1
|
Rabenstein M, Hucklenbroich J, Willuweit A, Ladwig A, Fink GR, Schroeter M, Langen KJ, Rueger MA. Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Res Ther 2015; 6:99. [PMID: 25998490 PMCID: PMC4464234 DOI: 10.1186/s13287-015-0098-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/23/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Osteopontin (OPN) is a phosphoglycoprotein with important roles in tissue homeostasis, wound healing, immune regulation, and stress responses. It is expressed constitutively in the brain and upregulated during neuroinflammatory responses; for example, after focal cerebral ischemia. To date, its effects on neural stem cells (NSC) remain to be elucidated and are, accordingly, the subject of this study. Method Primary fetal rat NSC were cultured as homogenous monolayers and treated with different concentrations of OPN. Fundamental properties of NSC were assessed following OPN exposure, including proliferative activity, survival under oxidative stress, migration, and differentiation potential. To elucidate a putative action of OPN via the CXC chemokine receptor type 4 (CXCR4), the latter was blocked with AMD3100. To investigate effects of OPN on endogenous NSC in vivo, recombinant OPN was injected into the brain of healthy adult rats as well as rats subjected to focal cerebral ischemia. Effects of OPN on NSC proliferation and neurogenesis in the subventricular zone were studied immunohistochemically. Results OPN dose-dependently increased the number of NSC in vitro. As hypothesized, this effect was mediated through CXCR4. The increase in NSC number was due to both enhanced cell proliferation and increased survival, and was confirmed in vivo. Additionally, OPN dose-dependently stimulated the migration of NSC via CXCR4. Moreover, in the presence of OPN, differentiation of NSC led to a significant increase in neurogenesis both in vitro as well as in vivo after cerebral ischemia. Conclusion Data show positive effects of OPN on survival, proliferation, migration, and neuronal differentiation of NSC. At least in part these effects were mediated via CXCR4. Results suggest that OPN is a promising substance for the targeted activation of NSC in future experimental therapies for neurological disorders such as stroke. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0098-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Rabenstein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.
| | - Joerg Hucklenbroich
- Department of Neurology, University Hospital of Cologne, Cologne, Germany. .,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Leo-Brandt-Straße, 52425, Juelich, Germany.
| | - Antje Willuweit
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany.
| | - Anne Ladwig
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.
| | - Gereon Rudolf Fink
- Department of Neurology, University Hospital of Cologne, Cologne, Germany. .,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Leo-Brandt-Straße, 52425, Juelich, Germany.
| | - Michael Schroeter
- Department of Neurology, University Hospital of Cologne, Cologne, Germany. .,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Leo-Brandt-Straße, 52425, Juelich, Germany.
| | - Karl-Josef Langen
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany.
| | - Maria Adele Rueger
- Department of Neurology, University Hospital of Cologne, Cologne, Germany. .,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Leo-Brandt-Straße, 52425, Juelich, Germany.
| |
Collapse
|
2
|
Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, Vaidya VA. Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci 2006; 22:1570-80. [PMID: 16197497 PMCID: PMC4820647 DOI: 10.1111/j.1460-9568.2005.04317.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Electroconvulsive seizure (ECS) induces structural remodelling in the adult mammalian brain, including an increase in adult hippocampal neurogenesis. The molecular mechanisms that underlie this increase in the proliferation of adult hippocampal progenitors are at present not well understood. We hypothesized that ECS may recruit the Sonic hedgehog (Shh) pathway to mediate its effects on adult hippocampal neurogenesis, as Shh is known to enhance the proliferation of neuronal progenitors and is expressed in the adult basal forebrain, a region that sends robust projections to the hippocampus. Here we demonstrate that the ECS-induced increase in proliferation of adult hippocampal progenitors was completely blocked in animals treated with cyclopamine, a pharmacological inhibitor of Shh signalling. Our results suggest that both acute and chronic ECS enhance Shh signalling in the adult hippocampus, as we observed a robust upregulation of Patched (Ptc) mRNA, a component of the Shh receptor complex and a downstream transcriptional target of Shh signalling. This increase was rapid and restricted to the dentate gyrus, where the adult hippocampal progenitors reside. In addition, both acute and chronic ECS decreased Smoothened (Smo) mRNA, the other component of the Shh receptor complex, selectively within the dentate gyrus. However, ECS did not appear to influence Shh expression within the basal forebrain, the site from which it has been suggested to be anterogradely transported to the hippocampus. Together, our findings demonstrate that ECS regulates the Shh signalling cascade and indicate that the Shh pathway may be an important mechanism through which ECS enhances adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Sunayana B Banerjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | | | | | |
Collapse
|
3
|
Lippoldt A, Reichel A, Moenning U. Progress in the identification of stroke-related genes: emerging new possibilities to develop concepts in stroke therapy. CNS Drugs 2005; 19:821-32. [PMID: 16185092 DOI: 10.2165/00023210-200519100-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Stroke is a very complex disease influenced by many risk factors: genetic, environmental and comorbidities, such as hypertension, diabetes mellitus, obesity and having had a previous stroke. Neuroprotective therapies that have been found to be successful in laboratory animals have failed to produce the same benefits in clinical trials. Currently, a re-analysis of the clinical trial failures is underway and new therapeutic approaches using the growing knowledge from neurogenesis and neuroinflammation studies, combined with the information from gene expression studies, are taking place. This review focuses on possible ways to identify therapeutic targets using the new discoveries in neuroinflammation and intrinsic regenerative mechanisms of the brain. Molecular events associated with ischaemia trigger an environment for inflammation. Within the ischaemic region and its penumbra, a battery of chemokines and cytokines are released, which have both detrimental and beneficial effects, depending on the specific timepoint after injury and the current activation status of microglia/macrophages. Preventive therapies and treatments for stroke may be established by identifying the genes that are responsible for the induction of those phenotypic changes of microglia/macrophages that switch them to become players in tissue repair and regeneration processes. To aid in the establishment of new target sources for novel therapeutic agents, animal stroke models should closely mimic stroke in humans. To do so, these models should take into account the various risk factors for stroke. For example, hypertensive animals have a more vulnerable blood-brain barrier that in turn may trigger a greater degree of damage after stroke. Furthermore, in aged animals an accelerated astrocytic and microglial reaction has been observed and the regenerative capacity of aged brains is not as high as young brains. Improvements in animal models may also help to ensure better success rates of potential therapies in clinical studies. Inflammation in the brain is a double-edged sword--characterised by the deleterious effect of nerve cell damage and nerve cell death, as well as the beneficial influence on regeneration. The major challenge to develop successful stroke therapies is to broaden the knowledge regarding the underlying pathologic processes and the intrinsic mechanisms of the brain to drive regenerative and plasticity-related changes. On this basis, new concepts can be created leading to better stroke therapy.
Collapse
Affiliation(s)
- Andrea Lippoldt
- Department of Radiopharmaceuticals Research, Schering AG Berlin, Berlin, Germany.
| | | | | |
Collapse
|