Saillé C, Marin P, Martinou JC, Nicole A, London J, Ceballos-Picot I. Transgenic murine cortical neurons expressing human Bcl-2 exhibit increased resistance to amyloid beta-peptide neurotoxicity.
Neuroscience 1999;
92:1455-63. [PMID:
10426499 DOI:
10.1016/s0306-4522(99)00089-5]
[Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The generation of reactive oxygen species has been implicated in the neurotoxicity of amyloid beta-peptide, the main constituent of the senile plaques that accumulates in the brain of Alzheimer's disease victims. In this study, we have compared the toxicity of amyloid beta-peptide on cultured cortical neurons from control mice and transgenic mice expressing either human copper-zinc superoxide dismutase or human Bcl-2, two proteins that protect cells against oxidative damage. Copper-zinc superoxide dismutase overexpression failed to protect cortical neurons against the toxicity of amyloid beta-peptide(25-35) [the minimal cytotoxic fragment of amyloid beta-peptide(1-42)] as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction and an enzyme-linked immunoabsorbent assay using an antibody directed against microtubule-associated protein-2 (a specific neuronal protein), ruling out a role for superoxide anion and peroxynitrite in amyloid beta-peptide-evoked neurotoxicity. On the contrary, cortical neurons expressing human copper-zinc superoxide dismutase exhibited increased apoptotic nuclei in both untreated and amyloid beta-peptide(25-35)-exposed neurons. Transgenic neurons expressing human Bcl-2 were partially protected against amyloid beta-peptide-induced neuronal death. This neuroprotection appears to be related to the complete inhibition of apoptosis induced by both amyloid beta-peptide(25-35) and amyloid beta-peptide(1-42). This study may be relevant for developing neuroprotective gene therapy to inhibit neuronal apoptosis in Alzheimer's disease.
Collapse