1
|
Zhao M, Wang J, Liu M, Xu Y, Huang J, Zhang Y, He J, Gu A, Liu M, Liu X. KIF1A, R1457Q, and P1688L Mutations Induce Protein Abnormal Aggregation and Autophagy Impairment in iPSC-Derived Motor Neurons. Biomedicines 2024; 12:1693. [PMID: 39200158 PMCID: PMC11351720 DOI: 10.3390/biomedicines12081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/02/2024] Open
Abstract
Mutations in the C-terminal of KIF1A (Kinesin family member 1A) may lead to amyotrophic lateral sclerosis (ALS) through unknown mechanisms that are not yet understood. Using iPSC reprogramming technology and motor neuron differentiation techniques, we generated iPSCs from a healthy donor and two ALS patients with KIF1A mutations (R1457Q and P1688L) and differentiated them into spinal motor neurons (iPSC-MN) to investigate KIF1A-related ALS pathology. Our in vitro iPSC-iMN model faithfully recapitulated specific aspects of the disease, such as neurite fragmentation. Through this model, we observed that these mutations led to KIF1A aggregation at the proximal axon of motor neurons and abnormal accumulation of its transport cargo, LAMP1, resulting in autophagy dysfunction and cell death. RNAseq analysis also indicated that the functions of the extracellular matrix, structure, and cell adhesion were significantly disturbed. Notably, using rapamycin during motor neuron differentiation can effectively prevent motor neuron death.
Collapse
Affiliation(s)
- Mingri Zhao
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China;
| | - Miao Liu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Yaoyao Xu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Jiali Huang
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Yiti Zhang
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Jianfeng He
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Ao Gu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410000, China
| | - Xionghao Liu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410000, China
| |
Collapse
|
2
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
3
|
Peris L, Parato J, Qu X, Soleilhac JM, Lanté F, Kumar A, Pero ME, Martínez-Hernández J, Corrao C, Falivelli G, Payet F, Gory-Fauré S, Bosc C, Blanca Ramirez M, Sproul A, Brocard J, Di Cara B, Delagrange P, Buisson A, Goldberg Y, Moutin MJ, Bartolini F, Andrieux A. OUP accepted manuscript. Brain 2022; 145:2486-2506. [PMID: 35148384 PMCID: PMC9337816 DOI: 10.1093/brain/awab436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer’s disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-β peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-β peptide-induced synaptic damage and that this balance is lost in Alzheimer’s disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer’s disease.
Collapse
Affiliation(s)
- Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Natural Sciences, SUNY ESC, Brooklyn, NY 11201, USA
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jean Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - José Martínez-Hernández
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Corrao
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Giulia Falivelli
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Floriane Payet
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marian Blanca Ramirez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | | | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yves Goldberg
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
4
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
5
|
Fan R, Lai KO. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J 2021; 289:2128-2144. [PMID: 34796656 DOI: 10.1111/febs.16285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
The Kinesin superfamily proteins (KIFs) are major molecular motors that transport diverse set of cargoes along microtubules to both the axon and dendrite of a neuron. Much of our knowledge about kinesin function is obtained from studies on axonal transport. Emerging evidence reveals how specific kinesin motor proteins carry cargoes to dendrites, including proteins, mRNAs and organelles that are crucial for synapse development and plasticity. In this review, we will summarize the major kinesin motors and their associated cargoes that have been characterized to regulate postsynaptic function in neuron. We will also discuss how specific kinesins are selectively involved in the development of excitatory and inhibitory postsynaptic compartments, their regulation by post-translational modifications (PTM), as well as their roles beyond conventional transport carrier.
Collapse
Affiliation(s)
- Ruolin Fan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Hummel JJA, Hoogenraad CC. Specific KIF1A-adaptor interactions control selective cargo recognition. J Cell Biol 2021; 220:212488. [PMID: 34287616 PMCID: PMC8298099 DOI: 10.1083/jcb.202105011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
Intracellular transport in neurons is driven by molecular motors that carry many different cargos along cytoskeletal tracks in axons and dendrites. Identifying how motors interact with specific types of transport vesicles has been challenging. Here, we use engineered motors and cargo adaptors to systematically investigate the selectivity and regulation of kinesin-3 family member KIF1A–driven transport of dense core vesicles (DCVs), lysosomes, and synaptic vesicles (SVs). We dissect the role of KIF1A domains in motor activity and show that CC1 regulates autoinhibition, CC2 regulates motor dimerization, and CC3 and PH mediate cargo binding. Furthermore, we identify that phosphorylation of KIF1A is critical for binding to vesicles. Cargo specificity is achieved by specific KIF1A adaptors; MADD/Rab3GEP links KIF1A to SVs, and Arf-like GTPase Arl8A mediates interactions with DCVs and lysosomes. We propose a model where motor dimerization, posttranslational modifications, and specific adaptors regulate selective KIF1A cargo trafficking.
Collapse
Affiliation(s)
- Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.,Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| |
Collapse
|
7
|
ŞİmŞek F, ÖztÜrk N. DCLK-1 LEVEL IN MULTIPLE SCLEROSIS PATIENTS AND ITS CORRELATION WITH CLINIC. Mult Scler Relat Disord 2020; 43:102179. [PMID: 32470859 DOI: 10.1016/j.msard.2020.102179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION AND OBJECTIVE There are studies supporting the disruption of axonal transport in multiple sclerosis, a neurodegenerative disease. The aim of our study was to determine Doublecortin-like kinase 1 (DCLK1) levels in multiple sclerosis patients, which play a part in axonal transport, and to investigate its correlation with the disease. MATERIALS AND METHODS The study included 30 patients above 18 years of age with the diagnosis of multiple sclerosis and 30 healthy volunteers. The disease duration, number of annual attacks, Expanded Disability Status Scale (EDSS) scores and medications of the patients who had no history of attack within the last month were recorded. DCLK1 levels were studied in the venous blood samples taken from the patients and healthy volunteers using the ELISA method. RESULTS DCLK1 levels were significantly lower in the MS patient group than in the healthy control group. There was no significant correlation between disease duration, annual number of attacks, EDSS score and DCLK1 level. CONCLUSION Low levels of DCLK1 in multiple sclerosis patients support the disruption of axonal transport. The use of agents that provide DCLK1 expression may be a treatment option to prevent neurodegeneration in multiple sclerosis patients by eliminating the disruption in axonal transport, thereby improving the clinical course of the disease and cognition.
Collapse
Affiliation(s)
- Fatma ŞİmŞek
- Atatürk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey.
| | - Nurinnisa ÖztÜrk
- Ataturk University, Faculty of Medicine, Department of Biochemistry, Erzurum/Turkey
| |
Collapse
|
8
|
Fritsche L, Teuber-Hanselmann S, Soub D, Harnisch K, Mairinger F, Junker A. MicroRNA profiles of MS gray matter lesions identify modulators of the synaptic protein synaptotagmin-7. Brain Pathol 2019; 30:524-540. [PMID: 31663645 PMCID: PMC8018161 DOI: 10.1111/bpa.12800] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
We established microRNA (miRNA) profiles in gray and white matter multiple sclerosis (MS) lesions and identified seven miRNAs which were significantly more upregulated in the gray matter lesions. Five of those seven miRNAs, miR‐330‐3p, miR‐4286, miR‐4488, let‐7e‐5p, miR‐432‐5p shared the common target synaptotagmin7 (Syt7). Immunohistochemistry and transcript analyses using nanostring technology revealed a maldistribution of Syt7, with Syt7 accumulation in neuronal soma and decreased expression in axonal structures. This maldistribution could be at least partially explained by an axonal Syt7 transport disturbance. Since Syt7 is a synapse‐associated molecule, this maldistribution could result in impairment of neuronal functions in MS patients. Thus, our results lead to the hypothesis that the overexpression of these five miRNAs in gray matter lesions is a cellular mechanism to reduce further endogenous neuronal Syt7 production. Therefore, miRNAs seem to play an important role as modulators of neuronal structures in MS.
Collapse
Affiliation(s)
- Lena Fritsche
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | | | - Daniel Soub
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Kim Harnisch
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, D-45147, Essen, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| |
Collapse
|
9
|
Seira O, Liu J, Assinck P, Ramer M, Tetzlaff W. KIF2A characterization after spinal cord injury. Cell Mol Life Sci 2019; 76:4355-4368. [PMID: 31041455 PMCID: PMC11105463 DOI: 10.1007/s00018-019-03116-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/23/2023]
Abstract
Axons in the central nervous system (CNS) typically fail to regenerate after injury. This failure is multi-factorial and caused in part by disruption of the axonal cytoskeleton. The cytoskeleton, in particular microtubules (MT), plays a critical role in axonal transport and axon growth during development. In this regard, members of the kinesin superfamily of proteins (KIFs) regulate the extension of primary axons toward their targets and control the growth of collateral branches. KIF2A negatively regulates axon growth through MT depolymerization. Using three different injury models to induce SCI in adult rats, we examined the temporal and cellular expression of KIF2A in the injured spinal cord. We observed a progressive increase of KIF2A expression with maximal levels at 10 days to 8 weeks post-injury as determined by Western blot analysis. KIF2A immunoreactivity was present in axons, spinal neurons and mature oligodendrocytes adjacent to the injury site. Results from the present study suggest that KIF2A at the injured axonal tips may contribute to neurite outgrowth inhibition after injury, and that its increased expression in inhibitory spinal neurons adjacent to the injury site might contribute to an intrinsic wiring-control mechanism associated with neuropathic pain. Further studies will determine whether KIF2A may be a potential target for the development of regeneration-promoting or pain-preventing therapies.
Collapse
Affiliation(s)
- Oscar Seira
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia (UBC), 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada.
- Department of Zoology, University of British Columbia (UBC), Vancouver, Canada.
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia (UBC), 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia (UBC), 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Graduate Program in Neuroscience, University of British Columbia (UBC), Vancouver, Canada
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Ramer
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia (UBC), 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Department of Zoology, University of British Columbia (UBC), Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia (UBC), 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
- Department of Zoology, University of British Columbia (UBC), Vancouver, Canada
- Department of Surgery, University of British Columbia (UBC), Vancouver, Canada
| |
Collapse
|
10
|
Jing D, Li D, Peng C, Chen Y, Behnisch T. Role of microtubules in late-associative plasticity of hippocampal Schaffer collateral-CA1 synapses in mice. Neurobiol Learn Mem 2019; 163:107038. [PMID: 31278986 DOI: 10.1016/j.nlm.2019.107038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/13/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022]
Abstract
The microtubule network represents a key scaffolding structure that forms part of the neuronal cytoskeleton and contributes to biomolecule exchange within neurons. However, researchers have not determined whether an intact microtubule network is required for late associative plasticity. Therefore, the late associative plasticity of field excitatory postsynaptic potentials from two synaptic inputs was analyzed. Synaptic potentiation was induced through alternating tetanization of hippocampal Schaffer-collateral CA1 synaptic populations in acute slices prepared from young-adult C57BL/6 mice. Vincristine was applied to depolymerize microtubules. Vincristine did not alter the phosphorylation levels of plasticity-related pre- or postsynaptic proteins but reduced the level of a protein marker of the ER-Golgi intermediate compartment (ERGIC-53/p58). Vincristine did not alter the magnitude or maintenance of the synaptic potentiation evoked by repeated tetanization (3 × 100 stimuli at 100 Hz) of one synaptic population. However, this synaptic potentiation was sensitive to the coapplication of a protein synthesis inhibitor, such as rapamycin, anisomycin or cycloheximide, indicating that protein synthesis has become essential in depolymerized microtubules during the first hour of the synaptic potentiation. The application of vincristine up to a 70 stimuli, 100 Hz tetanization of a second synaptic input prevented the transformation of short-term potentiation into long-term potentiation (LTP), further indicating that intact microtubules are required for the late associative properties of synaptic plasticity. Therefore, activity-dependent synaptic plasticity does not rely on microtubules within the first two hours after tetanization; however, the associative interaction of independent synaptic inputs relies on their proper function. In addition, either new protein synthesis or microtubule-based processes are sufficient to stabilize LTP within the first 3 h after tetanization, and a deficit in synaptic plasticity is only observable when both processes are blocked.
Collapse
Affiliation(s)
- Dongqing Jing
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Dongxue Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Cheng Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Etxebeste O, Espeso EA. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiol Rev 2017; 40:610-24. [PMID: 27587717 DOI: 10.1093/femsre/fuw021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future.
Collapse
Affiliation(s)
- Oier Etxebeste
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
12
|
Torres VI, Inestrosa NC. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms. Mol Neurobiol 2017; 55:4513-4528. [PMID: 28685386 DOI: 10.1007/s12035-017-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.
Collapse
Affiliation(s)
- Viviana I Torres
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
13
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
14
|
Verstraelen P, Detrez JR, Verschuuren M, Kuijlaars J, Nuydens R, Timmermans JP, De Vos WH. Dysregulation of Microtubule Stability Impairs Morphofunctional Connectivity in Primary Neuronal Networks. Front Cell Neurosci 2017; 11:173. [PMID: 28690500 PMCID: PMC5480095 DOI: 10.3389/fncel.2017.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Jan R. Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Division of Janssen Pharmaceutica N.V.Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
- Department of Molecular Biotechnology, University of GhentGhent, Belgium
| |
Collapse
|
15
|
Plaingam W, Sangsuthum S, Angkhasirisap W, Tencomnao T. Kaempferia parviflora rhizome extract and Myristica fragrans volatile oil increase the levels of monoamine neurotransmitters and impact the proteomic profiles in the rat hippocampus: Mechanistic insights into their neuroprotective effects. J Tradit Complement Med 2017; 7:538-552. [PMID: 29034205 PMCID: PMC5634759 DOI: 10.1016/j.jtcme.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Potentially useful in the treatment of neurodegenerative disorders, Kaempferia parviflora and Myristica fragrans have been shown to possess a wide spectrum of neuropharmacological activities and neuroprotective effects in vivo and in vitro. In this study, we determined whether and how K. parviflora ethanolic extract and M. fragrans volatile oil could influence the levels of neurotransmitters and the whole proteomic profile in the hippocampus of Sprague Dawley (SD) rats. The effects of K. parviflora and M. fragrans on protein changes were analyzed by two-dimensional gel electrophoresis (2D-gel), and proteins were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The target proteins were then confirmed by Western blot. The levels of neurotransmitters were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC). The results showed that K. parviflora, M. fragrans and fluoxetine (the control drug for this study) increased serotonin, norepinephrine and dopamine in the rat hippocampus compared to that of the vehicle-treated group. Our proteomic data showed that 37 proteins in the K. parviflora group were up-regulated, while 14 were down-regulated, and 27 proteins in the M. fragrans group were up-regulated, while 16 were down-regulated. In the fluoxetine treatment group, we found 29 proteins up-regulated, whereas 14 proteins were down-regulated. In line with the proteomic data, the levels of GFAP, PDIA3, DPYSL2 and p-DPYSL2 were modified in the SD rat groups treated with K. parviflora, M. fragrans and fluoxetine as confirmed by Western blot. K. parviflora and M. fragrans mediated not only the levels of monoamine neurotransmitters but also the proteomic profiles in the rat hippocampus, thus shedding light on the mechanisms targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Waluga Plaingam
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Sangsuthum
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
17
|
Meeker RB, Poulton W, Clary G, Schriver M, Longo FM. Novel p75 neurotrophin receptor ligand stabilizes neuronal calcium, preserves mitochondrial movement and protects against HIV associated neuropathogenesis. Exp Neurol 2015; 275 Pt 1:182-98. [PMID: 26424436 DOI: 10.1016/j.expneurol.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus (HIV) rapidly penetrates into the brain and establishes a persistent infection of macrophages/microglia. Activation of these cells by HIV results in the secretion of soluble factors that destabilize neuronal calcium homeostasis, encourage oxidative stress and result in neural damage. This damage is thought to underlie the cognitive-motor dysfunction that develops in many HIV-infected patients. Studies have suggested that neurotrophins may protect neurons from the toxic effects of HIV-associated proteins. To better understand the pathogenic mechanisms and the neuroprotective potential of neurotrophin ligands, we evaluated neuronal damage, calcium homeostasis and mitochondrial functions after exposure of cultured rat neurons directly to HIV gp120 or to conditioned medium from human monocyte-derived macrophages treated with gp120. We then assessed the ability of a new non-peptide p75 neurotrophin receptor ligand, LM11A-31, to stabilize calcium homeostasis and prevent the development of pathology. Each toxic challenge resulted in a delayed accumulation of intracellular calcium coupled to a decrease in the rate of calcium clearance from the cell. The delayed calcium accumulation correlated with the development of focal dendritic swellings (beading), cytoskeletal damage and impaired movement of mitochondria. Addition of LM11A-31 to the cultures at nanomolar concentrations eliminated cell death, significantly reduced the pathology, suppressed the delayed accumulation of calcium and restored mitochondrial movements. The potent neuroprotection and the stabilization of calcium homeostasis indicate that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Winona Poulton
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Gillian Clary
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Michael Schriver
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
18
|
Ch'ng TH, DeSalvo M, Lin P, Vashisht A, Wohlschlegel JA, Martin KC. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Front Mol Neurosci 2015; 8:48. [PMID: 26388727 PMCID: PMC4560099 DOI: 10.3389/fnmol.2015.00048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/18/2015] [Indexed: 12/27/2022] Open
Abstract
Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.
Collapse
Affiliation(s)
- Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore ; School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Martina DeSalvo
- Department of Biological Chemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Peter Lin
- Department of Neurology and Neuroscience, Stanford University Palo Alto, CA, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles Los Angeles, CA, USA ; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
19
|
Ruiz-Perera L, Muniz M, Vierci G, Bornia N, Baroncelli L, Sale A, Rossi FM. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex. Sci Rep 2015. [PMID: 26205348 PMCID: PMC4513348 DOI: 10.1038/srep12517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain.
Collapse
Affiliation(s)
- L Ruiz-Perera
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - M Muniz
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - G Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - N Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - L Baroncelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - A Sale
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - F M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|
20
|
Nuschke AC, Farrell SR, Levesque JM, Chauhan BC. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss. Exp Eye Res 2015; 141:111-24. [PMID: 26070986 DOI: 10.1016/j.exer.2015.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/01/2015] [Accepted: 06/06/2015] [Indexed: 02/07/2023]
Abstract
Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models that express fluorescent proteins under the Thy-1 promoter have been examined for their potential to provide specific and selective labeling of RGCs for the study of GON. While these methods represent important advances in assessing the structural and functional integrity of RGCs, each has its advantages and disadvantages; together they provide an extensive toolbox for the study of GON.
Collapse
Affiliation(s)
- Andrea C Nuschke
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spring R Farrell
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Capital District Health Authority, Halifax, Nova Scotia, Canada
| | - Julie M Levesque
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Balwantray C Chauhan
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada; Capital District Health Authority, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
21
|
Khaitlina SY. Intracellular transport based on actin polymerization. BIOCHEMISTRY (MOSCOW) 2014; 79:917-27. [DOI: 10.1134/s0006297914090089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Saunders NR, Noor NM, Dziegielewska KM, Wheaton BJ, Liddelow SA, Steer DL, Ek CJ, Habgood MD, Wakefield MJ, Lindsay H, Truettner J, Miller RD, Smith AI, Dietrich WD. Age-dependent transcriptome and proteome following transection of neonatal spinal cord of Monodelphis domestica (South American grey short-tailed opossum). PLoS One 2014; 9:e99080. [PMID: 24914927 PMCID: PMC4051688 DOI: 10.1371/journal.pone.0099080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/09/2014] [Indexed: 01/08/2023] Open
Abstract
This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin α4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- * E-mail:
| | - Natassya M. Noor
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | | | - Benjamin J. Wheaton
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Shane A. Liddelow
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - C. Joakim Ek
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mark D. Habgood
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Helen Lindsay
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jessie Truettner
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Robert D. Miller
- Center for Evolutionary & Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Ian Smith
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
23
|
Schmieg N, Menendez G, Schiavo G, Terenzio M. Signalling endosomes in axonal transport: Travel updates on the molecular highway. Semin Cell Dev Biol 2014; 27:32-43. [DOI: 10.1016/j.semcdb.2013.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 01/11/2023]
|
24
|
Goggolidou P, Soneji S, Powles-Glover N, Williams D, Sethi S, Baban D, Simon MM, Ragoussis I, Norris DP. A chronological expression profile of gene activity during embryonic mouse brain development. Mamm Genome 2013; 24:459-72. [PMID: 24249052 PMCID: PMC3843766 DOI: 10.1007/s00335-013-9486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/14/2013] [Indexed: 02/03/2023]
Abstract
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Collapse
Affiliation(s)
- P Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Kinesin-based transport is important for synaptogenesis, neuroplasticity, and maintaining synaptic function. In an anatomical screen of neurodevelopmental mutants, we identified the exchange of a conserved residue (R561H) in the forkhead-associated domain of the kinesin-3 family member Unc-104/KIF1A as the genetic cause for defects in synaptic terminal- and dendrite morphogenesis. Previous structure-based analysis suggested that the corresponding residue in KIF1A might be involved in stabilizing the activated state of kinesin-3 dimers. Herein we provide the first in vivo evidence for the functional importance of R561. The R561H allele (unc-104bris) is not embryonic lethal, which allowed us to investigate consequences of disturbed Unc-104 function on postembryonic synapse development and larval behavior. We demonstrate that Unc-104 regulates the reliable apposition of active zones and postsynaptic densities, possibly by controlling site-specific delivery of its cargo. Next, we identified a role for Unc-104 in restraining neuromuscular junction growth and coordinating dendrite branch morphogenesis, suggesting that Unc-104 is also involved in dendritic transport. Mutations in KIF1A/unc-104 have been associated with hereditary spastic paraplegia and hereditary sensory and autonomic neuropathy type 2. However, we did not observe synapse retraction or dystonic posterior paralysis. Overall, our study demonstrates the specificity of defects caused by selective impairments of distinct molecular motors and highlights the critical importance of Unc-104 for the maturation of neuronal structures during embryonic development, larval synaptic terminal outgrowth, and dendrite morphogenesis.
Collapse
|
26
|
The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma. PLoS One 2013; 8:e61664. [PMID: 23626713 PMCID: PMC3633961 DOI: 10.1371/journal.pone.0061664] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
The motor protein kinesin superfamily proteins (KIFs) are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively), and the protein levels were also inversely correlated with metastasis (P<0.0001). The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11) and melanoma cell adhesion molecule (MCAM) as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.
Collapse
|
27
|
Trueta C, Kuffler DP, De-Miguel FF. Cycling of dense core vesicles involved in somatic exocytosis of serotonin by leech neurons. Front Physiol 2012; 3:175. [PMID: 22685436 PMCID: PMC3368391 DOI: 10.3389/fphys.2012.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/14/2012] [Indexed: 12/15/2022] Open
Abstract
We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region.
Collapse
Affiliation(s)
- Citlali Trueta
- Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz," México D. F., México
| | | | | |
Collapse
|
28
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|