1
|
Lo SK, Bovis L, Matura R, Zhu B, He S, Lum H, Turco SJ, Ho JL. Leishmania Lipophosphoglycan Reduces Monocyte Transendothelial Migration: Modulation of Cell Adhesion Molecules, Intercellular Junctional Proteins, and Chemoattractants. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.4.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
We previously identified the structural requirement for the inhibitory activity of Leishmania lipophosphoglycan (LPG) to block endothelial adhesion to monocytes. Here we showed that LPG reduces transendothelial migration of monocytes. LPG pretreatment of endothelial cells (2 μM, 1 h) reduced monocyte migration across endothelial cells activated by bacterial endotoxin (LPS) or IL-1β (60 and 46%, respectively). A fragment of LPG (i.e., repeating phosphodisaccharide (consisting of galactosyl-mannose)) and LPG coincubated with LPG-neutralizing mAb lacks inhibitory activity on monocyte migration. Pretreatment of monocytes with LPG (2 μM, 1 h) also did not affect monocyte migration through control or LPS-activated endothelial cells. FACS analysis reveals that LPG treatment blocked the LPS-mediated expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells and monocyte adhesion without altering the integrity of the endothelial monolayer. LPG (2 μM, 1 h) alone was capable of altering the expression and distribution of two junctional adhesion molecules, CD31 and vascular endothelium cadherin, as well as reversing the effects of LPS on these proteins. The induction of endothelial cells by LPS to transcribe and release monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by LPG (40–65%). LPG treatment of nonactivated endothelial cells also suppressed by 55 to 75% the monocyte migration triggered by a MCP-1 chemoattractant gradient, and coincubation of LPG with neutralizing mAb abrogated the inhibitory activity. Together, these data point to a novel anti-inflammatory function of LPG in reducing monocyte migration across endothelial cells via a mechanism of inhibition of endothelial expression of cell adhesion molecules, modulation of intercellular junctional proteins, and synthesis of MCP-1.
Collapse
Affiliation(s)
- Siu K. Lo
- *Division of Hematology and Oncology,
| | - Lisa Bovis
- †Division of International Medicine and Infectious Diseases, Department of Medicine, Cornell University Medical College, New York, NY 10021
| | | | - Baixin Zhu
- †Division of International Medicine and Infectious Diseases, Department of Medicine, Cornell University Medical College, New York, NY 10021
| | - Suhui He
- †Division of International Medicine and Infectious Diseases, Department of Medicine, Cornell University Medical College, New York, NY 10021
| | - Hazel Lum
- ‡Department of Pharmacology, University of Illinois, Chicago, IL 60612; and
| | - Salvatore J. Turco
- §Department of Biochemistry, University of Kentucky, Lexington, KY 40536
| | - John L. Ho
- †Division of International Medicine and Infectious Diseases, Department of Medicine, Cornell University Medical College, New York, NY 10021
| |
Collapse
|
2
|
Randolph GJ, Furie MB. Mononuclear phagocytes egress from an in vitro model of the vascular wall by migrating across endothelium in the basal to apical direction: role of intercellular adhesion molecule 1 and the CD11/CD18 integrins. J Exp Med 1996; 183:451-62. [PMID: 8627158 PMCID: PMC2192453 DOI: 10.1084/jem.183.2.451] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Little is known about how mononuclear phagocytes (MP) are cleared from sites of inflammation as inflammatory lesions resolve. In this study, the possibility that MP could be cleared from tissues by migrating across endothelium in the basal to apical direction was investigated. In an in vitro model of a blood vessel wall consisting of human umbilical vein endothelial cells (HUVEC) grown on amniotic tissue, a majority of MP that initially transmigrated into the amnion later exited by migrating back across the endothelium in the basal to apical direction. MP that egressed from these cultures adhered to the apical surface of the endothelium or were found nonadherent in the medium above the endothelium. Egression of MP continued throughout the 4-d period examined, displaying higher than first order kinetics and a t(1/2) of approximately 24 h. These kinetics were decreased by increasing the volume of medium bathing the cultures, suggesting that a soluble factor(s) regulates the rate of egression. In contrast, the kinetics were accelerated by pretreating the endothelium with IL-1. The initial phase of this increased rate of egression was inhibited by antibodies to inter- cellular adhesion molecule 1 (ICAM-1) or CD18 by 100 and 71%, respectively. Immunostaining revealed that ICAM-1 was present on the apical and basal surfaces of umbilical vein endothelium in vitro and in situ. These data demonstrate that MP can traverse endothelium in the basal to apical direction, and lend insight into the mechanisms by which this process occurs.
Collapse
Affiliation(s)
- G J Randolph
- Department of Pathology, School of Medicine, State University of New York at Stony Brook, New York 11794, USA
| | | |
Collapse
|
3
|
Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci U S A 1995; 92:1505-9. [PMID: 7878009 PMCID: PMC42548 DOI: 10.1073/pnas.92.5.1505] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although primarily recognized for its role in hemostasis, fibrinogen is also required for competent inflammatory reactions in vivo. It is now shown that fibrinogen promotes adhesion to and migration across an endothelial monolayer of terminally differentiated myelomonocytic cells. This process does not require chemotactic/haptotactic gradients or cytokine stimulation of the endothelium and is specific for the association of fibrinogen with intercellular adhesion molecule 1 (ICAM-1) on endothelium. Among other adhesive plasma proteins, fibronectin fails to increase the binding of leukocytes to endothelium, or transendothelial migration, whereas vitronectin promotes the binding but not the migration. The fibrinogen-mediated leukocyte adhesion and transendothelial migration could be inhibited by a peptide from the fibrinogen gamma-chain sequence N117NQKIVNL-KEKVAQLEA133, which blocks the binding of fibrinogen to ICAM-1. This interaction could also be inhibited by new anti-ICAM-1 monoclonal antibodies that did not affect the ICAM-1-CD11a/CD18 recognition, thus suggesting that the fibrinogen binding site on ICAM-1 may be structurally distinct from regions previously implicated in leukocyte-endothelium interaction. Therefore, binding of fibrinogen to vascular cell receptors is sufficient to initiate (i) increased leukocyte adhesion to endothelium and (ii) leukocyte transendothelial migration. These two processes are the earliest events of immune inflammatory responses and may also contribute to atherosclerosis.
Collapse
Affiliation(s)
- L R Languino
- Department of Vascular Biology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | |
Collapse
|