, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| |
Collapse
|
4
|
Dynamics of Evolution of Poliovirus Neutralizing Antigenic Sites and Other Capsid Functional Domains during a Large and Prolonged Outbreak. J Virol 2018; 92:JVI.01949-17. [PMID: 29444940 DOI: 10.1128/jvi.01949-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022] Open
Abstract
We followed the dynamics of capsid amino acid replacement among 403 Nigerian outbreak isolates of type 2 circulating vaccine-derived poliovirus (cVDPV2) from 2005 through 2011. Four different functional domains were analyzed: (i) neutralizing antigenic (NAg) sites, (ii) residues binding the poliovirus receptor (PVR), (iii) VP1 residues 1 to 32, and (iv) the capsid structural core. Amino acid replacements mapped to 37 of 43 positions across all 4 NAg sites; the most variable and polymorphic residues were in NAg sites 2 and 3b. The most divergent of the 120 NAg variants had no more than 5 replacements in all NAg sites and were still neutralized at titers similar to those of Sabin 2. PVR-binding residues were less variable (25 different variants; 0 to 2 replacements per isolate; 30/44 invariant positions), with the most variable residues also forming parts of NAg sites 2 and 3a. Residues 1 to 32 of VP1 were highly variable (133 different variants; 0 to 6 replacements per isolate; 5/32 invariant positions), with residues 1 to 18 predicted to form a well-conserved amphipathic helix. Replacement events were dated by mapping them onto the branches of time-scaled phylogenies. Rates of amino acid replacement varied widely across positions and followed no simple substitution model. Replacements in the structural core were the most conservative and were fixed at an overall rate ∼20-fold lower than the rates for the NAg sites and VP1 1 to 32 and ∼5-fold lower than the rate for the PVR-binding sites. Only VP1 143-Ile, a non-NAg site surface residue and known attenuation site, appeared to be under strong negative selection.IMPORTANCE The high rate of poliovirus evolution is offset by strong selection against amino acid replacement at most positions of the capsid. Consequently, poliovirus vaccines developed from strains isolated decades ago have been used worldwide to bring wild polioviruses almost to extinction. The apparent antigenic stability of poliovirus obscures a dynamic of continuous change within the neutralizing antigenic (NAg) sites. During 7 years of a large outbreak in Nigeria, the circulating type 2 vaccine-derived polioviruses generated 120 different NAg site variants via multiple independent pathways. Nonetheless, overall antigenic evolution was constrained, as no isolate had fixed more than 5 amino acid differences from the Sabin 2 NAg sites, and the most divergent isolates were efficiently neutralized by human immune sera. Evolution elsewhere in the capsid was also constrained. Amino acids binding the poliovirus receptor were strongly conserved, and extensive variation in the VP1 amino terminus still conserved a predicted amphipathic helix.
Collapse
|
5
|
Are Circulating Type 2 Vaccine-derived Polioviruses (VDPVs) Genetically Distinguishable from Immunodeficiency-associated VDPVs? Comput Struct Biotechnol J 2017; 15:456-462. [PMID: 29276577 PMCID: PMC5671402 DOI: 10.1016/j.csbj.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Public health response to vaccine-derived poliovirus (VDPV) that is transmitted from person to person (circulating VDPV [cVDPV]) differs significantly from response to virus that replicates in individuals with primary immunodeficiency (immunodeficiency-associated VDPV [iVDPV]). cVDPV outbreaks require a community immunization response, whereas iVDPV chronic infections require careful patient monitoring and appropriate individual treatment. To support poliovirus outbreak response, particularly for type 2 VDPV, we investigated the genetic distinctions between cVDPV2 and iVDPV2 sequences. We observed that simple genetic measurements of nucleotide and amino acid substitutions are sufficient for distinguishing highly divergent iVDPV2 from cVDPV2 sequences, but are insufficient to make a clear distinction between the two categories among less divergent sequences. We presented quantitative approaches using genetic information as a surveillance tool for early detection of VDPV outbreaks. This work suggests that genetic variations between cVDPV2 and iVDPV2 may reflect differences in viral micro-environments, host-virus interactions, and selective pressures during person-to-person transmission compared with chronic infections in immunodeficient patients.
Collapse
|
6
|
Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing. J Clin Microbiol 2017; 55:2162-2171. [PMID: 28468861 PMCID: PMC5483918 DOI: 10.1128/jcm.00144-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5′ untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5′ UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication.
Collapse
|
7
|
Human Rhinovirus Diversity and Evolution: How Strange the Change from Major to Minor. J Virol 2017; 91:JVI.01659-16. [PMID: 28100614 DOI: 10.1128/jvi.01659-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Rhinoviruses are the most common causes of the common cold. Their many distinct lineages fall into "major" and "minor" groups that use different cell surface receptors to enter host cells. Minor-group rhinoviruses are more immunogenic in laboratory studies, although their patterns of transmission and their cold symptoms are broadly similar to those of the major group. Here we present evolutionary evidence that minor-group viruses are also more immunogenic in humans. A key finding is that rates of amino acid substitutions at exposed sites in the capsid proteins VP2, VP3, and VP1 tend to be elevated in minor-group relative to major-group viruses, while rates at buried sites show no consistent differences. A reanalysis of historical virus watch data also indicates a higher immunogenicity of minor-group viruses, consistent with our findings about evolutionary rates at amino acid positions most directly exposed to immune surveillance. The increased immunogenicity and speed of evolution in minor-group lineages may contribute to the very large numbers of rhinovirus serotypes that coexist while differing in virulence.IMPORTANCE Most colds are caused by rhinoviruses (RVs). Those caused by a subset known as the minor-group members of rhinovirus species A (RV-A) are correlated with the inception and aggravation of asthma in at-risk populations. Genetically, minor-group viruses are similar to major-group RV-A, from which they were derived, although they tend to elicit stronger immune responses. Differences in their rates and patterns of molecular evolution should be highly relevant to their epidemiology. All RV-A strains show high rates of amino acid substitutions in the capsid proteins at exposed sites not previously identified as being immunogenic, and this increase is significantly greater in minor-group viruses. These findings will inform future studies of the recently discovered RV-C, which also appears to exacerbate asthma in adults and children. In addition, these findings draw attention to the difficult problem of explaining the long-term coexistence of many serotypes of major- and minor-group RVs.
Collapse
|
8
|
Yang T, Li R, Peng W, Ge M, Luo B, Qu T, Yu X. First isolation and genetic characteristics of porcine sapeloviruses in Hunan, China. Arch Virol 2017; 162:1589-1597. [PMID: 28213873 DOI: 10.1007/s00705-017-3264-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 02/03/2023]
Abstract
Outbreaks of diarrhea in piglets cause serious economic consequences in China. Diarrhetic fecal samples from 20 Hunan farm piglets were tested and found to be positive for porcine epidemic diarrhea virus (PEDV) by RT-PCR, although incubation with porcine kidney (PK-15) cells failed to produce infectious PEDV. Four porcine sapelovirus (PSV) strains (designated as PSV-HuNs) were isolated from four of the samples. Genomic sequence analysis revealed open reading frames encoding polyproteins of 2,331 (HuN1, 2 and 3) and 2,332 (HuN4) amino acids. Homology comparisons of the VP1 gene of the four Hunan strains with previously reported PSV strains revealed nucleotide sequence identities ranging from 74.2 to 98.6%, and deduced amino acid sequence identities from 79.5 to 98%. Phylogenetic analyses based on full-length and partial VP1 gene sequences showed that 3 of the PSV-HuN strains (HuN2, 3 and 4) clustered within a clade distinct from HuN1 as well as from all PSVs previously isolated in China, thereby showing that genetic diversity exists within Chinese PSVs. In addition, recombination analysis among PSVs indicates that a recombinant (HuN2 strain) exist in China.
Collapse
Affiliation(s)
- Taotao Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wang Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Binyu Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Tailong Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
9
|
Richert L, Humbert N, Larquet E, Girerd-Chambaz Y, Manin C, Ronzon F, Mély Y. Fluorescence correlation spectroscopy as a sensitive and useful tool for revealing potential overlaps between the epitopes of monoclonal antibodies on viral particles. MAbs 2016; 8:1235-1244. [PMID: 27428887 DOI: 10.1080/19420862.2016.1212148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes. This was confirmed by the cryo-electron microscopy (cryo EM) structure of the poliovirus type 3 complexed with the corresponding antigen-binding fragments (Fabs) of the mAbs, which revealed that Fabs 4B7-1H8-2E10 and 4H8-3A12-2D3 epitopes share common amino acids. In contrast, a less efficient competition between mAb 1E3-3G4 and mAb 4H8-3A12-2D3 was observed by FCS, and there was no competition between mAbs 1E3-3G4 and 4B7-1H8-2E10. The Fab 1E3-3G4 epitope was found by cryoEM to be close to but distinct from the epitopes of both Fabs 4H8-3A12-2D3 and 4B7-1H8-2E10. Therefore, the FCS data additionally suggest that mAbs 4H8-3A12-2D3 and 4B7-1H8-2E10 bind in a different orientation to their epitopes, so that only the former sterically clashes with the mAb 1E3-3G4 bound to its epitope. Our results demonstrate that FCS can be a highly sensitive and useful tool for assessing the potential overlap of mAbs on viral particles.
Collapse
Affiliation(s)
- Ludovic Richert
- a Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , Illkirch , France
| | - Nicolas Humbert
- a Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , Illkirch , France
| | - Eric Larquet
- b Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) UPR 3082 du CNRS, Campus CNRS , Gif-sur-Yvette Cedex , France
| | | | | | | | - Yves Mély
- a Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , Illkirch , France
| |
Collapse
|
10
|
Abstract
Intradermal (ID) vaccination induces a more potent immune response and requires lower vaccine doses as compared with standard vaccination routes. To deliver ID vaccines effectively and consistently, an ID delivery device has been developed and is commercially available for adults. The clinical application of ID vaccines for infants and children is much anticipated because children receive several vaccines, on multiple occasions, during infancy and childhood. However, experience with ID vaccines is limited and present evidence is sparse and inconsistent. ID delivery devices are not currently available for infants and children, but recent studies have examined skin thickness in this population and reported that it did not differ in proportion to body size in infants, children, and adults. These results are helpful in developing new ID devices and for preparing new vaccines in infants and children.
Collapse
Affiliation(s)
- Akihiko Saitoh
- a Department of Pediatrics , Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Yuta Aizawa
- a Department of Pediatrics , Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| |
Collapse
|
11
|
Li J, Sun Y, Du Y, Yan Y, Huo D, Liu Y, Peng X, Yang Y, Liu F, Lin C, Liang Z, Jia L, Chen L, Wang Q, He Y. Characterization of Coxsackievirus A6- and Enterovirus 71-Associated Hand Foot and Mouth Disease in Beijing, China, from 2013 to 2015. Front Microbiol 2016; 7:391. [PMID: 27065963 PMCID: PMC4812011 DOI: 10.3389/fmicb.2016.00391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Etiology surveillance of Hand Foot and Mouth disease (HFMD) in Beijing showed that Coxsackievirus A6 (CVA6) became the major pathogen of HFMD in 2013 and 2015. In order to understand the epidemiological characteristics and clinical manifestations of CVA6-associated HFMD, a comparison study among CVA6-, EV71- (Enterovirus 71), and CVA16- (Coxsackievirus A16) associated HFMD was performed. METHODS Epidemiological characteristics and clinical manifestations among CVA6-, EV71- and CVA16-associated mild or severe cases were compared from 2013 to 2015. VP1 gene of CVA6 and EV71 from mild cases, severe cases were sequenced, aligned, and compared with strains from 2009 to 2015 in Beijing and strains available in GenBank. Phylogenetic tree was constructed by neighbor-joining method. RESULTS CVA6 became the predominant causative agent of HFMD and accounted for 35.4 and 36.9% of total positive cases in 2013 and 2015, respectively. From 2013 to 2015, a total of 305 severe cases and 7 fatal cases were reported. CVA6 and EV71 were responsible for 57.5% of the severe cases. Five out six samples from fatal cases were identified as EV71. High fever, onychomadesis, and decrustation were the typical symptoms of CVA6-associated mild HFMD. CVA6-associated severe cases were characterized by high fever with shorter duration and twitch compared with EV71-associated severe cases which were characterized by poor mental condition, abnormal pupil, and vomiting. Poor mental condition, lung wet rales, abnormal pupil, and tachycardia were the most common clinical features of fatal cases. The percentage of lymphocyte in CVA6-associated cases was significantly lower than that of EV71. High percentage of lymphocyte and low percentage of neutrophils were the typical characteristics of fatal cases. VP1 sequences between CVA6- or EV71-associated mild and severe cases were highly homologous. CONCLUSION CVA6 became one of the major pathogens of HFMD in 2013 and 2015 in Beijing. Epidemiological characteristics, clinical manifestations of CVA6-, EV71- and CVA16-associated cases in this study enriched the definition of HFMD caused by different pathogens and shed light to accurate diagnosis, appropriate treatment and effective prevention of HFMD.
Collapse
Affiliation(s)
- Jie Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical UniversityBeijing, China; Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease ControlBeijing, China
| | - Ying Sun
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Yiwei Du
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Yuxiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University Beijing, China
| | - Da Huo
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Yuan Liu
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Xiaoxia Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University Beijing, China
| | - Yang Yang
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Fen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University Beijing, China
| | - Changying Lin
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Zhichao Liang
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Lijuan Chen
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University Beijing, China
| |
Collapse
|
12
|
Cao Z, Ding Y, Ke Z, Cao L, Li N, Ding G, Wang Z, Xiao W. Luteoloside Acts as 3C Protease Inhibitor of Enterovirus 71 In Vitro. PLoS One 2016; 11:e0148693. [PMID: 26870944 PMCID: PMC4752227 DOI: 10.1371/journal.pone.0148693] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Luteoloside is a member of the flavonoids family that exhibits several bioactivities including anti-microbial and anti-cancer activities. However, the antiviral activity of luteoloside against enterovirus 71 (EV71) and the potential mechanism(s) responsible for this effect remain unknown. In this study, the antiviral potency of luteoloside against EV71 and its inhibitory effects on 3C protease activity were evaluated. First, we investigated the cytotoxicity of luteoloside against rhabdomyosarcoma (RD) cells, which was the cell line selected for an in vitro infection model. In a subsequent antiviral assay, the cytopathic effect of EV71 was significantly and dose-dependently relieved by the administration of luteoloside (EC50 = 0.43 mM, selection index = 5.3). Using a plaque reduction assay, we administered luteoloside at various time points and found that the compound reduced EV71 viability in RD cells rather than increasing defensive mobilization or viral absorption. Moreover, biochemical studies focused on VP1 (a key structural protein of EV71) mRNA transcript and protein levels also revealed the inhibitory effects of luteoloside on the EV71 viral yield. Finally, we performed inhibition assays using luteoloside to evaluate its effect on recombinant 3C protease activity. Our results demonstrated that luteoloside blocked 3C protease enzymatic activity in a dose-dependent manner (IC50 = 0.36 mM) that was similar to the effect of rutin, which is a well-known C3 protease inhibitor. Collectively, the results from this study indicate that luteoloside can block 3C protease activity and subsequently inhibit EV71 production in vitro.
Collapse
Affiliation(s)
- Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Yue Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhipeng Ke
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Na Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Gang Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
13
|
Fan P, Li X, Sun S, Su W, An D, Gao F, Kong W, Jiang C. Identification of a common epitope between enterovirus 71 and human MED25 proteins which may explain virus-associated neurological disease. Viruses 2015; 7:1558-77. [PMID: 25826188 PMCID: PMC4411665 DOI: 10.3390/v7041558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease with especially severe neurologic complications, which mainly account for fatalities from this disease. To date, the pathogenesis of EV71 in the central neurons system has remained unclear. Cytokine-mediated immunopathogenesis and nervous tissue damage by virus proliferation are two widely speculated causes of the neurological disease. To further study the pathogenesis, we identified a common epitope (co-epitope) between EV71 VP1 and human mediator complex subunit 25 (MED25) highly expressed in brain stem. A monoclonal antibody (2H2) against the co-epitope was prepared, and its interaction with MED25 was examined by ELISA, immunofluorescence assay and Western blot in vitro and by live small animal imaging in vivo. Additionally, 2H2 could bind to both VP1 and MED25 with the affinity constant (Kd) of 10−7 M as determined by the ForteBio Octet System. Intravenously injected 2H2 was distributed in brain stem of mice after seven days of EV71 infection. Interestingly, 2H2-like antibodies were detected in the serum of EV71-infected patients. These findings suggest that EV71 infection induces the production of antibodies that can bind to autoantigens expressed in nervous tissue and maybe further trigger autoimmune reactions resulting in neurological disease.
Collapse
Affiliation(s)
- Peihu Fan
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Xiaojun Li
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Shiyang Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Weiheng Su
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Dong An
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Feng Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Changchun 130012, China
- Authors to whom correspondence should be addressed; E-Mails: (W.K.); (C.J.); Tel.: +86-0431-8517-7701 (W.K.); +86-0431-8516-7790 (C.J.); Fax: +86-0431-8516-7751 (W.K. and C.J.)
| | - Chunlai Jiang
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Changchun 130012, China
- Authors to whom correspondence should be addressed; E-Mails: (W.K.); (C.J.); Tel.: +86-0431-8517-7701 (W.K.); +86-0431-8516-7790 (C.J.); Fax: +86-0431-8516-7751 (W.K. and C.J.)
| |
Collapse
|
14
|
Robustness against serum neutralization of a poliovirus type 1 from a lethal epidemic of poliomyelitis in the Republic of Congo in 2010. Proc Natl Acad Sci U S A 2014; 111:12889-94. [PMID: 25136105 DOI: 10.1073/pnas.1323502111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In 2010, a large outbreak of poliomyelitis with unusual 47% lethality occurred in Pointe Noire, Republic of Congo. Vaccine-mediated immunity against the outbreak virus was never investigated. A wild poliovirus 1 (WPV1) isolated from a fatal case (termed PV1-RC2010) showed a previously unknown combination of amino acid exchanges in critical antigenic site 2 (AgS2, VP1 capsid protein positions 221SAAL → 221PADL). These exchanges were also detected in an additional 11 WPV1 strains from fatal cases. PV1-RC2010 escaped neutralization by three different mAbs relevant for AgS2. Virus neutralization was tested in sera from fatal cases, who died before supplementary immunization (n = 24), Gabonese recipients of recent oral polio vaccination (n = 12), routinely vaccinated German medical students (n = 34), and German outpatients tested for antipoliovirus immunity (n = 17) on Vero, human rhabdomyosarcoma, and human epidermoid carcinoma 2 cells. Fatal poliomyelitis cases gave laboratory evidence of previous trivalent vaccination. Neutralizing antibody titers against PV1-RC2010 were significantly lower than those against the vaccine strain Sabin-1, two genetically distinct WPV1s isolated in 1965 and 2010 and two genetically distinct vaccine-derived PV strains. Of German vaccinees tested according to World Health Organization protocols, 15-29% were unprotected according to their neutralization titers (<1:8 serum dilution), even though all were protected against Sabin-1. Phylogenetic analysis of the WPV1 outbreak strains suggested a recent introduction of virus progenitors from Asia with formation of separate Angolan and Congolese lineages. Only the latter carried both critical AgS2 mutations. Antigenetically variant PVs may become relevant during the final phase of poliomyelitis eradication in populations with predominantly vaccine-derived immunity. Sustained vaccination coverage and clinical and environmental surveillance will be necessary.
Collapse
|
15
|
Tian X, Zhang Y, Gu S, Fan Y, Sun Q, Zhang B, Yan S, Xu W, Ma X, Wang W. New coxsackievirus B4 genotype circulating in Inner Mongolia Autonomous Region, China. PLoS One 2014; 9:e90379. [PMID: 24595311 PMCID: PMC3940859 DOI: 10.1371/journal.pone.0090379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) surveillance was initiated in the Inner Mongolia Autonomous Region of China in 2007, a crucial scrutiny for monitoring the prevalence of enterovirus serotypes associated with HFMD patients. However, this surveillance mostly focused on enterovirus 71 (EV-A71) and coxsackievirus A16; therefore, information on other enterovirus serotypes is limited. To identify the other circulating enterovirus serotypes in the HFMD outbreaks in Inner Mongolia in 2010, clinical samples from HFMD patients were investigated. Six coxsackievirus B4 (CVB4) strains were isolated and phylogenetic analyses of VP1 sequences were performed. Full-length genome sequences of two representative CVB4 isolates were acquired and similarity plot and bootscanning analyses were performed. The phylogenetic dendrogram indicated that all CVB4 strains could be divided into 5 genotypes (Genotypes I–V) with high bootstrap support (90–100%). The CVB4 prototype strain (JVB) was the sole member of genotype I. CVB4 strains belonging to genotype II, which were once common in Europe and the Americas, seemingly disappeared and gave way to genotype III and IV strains, which appear to be the dominant circulating strains in the world. All Chinese CVB4 strains belonged to Genotype V, a newly identified genotype supported by a high bootstrap value (100%), and are circulating only in mainland of China. Intertypic recombination occurred in the Chinese CVB4 strains with novel unknown serotype EV-B donor sequences. Two Chinese CVB4 strains had a virulent residue at position 129 of VP1, and one strain also had a virulent residue at position 16 of VP4. Increased surveillance is needed to monitor the emergence of new genetic lineages of enteroviruses in areas that are often associated with large-scale outbreaks. In addition, continued monitoring of enteroviruses by clinical surveillance and genetic characterization should be enhanced.
Collapse
Affiliation(s)
- Xiaoling Tian
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Suyi Gu
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Yaochun Fan
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bo Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shaohong Yan
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xueen Ma
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Wenrui Wang
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
- * E-mail:
| |
Collapse
|
16
|
Identification of vaccine-derived polioviruses using dual-stage real-time RT-PCR. J Virol Methods 2013; 197:25-8. [PMID: 24321704 DOI: 10.1016/j.jviromet.2013.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 01/21/2023]
Abstract
Vaccine-derived polioviruses (VDPVs) are associated with polio outbreaks and prolonged infections in individuals with primary immunodeficiencies. VDPV-specific PCR assays for each of the three Sabin oral poliovirus vaccine (OPV) strains were developed, targeting sequences within the VP1 capsid region that are selected for during replication of OPV in the human intestine. Over 2400 Sabin-related isolates and identified 755 VDPVs were screened. Sensitivity of all assays was 100%, while specificity was 100% for serotypes 1 and 3, and 76% for serotype 2. The assays permit rapid, sensitive identification of OPV-related viruses and flag programmatically important isolates for further characterization by genomic sequencing.
Collapse
|
17
|
Highly divergent type 2 and 3 vaccine-derived polioviruses isolated from sewage in Tallinn, Estonia. J Virol 2013; 87:13076-80. [PMID: 24049178 DOI: 10.1128/jvi.01174-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Highly divergent vaccine-derived polioviruses (VDPVs) have been isolated from sewage in Tallinn, Estonia, since 2002. Sequence analysis of VDPVs of serotypes 2 and 3 showed that they shared common noncapsid region recombination sites, indicating origination from a single trivalent oral polio vaccine dose, estimated to have been given between 1986 and 1998. The sewage isolates closely resemble VDPVs chronically excreted by persons with common variable immunodeficiency, but no chronic excretors have yet been identified in Estonia.
Collapse
|
18
|
Borley DW, Mahapatra M, Paton DJ, Esnouf RM, Stuart DI, Fry EE. Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus. PLoS One 2013; 8:e61122. [PMID: 23667434 PMCID: PMC3646828 DOI: 10.1371/journal.pone.0061122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding virus antigenicity is of fundamental importance for the development of better, more cross-reactive vaccines. However, as far as we are aware, no systematic work has yet been conducted using the 3D structure of a virus to identify novel epitopes. Therefore we have extended several existing structural prediction algorithms to build a method for identifying epitopes on the appropriate outer surface of intact virus capsids (which are structurally different from globular proteins in both shape and arrangement of multiple repeated elements) and applied it here as a proof of principle concept to the capsid of foot-and-mouth disease virus (FMDV). We have analysed how reliably several freely available structure-based B cell epitope prediction programs can identify already known viral epitopes of FMDV in the context of the viral capsid. To do this we constructed a simple objective metric to measure the sensitivity and discrimination of such algorithms. After optimising the parameters for five methods using an independent training set we used this measure to evaluate the methods. Individually any one algorithm performed rather poorly (three performing better than the other two) suggesting that there may be value in developing virus-specific software. Taking a very conservative approach requiring a consensus between all three top methods predicts a number of previously described antigenic residues as potential epitopes on more than one serotype of FMDV, consistent with experimental results. The consensus results identified novel residues as potential epitopes on more than one serotype. These include residues 190-192 of VP2 (not previously determined to be antigenic), residues 69-71 and 193-197 of VP3 spanning the pentamer-pentamer interface, and another region incorporating residues 83, 84 and 169-174 of VP1 (all only previously experimentally defined on serotype A). The computer programs needed to create a semi-automated procedure for carrying out this epitope prediction method are presented.
Collapse
Affiliation(s)
- Daryl W. Borley
- The Pirbright Institute, Pirbright, United Kingdom
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| | | | | | - Robert M. Esnouf
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| |
Collapse
|
19
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
20
|
|
21
|
Odoom JK, Forrest L, Dunn G, Osei-Kwasi M, Obodai E, Arthur-Quarm J, Barnor J, Minor PD, Martin J. Interruption of poliovirus transmission in Ghana: molecular epidemiology of wild-type 1 poliovirus isolated from 1995 to 2008. J Infect Dis 2012; 206:1111-20. [PMID: 22829642 DOI: 10.1093/infdis/jis474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Described in detail is the molecular epidemiology of wild-type 1 poliovirus circulation in Ghana between 1995-2008, following the implementation of a surveillance system for cases of acute flaccid paralysis and poliovirus infection. Molecular phylogenetic analysis combined with a detailed evaluation of epidemiological indicators revealed that the geographical and temporal circulation of wild-type poliovirus in Ghana was determined by the quality of the implementation of global eradication strategies. The transmission of "indigenous" wild-type 1 poliovirus was eliminated in 1999. However, a drastic reduction in national immunization campaigns resulted in the importation in 2003 and 2008 of wild-type 1 poliovirus from neighboring countries. Both outbreaks were promptly interrupted following resumption of immunization activities. The results detailed here provide scientific evidence that supports the feasibility of polio eradication in Central West Africa, one of the remaining endemic areas for the disease, provided that comprehensive immunization campaigns and sensitive surveillance systems are in place.
Collapse
Affiliation(s)
- John Kofi Odoom
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Molecular identification and characterization of a new type of bovine enterovirus. Appl Environ Microbiol 2012; 78:4497-500. [PMID: 22492440 DOI: 10.1128/aem.00109-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine enteroviruses belong to the family Picornaviridae. Little is known about their pathogenic potential; however, they cause asymptomatic infections in cattle and are excreted in feces. In the present study, viruses isolated from environmental samples were sequenced. According to phylogenetic analyses and standard picornavirus nomenclature, these isolates constitute a new type of bovine enterovirus serogroup A.
Collapse
|
23
|
Zhang Y, Wang J, Guo W, Wang H, Zhu S, Wang D, Bai R, Li X, Yan D, Wang H, Zhang Y, Zhu Z, Tan X, An H, Xu A, Xu W. Emergence and transmission pathways of rapidly evolving evolutionary branch C4a strains of human enterovirus 71 in the Central Plain of China. PLoS One 2011; 6:e27895. [PMID: 22125635 PMCID: PMC3220707 DOI: 10.1371/journal.pone.0027895] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
Background Large-scale outbreaks of hand, foot, and mouth disease (HFMD) occurred repeatedly in the Central Plain of China (Shandong, Anhui, and Henan provinces) from 2007 until now. These epidemics have increased in size and severity each year and are a major public health concern in mainland China. Principal Findings Phylogenetic analysis was performed and a Bayesian Markov chain Monte Carlo tree was constructed based on the complete VP1 sequences of HEV71 isolates. These analyses showed that the HFMD epidemic in the Central Plain of China was caused by at least 5 chains of HEV71 transmission and that the virus continued to circulate and evolve over the winter seasons between outbreaks. Between 1998 and 2010, there were 2 stages of HEV71 circulation in mainland China, with a shift from evolutionary branch C4b to C4a in 2003–2004. The evolution rate of C4a HEV71 was 4.99×10-3 substitutions per site per year, faster than the mean of all HEV71 genotypes. The most recent common ancestor estimates for the Chinese clusters dated to October 1994 and November 1993 for the C4a and C4b evolutionary branches, respectively. Compared with all C4a HEV71 strains, a nucleotide substitution in all C4b HEV71 genome (A to C reversion at nt2503 in the VP1 coding region, which caused amino acid substitution of VP1–10: Gln to His) had reverted. Conclusions The data suggest that C4a HEV71 strains introduced into the Central Plain of China are responsible for the recent outbreaks. The relationships among HEV71 isolates determined from the combined sequence and epidemiological data reveal the underlying seasonal dynamics of HEV71 circulation. At least 5 HEV71 lineages circulated in the Central Plain of China from 2007 to 2009, and the Shandong and Anhui lineages were found to have passed through a genetic bottleneck during the low-transmission winter season.
Collapse
Affiliation(s)
- Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jitao Wang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, People's Republic of China
| | - Wanshen Guo
- Henan Center for Disease Control and Prevention, Zhengzhou City, Henan Province, People's Republic of China
| | - Haiyan Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ruyin Bai
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Taishan Medical University, Taishan City, Shandong Province, People's Republic of China
| | - Xingle Li
- Henan Center for Disease Control and Prevention, Zhengzhou City, Henan Province, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Huiling Wang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Zhang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhen Zhu
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiaojuan Tan
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hongqiu An
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Aiqiang Xu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
24
|
Tan X, Huang X, Zhu S, Chen H, Yu Q, Wang H, Huo X, Zhou J, Wu Y, Yan D, Zhang Y, Wang D, Cui A, An H, Xu W. The persistent circulation of enterovirus 71 in People's Republic of China: causing emerging nationwide epidemics since 2008. PLoS One 2011; 6:e25662. [PMID: 21980521 PMCID: PMC3181342 DOI: 10.1371/journal.pone.0025662] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/07/2011] [Indexed: 01/16/2023] Open
Abstract
Emerging epidemics of hand-foot-and-mouth disease (HFMD) associated with enterovirus 71 (EV71) has become a serious concern in mainland China. It caused 126 and 353 fatalities in 2008 and 2009, respectively. The epidemiologic and pathogenic data of the outbreak collected from national laboratory network and notifiable disease surveillance system. To understand the virological evolution of this emerging outbreak, 326 VP1 gene sequences of EV71 detected in China from 1987 to 2009 were collected for genetic analyses. Evidence from both traditional and molecular epidemiology confirmed that the recent HFMD outbreak was an emerging one caused by EV71 of subgenotype C4. This emerging HFMD outbreak is associated with EV71 of subgenotype C4, circulating persistently in mainland China since 1998, but not attributed to the importation of new genotype. Originating from 1992, subgenotype C4 has been the predominant genotype since 1998 in mainland China, with an evolutionary rate of 4.6∼4.8×10−3 nucleotide substitutions/site/year. The phylogenetic analysis revealed that the majority of the virus during this epidemic was the most recent descendant of subgenotype C4 (clade C4a). It suggests that the evolution might be one of the potential reasons for this native virus to cause the emerging outbreak in China. However, strong negative selective pressure on VP1 protein of EV71 suggested that immune escape might not be the evolving strategy of EV71, predicting a light future for vaccine development. Nonetheless, long-term antigenic and genetic surveillance is still necessary for further understanding.
Collapse
Affiliation(s)
- Xiaojuan Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueyong Huang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Shuangli Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Chen
- Ningxia Provincial Center for Disease Control and Prevention, Yinchuan, Ningxia, China
| | - Qiuli Yu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Haiyan Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Jianhui Zhou
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, China
| | - Yan Wu
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, China
| | - Dongmei Yan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aili Cui
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqiu An
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Tavares FN, Campos RDM, Burlandy FM, Fontella R, de Melo MMM, da Costa EV, da Silva EE. Molecular characterization and phylogenetic study of coxsackievirus A24v causing outbreaks of acute hemorrhagic conjunctivitis (AHC) in Brazil. PLoS One 2011; 6:e23206. [PMID: 21858030 PMCID: PMC3156732 DOI: 10.1371/journal.pone.0023206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Coxsackievirus A24 variant (CA24v) is the most prevalent viral pathogen associated with acute hemorrhagic conjunctivitis (AHC) outbreaks. Sixteen years after its first outbreak in Brazil, this agent reemerged in 2003 in Brazil, spread to nearly all states and caused outbreaks until 2005. In 2009, a new outbreak occurred in the northeast region of the country. In this study, we performed a viral isolation in cell culture and characterized clinical samples collected from patients presenting symptoms during the outbreak of 2005 in Vitória, Espírito Santo State (ES) and the outbreak of 2009 in Recife, Pernambuco State (PE). We also performed a phylogenetic analysis of worldwide strains and all meaningful Brazilian isolates since 2003. METHODS AND FINDINGS Sterile cotton swabs were used to collect eye discharges, and all 210 clinical samples were used to inoculate cell cultures. Cytopathic effects in HEp-2 cells were seen in 58 of 180 (32%) samples from Vitória and 3 of 30 (10%) samples from Recife. Phylogenetic analysis based on a fragment of the VP1 and 3C gene revealed that the CA24v causing outbreaks in Brazil during the years 2003, 2004 and 2005 evolved from Asian isolates that had caused the South Korean outbreak of AHC during the summer of 2002. However, the 2009 outbreak of AHC in Pernambuco was originated from the reintroduction of a new CA24v strain that was circulating during 2007 in Asia, where CA24v outbreaks has been continuously reported since 1970. CONCLUSIONS This study is the first phylogenetic analysis of AHC outbreaks caused by CA24v in Brazil. The results showed that Asian strains of CA24v were responsible for the outbreaks since 1987 and were independently introduced to Brazil in 2003 and 2009. Phylogenetic analysis of complete VP1 gene is a useful tool for studying the epidemiology of enteroviruses associated with outbreaks.
Collapse
Affiliation(s)
- Fernando Neto Tavares
- Laboratório de Enterovírus, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Rachel Fontella
- Laboratório de Biologia Evolutiva Teórica e Aplicada, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Eliane Veiga da Costa
- Laboratório de Enterovírus, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Elias da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Yan D, Li L, Zhu S, Zhang Y, An J, Wang D, Wen N, Jorba J, Liu W, Zhong G, Huang L, Kew O, Liang X, Xu W. Emergence and localized circulation of a vaccine-derived poliovirus in an isolated mountain community in Guangxi, China. J Clin Microbiol 2010; 48:3274-80. [PMID: 20631095 PMCID: PMC2937699 DOI: 10.1128/jcm.00712-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/24/2010] [Accepted: 07/02/2010] [Indexed: 01/19/2023] Open
Abstract
From March to May 2006, type 1 circulating vaccine-derived poliovirus (cVDPV) was isolated from one case patient with acute flaccid paralysis (AFP) and six unimmunized healthy contacts in isolated mountain villages in Guangxi, China. We conducted epidemiological investigations in the affected communities and nucleotide sequence analyses of the cVDPV isolates. The results of the investigations showed that the AFP patient, an unimmunized 10-year-old boy, and five laboratory-confirmed contacts lived in the same village; one contact lived in a neighboring village. Only approximately 27% of children 5 to 10 years of age in the affected villages had received three or more doses of the trivalent oral poliovirus vaccine (OPV). Nucleotide sequence analyses revealed that the cVDPV isolates differed from the Sabin 1 (S1) isolate at 1.4 to 2.2% of VP1 nucleotide positions and shared 12 nucleotide substitutions within VP1. All isolates were S1/S2/S1/S3 recombinants sharing common recombination junctions. Key determinants of attenuation were replaced. Phylogenetic analysis suggested that the cVDPV circulated locally for approximately 12 months following the initiating OPV dose. No VDPVs were found after mass OPV immunizations, conducted from May to June 2006, that targeted all children <12 years of age. Our findings reinforce the point that VDPVs can emerge and spread in isolated communities with immunity gaps. Maintenance of sensitive AFP and poliovirus surveillance is essential to permit early detection and a rapid response to VDPV circulation.
Collapse
Affiliation(s)
- Dongmei Yan
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Li Li
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Junjing An
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Ning Wen
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Jaume Jorba
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Wei Liu
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Ge Zhong
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Lin Huang
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Olen Kew
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Xiaofeng Liang
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Reference Poliomyelitis Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People's Republic of China, National Immunization Program, Beijing 100050, People's Republic of China, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530011, People's Republic of China
| |
Collapse
|
27
|
Zhang Y, Wang H, Zhu S, Li Y, Song L, Liu Y, Liu G, Nishimura Y, Chen L, Yan D, Wang D, An H, Shimizu H, Xu A, Xu W. Characterization of a rare natural intertypic type 2/type 3 penta-recombinant vaccine-derived poliovirus isolated from a child with acute flaccid paralysis. J Gen Virol 2009; 91:421-9. [PMID: 19846676 DOI: 10.1099/vir.0.014258-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A type 2 vaccine-derived poliovirus (VDPV) (strain CHN1025), with a 1.1 % (10/903) difference from Sabin strain in the VP1 coding region, was isolated from a child with poliomyelitis caused by a poliovirus variant infection. The patient was from Shandong Province of China and developed acute flaccid paralysis in 1997. The child was infected with a rare and complicated penta-recombinant poliovirus with the uncommon genomic recombinant organization S2/S3/S1/S3/S1/S3. At least five successive rounds of recombination occurred in the VP1 capsid coding region and in the 2C, 3C (twice) and 3D(pol) non-capsid coding regions, respectively, during virus evolution. Strain CHN1025 had most of the characteristics of the type 2 vaccine strain; it had Sabin-specific epitopes, suggesting that the virus was antigenically indistinguishable from the Sabin 2 reference strain. Typical mutations in the 5'-untranslated region and VP1 associated with reversion to neurovirulence for Sabin 2 poliovirus were found, and the virus showed moderate neurovirulence in transgenic mice. A few nucleotide substitutions were located in the donor sequences, and two donor sequences contained no nucleotide substitutions, suggesting that these sequences were relatively new. The appearance of these mutations within approximately 192 days of at least five successive rounds of recombination events derived from a single ancestral infection illustrates the rapid emergence of new recombinants among VDPVs. This is the first report on the isolation of a type 2/type 3 poliovirus capsid recombinant with one of the five crossover sites located in the VP1 coding region.
Collapse
Affiliation(s)
- Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology & Genetic Engineering, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road, Xuanwu District, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Burns CC, Campagnoli R, Shaw J, Vincent A, Jorba J, Kew O. Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J Virol 2009; 83:9957-69. [PMID: 19605476 PMCID: PMC2747992 DOI: 10.1128/jvi.00508-09] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/09/2009] [Indexed: 01/16/2023] Open
Abstract
Replicative fitness of poliovirus can be modulated systematically by replacement of preferred capsid region codons with synonymous unpreferred codons. To determine the key genetic contributors to fitness reduction, we introduced different sets of synonymous codons into the capsid coding region of an infectious clone derived from the type 2 prototype strain MEF-1. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased sharply with increased frequencies of the dinucleotides CpG (suppressed in higher eukaryotes and most RNA viruses) and UpA (suppressed nearly universally). Replacement of MEF-1 capsid codons with the corresponding codons from another type 2 prototype strain (Lansing), a randomization of MEF-1 synonymous codons, increased the %G+C without increasing CpG, and reductions in the effective number of codons used had much smaller individual effects on fitness. Poliovirus fitness was reduced to the threshold of viability when CpG and UpA dinucleotides were saturated within and across synonymous codons of a capsid region interval representing only approximately 9% of the total genome. Codon replacements were associated with moderate decreases in total virion production but large decreases in the specific infectivities of intact poliovirions and viral RNAs. Replication of codon replacement viruses, but not MEF-1, was temperature sensitive at 39.5 degrees C. Synthesis and processing of viral intracellular proteins were largely unaltered in most codon replacement constructs. Replacement of natural codons with synonymous codons with increased frequencies of CpG and UpA dinucleotides may offer a general approach to the development of attenuated vaccines with well-defined antigenicities and very high genetic stabilities.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Evolution of the Sabin vaccine into pathogenic derivatives without appreciable changes in antigenic properties: need for improvement of current poliovirus surveillance. J Virol 2009; 83:3402-6. [PMID: 19129444 DOI: 10.1128/jvi.02122-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sabin oral polio vaccine (OPV) may evolve into pathogenic viruses, causing sporadic cases and outbreaks of poliomyelitis. Such vaccine-derived polioviruses (VDPV) generally exhibit altered antigenicity. The current paradigm to distinguish VDPV from OPV and wild polioviruses is to characterize primarily those poliovirus isolates that demonstrate deviations from OPV in antigenic and genetic intratypic differentiation (ITD) tests. Here we report on two independent cases of poliomyelitis caused by VDPVs with "Sabin-like" properties in several ITD assays. The results suggest the existence of diverse pathways of OPV evolution and necessitate improvement of poliovirus surveillance, which currently potentially misses this class of VDPV.
Collapse
|
30
|
Odoom JK, Yunus Z, Dunn G, Minor PD, Martín J. Changes in population dynamics during long-term evolution of sabin type 1 poliovirus in an immunodeficient patient. J Virol 2008; 82:9179-90. [PMID: 18596089 PMCID: PMC2546908 DOI: 10.1128/jvi.00468-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/29/2008] [Indexed: 11/20/2022] Open
Abstract
The evolution of the Sabin strain of type 1 poliovirus in a hypogammaglobulinemia patient for a period of 649 days is described. Twelve poliovirus isolates from sequential stool samples encompassing days 21 to 649 after vaccination with Sabin 1 were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin 1 strain. Poliovirus isolates from the immunodeficient patient evolved gradually toward non-temperature-sensitive and neurovirulent phenotypes, accumulating mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. Analysis of plaque-purified viruses from stool samples revealed complex genetic and evolutionary relationships between the poliovirus strains. The generation of various coevolving genetic lineages incorporating different mutations was observed at early stages of virus excretion. The main driving force for genetic diversity appeared to be the selection of mutations at attenuation sites, particularly in the 5' noncoding region and the VP1 BC loop. Recombination between virus strains from the two main lineages was observed between days 63 and 88. Genetic heterogeneity among plaque-purified viruses at each time point seemed to decrease with time, and only viruses belonging to a unique genotypic lineage were seen from day 105 after vaccination. The relevance of vaccine-derived poliovirus strains for disease surveillance and future polio immunization policies is discussed in the context of the Global Polio Eradication Initiative.
Collapse
Affiliation(s)
- John K Odoom
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN63QG, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J Virol 2008; 82:4429-40. [PMID: 18287242 DOI: 10.1128/jvi.02354-07] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have calibrated five different molecular clocks for circulating poliovirus based upon the rates of fixation of total substitutions (K(t)), synonymous substitutions (K(s)), synonymous transitions (A(s)), synonymous transversions (B(s)), and nonsynonymous substitutions (K(a)) into the P1/capsid region (2,643 nucleotides). Rates were determined over a 10-year period by analysis of sequences of 31 wild poliovirus type 1 isolates representing a well-defined phylogeny derived from a common imported ancestor. Similar rates were obtained by linear regression, the maximum likelihood/single-rate dated-tip method, and Bayesian inference. The very rapid K(t) [(1.03 +/- 0.10) x 10(-2) substitutions/site/year] and K(s) [(1.00 +/- 0.08) x 10(-2)] clocks were driven primarily by the A(s) clock [(0.96 +/- 0.09) x 10(-2)], the B(s) clock was approximately 10-fold slower [(0.10 +/- 0.03) x 10(-2)], and the more stochastic K(a) clock was approximately 30-fold slower [(0.03 +/- 0.01) x 10(-2)]. Nonsynonymous substitutions at all P1/capsid sites, including the neutralizing antigenic sites, appeared to be constrained by purifying selection. Simulation of the evolution of third-codon positions suggested that saturation of synonymous transitions would be evident at 10 years and complete at approximately 65 years of independent transmission. Saturation of synonymous transversions was predicted to be minimal at 20 years and incomplete at 100 years. The rapid evolution of the K(t), K(s), and A(s) clocks can be used to estimate the dates of divergence of closely related viruses, whereas the slower B(s) and K(a) clocks may be used to explore deeper evolutionary relationships within and across poliovirus genotypes.
Collapse
|
32
|
Dedepsidis E, Kyriakopoulou Z, Pliaka V, Kottaridi C, Bolanaki E, Levidiotou-Stefanou S, Komiotis D, Markoulatos P. Retrospective characterization of a vaccine-derived poliovirus type 1 isolate from sewage in Greece. Appl Environ Microbiol 2007; 73:6697-704. [PMID: 17827314 PMCID: PMC2074943 DOI: 10.1128/aem.00535-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrospective molecular and phenotypic characterization of a vaccine-derived poliovirus (VDPV) type 1 isolate (7/b/97) isolated from sewage in Athens, Greece, in 1997 is reported. VP1 sequencing of this isolate revealed 1.87% divergence from the VP1 region of reference strain Sabin 1, while further genomic characterization of isolate 7/b/97 revealed a recombination event in the nonstructural part of the genome between a vaccine strain and a nonvaccine strain probably belonging to Enterovirus species C. Amino acid substitutions commonly found in previous studies were identified in the capsid coding region of the isolate, while most of the attenuation and temperature sensitivity determinants were reverted. The ultimate source of isolate 7/b/97 is unknown. The recovery of such a highly divergent derivative of a vaccine strain emphasizes the need for urgent implementation of environmental surveillance as a supportive procedure in the polio surveillance system even in countries with high rates of OPV coverage in order to prevent cases or even outbreaks of poliomyelitis that otherwise would be inevitable.
Collapse
Affiliation(s)
- Evaggelos Dedepsidis
- Department of Biochemistry & Biotechnology, University of Thessaly, 26 Ploutonos & Aiolou Str., Larissa 41221, Greece
| | | | | | | | | | | | | | | |
Collapse
|
33
|
De Jesus NH. Epidemics to eradication: the modern history of poliomyelitis. Virol J 2007; 4:70. [PMID: 17623069 PMCID: PMC1947962 DOI: 10.1186/1743-422x-4-70] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/10/2007] [Indexed: 11/13/2022] Open
Abstract
Poliomyelitis has afflicted humankind since antiquity, and for nearly a century now, we have known the causative agent, poliovirus. This pathogen is an enterovirus that in recent history has been the source of a great deal of human suffering. Although comparatively small, its genome is packed with sufficient information to make it a formidable pathogen. In the last 20 years the Global Polio Eradication Initiative has proven successful in greatly diminishing the number of cases worldwide but has encountered obstacles in its path which have made halting the transmission of wild polioviruses a practical impossibility. As we begin to realize that a change in strategy may be crucial in achieving success in this venture, it is imperative that we critically evaluate what is known about the molecular biology of this pathogen and the intricacies of its interaction with its host so that in future attempts we may better equipped to more effectively combat this important human pathogen.
Collapse
Affiliation(s)
- Nidia H De Jesus
- Department of Molecular Genetics & Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
34
|
Bouslama L, Rezig D, Ben Yahia A, Aouni M, Triki H. Phylogenetic Analysis of Echovirus 11 in the 3′ End of the VP1. Intervirology 2006; 50:108-14. [PMID: 17191012 DOI: 10.1159/000098236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 02/28/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Echovirus 11 is one of the most frequently isolated enterovirus serotypes, causing a wide range of clinical diseases. We studied the genetic diversity in the 3' end of the VP1 gene of strains from different geographical origin in the world. METHODS The sequences in the 3' end of the VP1 of 11 Tunisian isolates were determined and aligned with the published sequences to establish a phylogenetic profile. RESULTS The grouping of the sequences was similar to what was previously reported by analyzing the whole VP1 gene with 4 genogroups, designated A-D, and 5 lineages in genogroup D. All Tunisian strains belonged to genogroup D, together with other sequences mainly from the USA and Europe. Contrary to the sequences from the USA isolated during the last 3 decades, which mostly belonged to the D4 lineage, those from Tunisia belonged to different lineages within genogroup D according to their isolation date: isolates from the early 1990s belonged to D3, those of the mid 1990s to D4 and the most recent ones to D5. CONCLUSION Our findings further widen the interest of partial sequencing in the VP1 to study the molecular epidemiology of echovirus 11 and indicate that the genetic evolution of circulating strains may differ from one country to another according to the region's epidemiological specificities.
Collapse
Affiliation(s)
- Lamjed Bouslama
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir, Tunisia.
| | | | | | | | | |
Collapse
|
35
|
Bouslama L, Gharbi J, Aouni M. Analysis of the genetic and the corresponding antigenic variability of the VP1 3' end of ECHO virus type 11 and ECHO virus type 30. Virus Genes 2006; 33:205-12. [PMID: 16972035 DOI: 10.1007/s11262-005-0057-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 11/28/2005] [Indexed: 01/12/2023]
Abstract
The enteroviruses (EV), RNA viruses belonging to the Picornaviridae family, have a high genetic variability due to the absence of the efficient proofreading and post replicative repair activities associated with the RNA polymerase. In the present work, we studied the genetic and the antigenic variability of ECHO virus types 11 (E11) and 30 (E30), which are the most isolated echoviruses serotypes in clinical and environmental samples. We established on the 3' end of the VP1 gene, consensus sequences of E11 and E30 by alignment of 67 E11 and 247 E30 published sequences in GenBank. Our results of sequences comparison showed that the majority of the mutational sites are situated on the third nucleotide of the codon. These mutations were without consequence on the antigenic sequences of the VP1 protein. Thus, E11 and E30 have a high genetic variability (1/3 of the nucleotides are variable), but a relative antigenic conservation. The analysis of the intertypic antigenic variability between E11 and E30 was obtained by the alignment of the corresponding amino acids sequences relative to the N-terminal part of the VP1 protein. Two discriminating parts were highlighted, probably representing antigenic sites for neutralisation antibodies.
Collapse
Affiliation(s)
- Lamjed Bouslama
- Laboratoire des Maladies Dominantes Transmissibles, MDT-01, Faculté de Pharmacie de Monastir, Avenue Avicenne, BP 5000 Monastir, Tunisia
| | | | | |
Collapse
|
36
|
Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 2006; 80:3259-72. [PMID: 16537593 PMCID: PMC1440415 DOI: 10.1128/jvi.80.7.3259-3272.2006] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We replaced degenerate codons for nine amino acids within the capsid region of the Sabin type 2 oral poliovirus vaccine strain with corresponding nonpreferred synonymous codons. Codon replacements were introduced into four contiguous intervals spanning 97% of the capsid region. In the capsid region of the most highly modified virus construct, the effective number of codons used (N(C)) fell from 56.2 to 29.8, the number of CG dinucleotides rose from 97 to 302, and the G+C content increased from 48.4% to 56.4%. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased in proportion to the number of replacement codons. Plaque areas decreased over an approximately 10-fold range, and virus yields decreased over an approximately 65-fold range. Perhaps unexpectedly, the synthesis and processing of viral proteins appeared to be largely unaltered by the restriction in codon usage. In contrast, total yields of viral RNA in infected cells were reduced approximately 3-fold and specific infectivities of purified virions (measured by particle/PFU ratios) decreased approximately 18-fold in the most highly modified virus. The replicative fitness of both codon replacement viruses and unmodified viruses increased with the passage number in HeLa cells. After 25 serial passages (approximately 50 replication cycles), most codon replacements were retained, and the relative fitness of the modified viruses remained well below that of the unmodified virus. The increased replicative fitness of high-passage modified virus was associated with the elimination of several CG dinucleotides. Potential applications for the systematic modulation of poliovirus replicative fitness by deoptimization of codon usage are discussed.
Collapse
Affiliation(s)
- Cara Carthel Burns
- Respiratory and Enteric Viruses Branch, G-10, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., N.E., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chehadeh W, Lobert PE, Sauter P, Goffard A, Lucas B, Weill J, Vantyghem MC, Alm G, Pigny P, Hober D. Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4- and B3-induced synthesis of alpha interferon. J Virol 2006; 79:13882-91. [PMID: 16254324 PMCID: PMC1280186 DOI: 10.1128/jvi.79.22.13882-13891.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B4 (CVB4)-induced production of alpha interferon (IFN-alpha) by peripheral blood mononuclear cells (PBMC) is enhanced in vitro by nonneutralizing anti-CVB4 antibodies from healthy subjects and, to a higher extent, from patients with insulin-dependent diabetes mellitus. In this study, we focused on identification of the viral target of these antibodies in CVB systems. High levels of IFN-alpha were obtained in supernatants of PBMC incubated with CVB4E2 or CVB3 and plasma from healthy subjects and, to a higher extent, from patients. The VP4 capsid proteins dissociated by heating at 56 degrees C from CVB4E2 (VP4(CVB4)) and CVB3 (VP4(CVB3)) but not H antigen preincubated with plasma from healthy subjects or patients inhibited the plasma-dependent enhancement of CVB4E2- and CVB3-induced IFN-alpha synthesis. There was no cross-reaction between VP4(CVB4) and VP4(CVB3) in the inhibiting effect. IFN-alpha levels in culture supernatants showed dose-dependent correlation with anti-VP4 antibodies eluted from plasma specimens using VP4-coated plates. There were higher index values for anti-VP4 antibodies detected by enzyme-linked immunosorbent assay (ELISA) and higher proportions of positive detection in 40 patients than in 40 healthy subjects (80% versus 15% for anti-VP4(CVB4)). There was no relationship between the levels of anti-CVB neutralizing antibodies and the detection of anti-VP4 antibodies by ELISA. The CVB plasma-induced IFN-alpha levels obtained in PBMC cultures in the anti-VP4 antibody-positive groups were significantly higher than those obtained in the anti-VP4 antibody-negative groups regardless of the titers of anti-CVB neutralizing antibodies. These results show that VP4 is the target of antibodies involved in the plasma-dependent enhancement of CVB4E2- and CVB3-induced IFN-alpha synthesis by PBMC.
Collapse
Affiliation(s)
- Wassim Chehadeh
- Service de Virologie/ UPRES EA3610, Faculté de Médecine, Université Lille 2, Bâtiment Paul Boulanger, CHRU Lille, 59037 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kottaridi C, Bolanaki E, Mamuris Z, Stathopoulos C, Markoulatos P. Molecular phylogeny of VP1, 2A, and 2B genes of echovirus isolates: epidemiological linkage and observations on genetic variation. Arch Virol 2006; 151:1117-32. [PMID: 16437188 DOI: 10.1007/s00705-005-0697-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/22/2005] [Indexed: 11/28/2022]
Abstract
Phylogenetic relationships between 37 echovirus clinical isolates, most of them originating from an aseptic meningitis outbreak during 2001 in Greece, were investigated by RT-PCR and sequencing. The generic primers 292 and 222 were used to amplify about 300 bp of the 5' end of VP1 while primers EUG3a, 3b, 3c, and EUC2 amplified the entire coding sequence of the 2A and 2B genes. Phylogenetic trees were constructed for each genomic region using the clinical isolates' sequences and those of the prototype echoviruses in order to investigate the correlation of part of VP1 with the serotype as well as the genetic variation of the echovirus genome in 2A and 2B. The phylogenetic grouping pattern of the clinical isolates revealed that there is a correlation of serotype and genotype in the part of VP1 that was investigated, while this pattern is disrupted in the adjacent genomic regions that were sequenced. Sequence analysis of the adjacent 2A and 2B genes provided a different pattern of phylogenetic relationships and strong evidence of epidemiological linkage of most of the clinical isolates.
Collapse
MESH Headings
- Amino Acid Sequence
- Capsid Proteins/genetics
- Disease Outbreaks
- Echovirus 6, Human/classification
- Echovirus 6, Human/genetics
- Echovirus 6, Human/isolation & purification
- Echovirus Infections/epidemiology
- Echovirus Infections/virology
- Enterovirus B, Human/classification
- Enterovirus B, Human/genetics
- Enterovirus B, Human/isolation & purification
- Genes, Viral
- Genetic Variation
- Greece
- Humans
- Meningitis, Aseptic/epidemiology
- Meningitis, Aseptic/virology
- Molecular Epidemiology
- Molecular Sequence Data
- Phylogeny
- RNA, Viral/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Serotyping
- Viral Nonstructural Proteins/genetics
Collapse
Affiliation(s)
- C Kottaridi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
39
|
Chen GW, Hsiung CA, Chyn JL, Shih SR, Wen CC, Chang IS. Revealing molecular targets for enterovirus type 71 detection by profile hidden Markov models. Virus Genes 2005; 31:337-47. [PMID: 16175339 DOI: 10.1007/s11262-005-3252-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
The enterovirus infection in 1998 claimed 78 deaths in Taiwan, with an average of 40 fatalities each year after. Traditional serum-based diagnostic methods often fail to detect enteroviruses due to antigenic changes. As a result, many isolates remain untyped and are absent from the enterovirus surveillance and epidemiological investigations. We present a profile hidden Markov model (HMM) method for molecular typing of enterovirus 71 (EV71). Based on the enteroviral sequences retrieved from GenBank, we build a nucleotide-based and an amino acid-based profile HMM for each EV71 gene using the package HMMER. HMMER bit score-based Z-scores for EV71 and non-EV71 sequences are calculated for each of these profile HMMs. In a genome-wide analysis, we find that the distribution of the EV71 Z-scores and that of the non-EV71 Z-scores have disjoint support for nucleotide-based VP1 profile HMM if the sequence is longer than 150 bases; a VP1-based molecular typing method for EV71 is thus proposed. We also report VP4 an alternative molecular target for detecting EV71, while the two UTRs and all the genes coding the internal proteins cannot be used for such purpose. To demonstrate the performance of the nucleotide-based EV71 VP1 profile HMM, 330 enterovirus VP1 nucleotide sequences newly reported to GenBank are typed with this method. All the EV71 sequences are detected with no error.
Collapse
Affiliation(s)
- Guang-Wu Chen
- Department of Computer Science and Information Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Yang CF, Chen HY, Jorba J, Sun HC, Yang SJ, Lee HC, Huang YC, Lin TY, Chen PJ, Shimizu H, Nishimura Y, Utama A, Pallansch M, Miyamura T, Kew O, Yang JY. Intratypic recombination among lineages of type 1 vaccine-derived poliovirus emerging during chronic infection of an immunodeficient patient. J Virol 2005; 79:12623-34. [PMID: 16188964 PMCID: PMC1235840 DOI: 10.1128/jvi.79.20.12623-12634.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/20/2005] [Indexed: 11/20/2022] Open
Abstract
We determined the complete genomic sequences of nine type 1 immunodeficient vaccine-derived poliovirus (iVDPV) isolates obtained over a 337-day period from a poliomyelitis patient from Taiwan with common variable immunodeficiency. The iVDPV isolates differed from the Sabin type 1 oral poliovirus vaccine (OPV) strain at 1.84% to 3.15% of total open reading frame positions and had diverged into at least five distinct lineages. Phylogenetic analysis suggested that the chronic infection was initiated by the fifth and last OPV dose, given 567 days before onset of paralysis, and that divergence of major lineages began very early in the chronic infection. Key determinants of attenuation in Sabin 1 had reverted in the iVDPV isolates, and representative isolates of each lineage showed increased neurovirulence for PVR-Tg21 transgenic mice. None of the isolates had retained the temperature-sensitive phenotype of Sabin 1. All isolates were antigenic variants of Sabin 1, having multiple amino acid substitutions within or near neutralizing antigenic sites 1, 2, and 3a. Antigenic divergence of the iVDPV variants from Sabin 1 followed two major independent evolutionary pathways. The emergence of distinct coreplicating lineages suggests that iVDPVs can replicate for many months at separate sites in the gastrointestinal tract. Some isolates had mosaic genome structures indicative of recombination across and within lineages. iVDPV excretion apparently ceased after 30 to 35 months of chronic infection. The appearance of a chronic VDPV excretor in a tropical, developing country has important implications for the strategy to stop OPV immunization after eradication of wild polioviruses.
Collapse
Affiliation(s)
- Chen-Fu Yang
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rezapkin G, Martin J, Chumakov K. Analysis of antigenic profiles of inactivated poliovirus vaccine and vaccine-derived polioviruses by block-ELISA method. Biologicals 2005; 33:29-39. [PMID: 15713554 DOI: 10.1016/j.biologicals.2004.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 08/16/2004] [Accepted: 11/09/2004] [Indexed: 11/26/2022] Open
Abstract
A new block-ELISA test for quantitative evaluation of relative reactivity of antigenic sites was developed and used to reveal the detailed epitope structure of inactivated poliovirus vaccines (IPV) and live poliovirus strains. Poliovirus was captured on ELISA plates coated with rabbit anti-poliovirus IgG and blocked by monoclonal antibodies (Mabs) specific to individual epitopes before the remaining reactive antigenic sites were quantified by polyclonal anti-poliovirus IgG conjugate. The decrease of conjugate binding by the pre-treatment with a Mab reflects its contribution to the overall reactivity of poliovirus antigen. The level of block activity of Mabs for a given antigen can be expressed as a percent of reduction of antigenic reactivity as determined by ELISA test. It can be normalized by expressing this value as a ratio to the block activity of a reference sample. The data on the blocking-activity of a panel of monoclonal antibodies specific to different antigenic sites represents the epitope composition (antigenic profile) of a sample. Quantitative differences in epitope composition were determined for nine samples of inactivated poliovirus vaccine (IPV) and compared with the International Reference Reagent. This method could be used for monitoring consistency of IPV production, comparison of vaccines made by different manufacturers, and for the analysis of antigenically modified strains of attenuated poliovirus. Antigenic structures of two isolates of type 1 vaccine-derived poliovirus (VDPV) were compared with the structures of parental Sabin 1 and wild-type Mahoney strains using 17 monoclonal antibodies and revealed significant differences, suggesting that the method can be used for screening of field isolates and rapid identification of antigenically divergent VDPV strains.
Collapse
Affiliation(s)
- Gennady Rezapkin
- Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville, MD 20852, USA
| | | | | |
Collapse
|
42
|
Martín J, Odoom K, Tuite G, Dunn G, Hopewell N, Cooper G, Fitzharris C, Butler K, Hall WW, Minor PD. Long-term excretion of vaccine-derived poliovirus by a healthy child. J Virol 2004; 78:13839-47. [PMID: 15564492 PMCID: PMC533926 DOI: 10.1128/jvi.78.24.13839-13847.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A child was found to be excreting type 1 vaccine-derived poliovirus (VDPV) with a 1.1% sequence drift from Sabin type 1 vaccine strain in the VP1 coding region 6 months after he was immunized with oral live polio vaccine. Seventeen type 1 poliovirus isolates were recovered from stools taken from this child during the following 4 months. Contrary to expectation, the child was not deficient in humoral immunity and showed high levels of serum neutralization against poliovirus. Selected virus isolates were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 1 strain. The VDPV isolates showed mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. A number of capsid mutations mapped at known antigenic sites leading to changes in the viral antigenic structure. Estimates of sequence evolution based on the accumulation of nucleotide changes in the VP1 coding region detected a "defective" molecular clock running at an apparent faster speed of 2.05% nucleotide changes per year versus 1% shown in previous studies. Remarkably, when compared to several type 1 VDPV strains of different origins, isolates from this child showed a much higher proportion of nonsynonymous versus synonymous nucleotide changes in the capsid coding region. This anomaly could explain the high VP1 sequence drift found and the ability of these virus strains to replicate in the gut for a longer period than expected.
Collapse
Affiliation(s)
- Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Minor PD. Polio eradication, cessation of vaccination and re-emergence of disease. Nat Rev Microbiol 2004; 2:473-82. [PMID: 15152203 DOI: 10.1038/nrmicro906] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip D Minor
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3PG, UK.
| |
Collapse
|
44
|
Thoelen I, Moës E, Lemey P, Mostmans S, Wollants E, Lindberg AM, Vandamme AM, Van Ranst M. Analysis of the serotype and genotype correlation of VP1 and the 5' noncoding region in an epidemiological survey of the human enterovirus B species. J Clin Microbiol 2004; 42:963-71. [PMID: 15004039 PMCID: PMC356875 DOI: 10.1128/jcm.42.3.963-971.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence identity of the enterovirus VP1 gene has been shown to correlate with the serotype concept. Enterovirus molecular typing methods are therefore often based on sequencing of the VP1 genomic region and monophyletic clustering of VP1 sequences of a homologous serotype. For epidemiological surveillance, 342 enterovirus samples obtained from patients with aseptic meningitis in Belgium from 1999 to 2002 were first diagnosed as being enterovirus positive by amplification of the 5' noncoding region (5'NCR) by reverse transcription (RT)-PCR. Subsequently, samples were molecularly typed by RT-nested PCR amplification and sequencing of a portion of the VP1 gene. Phylogenetic analyses were performed to investigate enteroviral evolution and to examine the serotype and genotype correlation of the two genomic regions. Our typing results demonstrated echovirus 30, echovirus 13, echovirus 18, and echovirus 6 to be the most predominant types. Echoviruses 13 and 18 were considered to be emerging human serotypes since 2000 and 2001, respectively, as they had been rarely reported before. Several serotypes existed as multiple genotypes (subtypes) from 1999 to 2002, but genomic differences mainly resided at synonymous sites; these results strongly suggest that the subtypes exhibit similar antigenic properties. Phylogenetic analyses confirmed that VP1 is an adequate region for molecular typing. Serotype-specific clusters are not observed commonly in phylogenetic trees based on the 5'NCR, and the phylogenetic signal in the 5'NCR was found to be particularly low. However, some substructure in the 5'NCR tree made a tentative prediction of the enterovirus type possible and was therefore helpful in PCR strategies for VP1 (e.g., primer choice), provided some background knowledge on the local spectrum of enteroviruses already exists.
Collapse
Affiliation(s)
- Inge Thoelen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Martín J, Samoilovich E, Dunn G, Lackenby A, Feldman E, Heath A, Svirchevskaya E, Cooper G, Yermalovich M, Minor PD. Isolation of an intertypic poliovirus capsid recombinant from a child with vaccine-associated paralytic poliomyelitis. J Virol 2002; 76:10921-8. [PMID: 12368335 PMCID: PMC136614 DOI: 10.1128/jvi.76.21.10921-10928.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 07/22/2002] [Indexed: 11/20/2022] Open
Abstract
The isolation of a capsid intertypic poliovirus recombinant from a child with vaccine-associated paralytic poliomyelitis is described. Virus 31043 had a Sabin-derived type 3-type 2-type 1 recombinant genome with a 5'-end crossover point within the capsid coding region. The result was a poliovirus chimera containing the entire coding sequence for antigenic site 3a derived from the Sabin type 2 strain. The recombinant virus showed altered antigenic properties but did not acquire type 2 antigenic characteristics. The significance of the presence in nature of such poliovirus chimeras and the consequences for the current efforts to detect potentially dangerous vaccine-derived poliovirus strains are discussed in the context of the global polio eradication initiative.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Capsid/immunology
- Child, Preschool
- Crossing Over, Genetic
- Humans
- Male
- Mice
- Mice, Transgenic
- Neutralization Tests
- Paralysis/immunology
- Paralysis/virology
- Poliomyelitis/immunology
- Poliomyelitis/virology
- Poliovirus/genetics
- Poliovirus/immunology
- Poliovirus Vaccine, Oral/adverse effects
- Poliovirus Vaccine, Oral/genetics
- Poliovirus Vaccine, Oral/immunology
- Sequence Analysis, DNA
- Temperature
- Tumor Cells, Cultured
- Virulence
Collapse
Affiliation(s)
- Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martín J, Minor PD. Characterization of CHAT and Cox type 1 live-attenuated poliovirus vaccine strains. J Virol 2002; 76:5339-49. [PMID: 11991962 PMCID: PMC137059 DOI: 10.1128/jvi.76.11.5339-5349.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Accepted: 03/07/2002] [Indexed: 01/28/2023] Open
Abstract
CHAT and Cox type 1 live-attenuated poliovirus strains were developed in the 1950s to be used as vaccines for humans. This paper describes their characterization with respect to virulence, sensitivity for growth at high temperatures, and complete nucleotide and amino acid sequences. The results are compared to those for their common parental wild virus, the Mahoney strain, and to those for two other poliovirus strains derived from Mahoney, the Sabin 1 vaccine strain and the mouse-adapted LS-a virus. Analysis of four isolates from cases of vaccine-associated paralytic poliomyelitis related to the CHAT vaccine revealed genetic and phenotypic properties of the CHAT strain following replication in the human gut. CHAT-VAPP strain 134 contained a genome highly evolved from that of CHAT (1.1% nucleotide differences), suggesting long-term circulation of a vaccine-derived strain in the human population. The molecular mechanisms of attenuation and evolution of poliovirus in humans are discussed in the context of the global polio eradication initiative.
Collapse
Affiliation(s)
- Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom.
| | | |
Collapse
|
48
|
Kubo H, Iritani N, Seto Y. Molecular classification of enteroviruses not identified by neutralization tests. Emerg Infect Dis 2002; 8:298-304. [PMID: 11927028 PMCID: PMC2732463 DOI: 10.3201/eid0803.010200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We isolated six viruses from patients diagnosed with aseptic meningitis or hand, foot, and mouth disease. The cytopathic effect of these viruses on cultured cells was like that of enteroviruses. However, viral neutralization tests against standard antisera were negative. Phylogenetic analysis with the complete VP4 nucleotide sequences of these 6 viruses and 29 serotypes of enteroviruses classified 3 of the viruses as serotype echovirus type 18 (EV18) and 3 as serotype human enterovirus 71 (HEV71). These results were confirmed by remicroneutralization tests with HEV-monospecific antisera or an additional phylogenetic analysis with the complete VP4 nucleotide sequences. Phylogenetic analysis with complete VP4 genes is more useful than neutralization tests with enterovirus serotype-specific antisera in identifying enterovirus serotypes.
Collapse
Affiliation(s)
- Hideyuki Kubo
- Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan.
| | | | | |
Collapse
|
49
|
Varrasso A, Drummer HE, Huang JA, Stevenson RA, Ficorilli N, Studdert MJ, Hartley CA. Sequence conservation and antigenic variation of the structural proteins of equine rhinitis A virus. J Virol 2001; 75:10550-6. [PMID: 11581430 PMCID: PMC114636 DOI: 10.1128/jvi.75.21.10550-10556.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide and deduced amino acid sequences of the P1 region of the genomes of 10 independent equine rhinitis A virus (ERAV) isolates were determined and found to be very closely related. A panel of seven monoclonal antibodies to the prototype virus ERAV.393/76 that bound to nonneutralization epitopes conserved among all 10 isolates was raised. In serum neutralization assays, rabbit polyclonal sera and sera from naturally and experimentally infected horses reacted in a consistent and discriminating manner with the 10 isolates, which indicated the existence of variation in the neutralization epitopes of these viruses.
Collapse
Affiliation(s)
- A Varrasso
- Centre for Equine Virology, School of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Kilpatrick DR, Quay J, Pallansch MA, Oberste MS. Type-specific detection of echovirus 30 isolates using degenerate reverse transcriptase PCR primers. J Clin Microbiol 2001; 39:1299-302. [PMID: 11283045 PMCID: PMC87928 DOI: 10.1128/jcm.39.4.1299-1302.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2000] [Accepted: 01/22/2001] [Indexed: 11/20/2022] Open
Abstract
Following an approach used to specifically identify polioviruses and enterovirus 71, we have developed reverse transcriptase (RT) PCR primers containing mixed-base residues or deoxyinosine at positions of codon degeneracy. These primers permit specific RT-PCR amplification of echovirus 30 (E30) sequences by targeting sites that encode conserved amino acid motifs within the major capsid protein, VP1. All 221 E30 strains tested, isolated in 16 countries over a 44-year period, yielded the predicted 158-bp PCR product. No specific products were obtained by PCR assays containing templates from any of the other 63 EV serotypes. Inosine-containing degenerate primers may be widely applicable to the identification of echovirus serotypes by PCR.
Collapse
Affiliation(s)
- D R Kilpatrick
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | |
Collapse
|