1
|
Shapiro JR, Andreani G, Dubé C, Berubé M, Bussière D, Couture MMJ, Dargis M, Hendin HE, Landry N, Lavoie PO, Pillet S, Ward BJ, D'Aoust MA, Trépanier S. Development and characterization of a plant-derived norovirus-like particle vaccine. Vaccine 2023; 41:6008-6016. [PMID: 37625992 DOI: 10.1016/j.vaccine.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. METHODS NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. RESULTS Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. CONCLUSIONS The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Janna R Shapiro
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Charlotte Dubé
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Mélanie Berubé
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Diane Bussière
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | | | - Michèle Dargis
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Hilary E Hendin
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nathalie Landry
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | | | - Stéphane Pillet
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Brian J Ward
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | | | - Sonia Trépanier
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada.
| |
Collapse
|
2
|
He J, Lai H, Esqueda A, Chen Q. Plant-Produced Antigen Displaying Virus-Like Particles Evokes Potent Antibody Responses against West Nile Virus in Mice. Vaccines (Basel) 2021; 9:60. [PMID: 33477363 PMCID: PMC7830312 DOI: 10.3390/vaccines9010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, we developed a hepatitis B core antigen (HBcAg)-based virus-like particle (VLP) that displays the West Nile virus (WNV) Envelope protein domain III (wDIII) as a vaccine candidate for WNV. The HBcAg-wDIII fusion protein was quickly produced in Nicotiana benthamiana plants and reached a high expression level of approximately 1.2 mg of fusion protein per gram of leaf fresh weight within six days post gene infiltration. Electron microscopy and gradient centrifugation analysis indicated that the introduction of wDIII did not interfere with VLP formation and HBcAg-wDIII successfully assembled into VLPs. HBcAg-wDIII VLPs can be easily purified in large quantities from Nicotiana benthamiana leaves to >95% homogeneity. Further analysis revealed that the wDIII was displayed properly and demonstrated specific binding to an anti-wDIII monoclonal antibody that recognizes a conformational epitope of wDIII. Notably, HBcAg-wDIII VLPs were shown to be highly immunogenic and elicited potent humoral responses in mice with antigen-specific IgG titers equivalent to that of protective wDIII antigens in previous studies. Thus, our wDIII-based VLP vaccine offers an attractive option for developing effective, safe, and low-cost vaccines against WNV.
Collapse
Affiliation(s)
- Junyun He
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
| | - Huafang Lai
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
| | - Adrian Esqueda
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Yang M, Sun H, Lai H, Hurtado J, Chen Q. Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:572-580. [PMID: 28710796 PMCID: PMC5768464 DOI: 10.1111/pbi.12796] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 05/19/2023]
Abstract
The global Zika virus (ZIKV) outbreak and its link to foetal and newborn microcephaly and severe neurological complications in adults call for the urgent development of ZIKV vaccines. In response, we developed a subunit vaccine based on the ZIKV envelope (E) protein and investigated its immunogenicity in mice. Transient expression of ZIKV E (zE) resulted in its rapid accumulation in leaves of Nicotiana benthamiana plants. Biochemical analysis revealed that plant-produced ZIKV E (PzE) exhibited specific binding to a panel of monoclonal antibodies that recognize various zE conformational epitopes. Furthermore, PzE can be purified to >90% homogeneity with a one-step Ni2+ affinity chromatography process. PzE are found to be highly immunogenic, as two doses of PzE elicited both potent zE-specific antibody and cellular immune responses in mice. The delivery of PzE with alum induced a mixed Th1/Th2 immune response, as the antigen-specific IgG isotypes were a mixture of high levels of IgG1/IgG2c and splenocyte cultures from immunized mice secreted significant levels of IFN-gamma, IL-4 and IL-6. Most importantly, the titres of zE-specific and neutralizing antibodies exceeded the threshold that correlates with protective immunity against multiple strains of ZIKV. Thus, our results demonstrated the feasibility of plant-produced ZIKV protein antigen as effective, safe and affordable vaccines against ZIKV.
Collapse
Affiliation(s)
- Ming Yang
- The Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Haiyan Sun
- The Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Huafang Lai
- The Biodesign InstituteArizona State UniversityTempeAZUSA
| | | | - Qiang Chen
- The Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| |
Collapse
|
4
|
Chen Q, Dent M, Hurtado J, Stahnke J, McNulty A, Leuzinger K, Lai H. Transient Protein Expression by Agroinfiltration in Lettuce. Methods Mol Biol 2016; 1385:55-67. [PMID: 26614281 DOI: 10.1007/978-1-4939-3289-4_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Current systems of recombinant protein production include bacterial, insect, and mammalian cell culture. However, these platforms are expensive to build and operate at commercial scales and/or have limited abilities to produce complex proteins. In recent years, plant-based expression systems have become top candidates for the production of recombinant proteins as they are highly scalable, robust, safe, and can produce complex proteins due to having a eukaryotic endomembrane system. Newly developed "deconstructed" viral vectors delivered via Agrobacterium tumefaciens (agroinfiltration) have enabled robust plant-based production of proteins with a wide range of applications. The leafy Lactuca sativa (lettuce) plant with its strong foundation in agriculture is an excellent host for pharmaceutical protein production. Here, we describe a method for agroinfiltration of lettuce that can rapidly produce high levels of recombinant proteins in a matter of days and has the potential to be scaled up to an agricultural level.
Collapse
Affiliation(s)
- Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, 85225, USA.
| | - Matthew Dent
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85225, USA
| | - Jonathan Hurtado
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85225, USA
| | - Jake Stahnke
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85225, USA
| | - Alyssa McNulty
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85225, USA
| | - Kahlin Leuzinger
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA
| | - Huafang Lai
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85225, USA.
| |
Collapse
|
5
|
Gene delivery into plant cells for recombinant protein production. BIOMED RESEARCH INTERNATIONAL 2015; 2015:932161. [PMID: 26075275 PMCID: PMC4449920 DOI: 10.1155/2015/932161] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/17/2014] [Indexed: 01/10/2023]
Abstract
Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.
Collapse
|
6
|
Lai H, He J, Hurtado J, Stahnke J, Fuchs A, Mehlhop E, Gorlatov S, Loos A, Diamond MS, Chen Q. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1098-107. [PMID: 24975464 PMCID: PMC4175135 DOI: 10.1111/pbi.12217] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/02/2014] [Accepted: 05/22/2014] [Indexed: 05/22/2023]
Abstract
Previously, our group engineered a plant-derived monoclonal antibody (MAb pE16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed a pE16 variant consisting of a single-chain variable fragment (scFv) fused to the heavy chain constant domains (CH) of human IgG (pE16scFv-CH). pE16 and pE16scFv-CH were expressed and assembled efficiently in Nicotiana benthamiana ∆XF plants, a glycosylation mutant lacking plant-specific N-glycan residues. Glycan analysis revealed that ∆XF plant-derived pE16scFv-CH (∆XFpE16scFv-CH) and pE16 (∆XFpE16) both displayed a mammalian glycosylation profile. ∆XFpE16 and ∆XFpE16scFv-CH demonstrated equivalent antigen-binding affinity and kinetics, and slightly enhanced neutralization of WNV in vitro compared with the parent mammalian cell-produced E16 (mE16). A single dose of ∆XFpE16 or ∆XFpE16scFv-CH protected mice against WNV-induced mortality even 4 days after infection at equivalent rates as mE16. This study provides a detailed tandem comparison of the expression, structure and function of a therapeutic MAb and its single-chain variant produced in glycoengineered plants. Moreover, it demonstrates the development of anti-WNV MAb therapeutic variants that are equivalent in efficacy to pE16, simpler to produce, and likely safer to use as therapeutics due to their mammalian N-glycosylation. This platform may lead to a more robust and cost-effective production of antibody-based therapeutics against WNV infection and other infectious, inflammatory or neoplastic diseases.
Collapse
Affiliation(s)
- Huafang Lai
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Junyun He
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Jonathan Hurtado
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Jake Stahnke
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Anja Fuchs
- Department of Medicine, Washington University School of Medicine, St. Louis. MO 63110
| | - Erin Mehlhop
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis. MO 63110
| | | | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis. MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis. MO 63110
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
7
|
A plant-produced antigen elicits potent immune responses against West Nile virus in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:952865. [PMID: 24804264 PMCID: PMC3996298 DOI: 10.1155/2014/952865] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/08/2014] [Indexed: 12/13/2022]
Abstract
We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of vector modules of a deconstructed viral vector expression system, DIII was produced in three subcellular compartments in leaves of Nicotiana benthamiana by transient expression. DIII expressed at much higher levels when targeted to the endoplasmic reticulum (ER) than that targeted to the chloroplast or the cytosol, with accumulation level up to 73 μ g DIII per gram of leaf fresh weight within 4 days after infiltration. Plant ER-derived DIII was soluble and readily purified to > 95% homogeneity without the time-consuming process of denaturing and refolding. Further analysis revealed that plant-produced DIII was processed properly and demonstrated specific binding to an anti-DIII monoclonal antibody that recognizes a conformational epitope. Furthermore, subcutaneous immunization of mice with 5 and 25 μ g of purified DIII elicited a potent systemic response. This study provided the proof of principle for rapidly producing immunogenic vaccine candidates against WNV in plants with low cost and scalability.
Collapse
|
8
|
He J, Lai H, Engle M, Gorlatov S, Gruber C, Steinkellner H, Diamond MS, Chen Q. Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS One 2014; 9:e93541. [PMID: 24675995 PMCID: PMC3968140 DOI: 10.1371/journal.pone.0093541] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/04/2014] [Indexed: 12/21/2022] Open
Abstract
Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains (CH(1-3)) of human IgG (pHu-E16scFv-CH(1-3)) and a tetravalent molecule (Tetra pHu-E16) assembled from pHu-E16scFv-CH(1-3) with a second pHu-E16scFv fused to the light chain (LC) constant region. pHu-E16scFv-CH(1-3) and Tetra pHu-E16 were efficiently expressed and assembled in plants. To assess the impact of differences in N-linked glycosylation on pHu-E16 variant assembly and function, we expressed additional pHu-E16 variants with various combinations of HC and LC components. Our study revealed that proper pairing of HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal cells. Associated with their distinct N-glycoforms, pHu-E16, pHu-E16scFv-CH(1-3) and Tetra pHu-E16 exhibited differential binding to C1q and specific Fcγ receptors (FcγR). Notably, none of the plant-derived Hu-E16 variants showed antibody-dependent enhancement (ADE) activity in CD32A+ human cells, suggesting the potential of plant-produced antibodies to minimize the adverse effect of ADE. Importantly, all plant-derived MAb variants exhibited at least equivalent in vitro neutralization and in vivo protection in mice compared to mammalian cell-produced Hu-E16. This study demonstrates the capacity of plants to express and assemble a large, complex and functional IgG-like tetravalent mAb variant and also provides insight into the relationship between MAb N-glycosylation, FcγR and C1q binding, and ADE. These new insights may allow the development of safer and cost effective MAb-based therapeutics for flaviviruses, and possibly other pathogens.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/isolation & purification
- Complement C1q/immunology
- Complement C1q/metabolism
- Glycosylation
- Immunization, Passive
- Immunoconjugates/chemistry
- Immunoconjugates/genetics
- Immunoglobulin G/chemistry
- Immunoglobulin G/genetics
- Mice
- Mice, Inbred C57BL
- Plants, Genetically Modified
- Protein Binding
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/isolation & purification
- Survival Analysis
- Nicotiana/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- West Nile Fever/immunology
- West Nile Fever/mortality
- West Nile Fever/prevention & control
- West Nile Fever/virology
- West Nile virus/immunology
- West Nile virus/pathogenicity
Collapse
Affiliation(s)
- Junyun He
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Huafang Lai
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Michael Engle
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Sergey Gorlatov
- MacroGenics, Inc, Rockville, Maryland, United States of America
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- College of Technology and Innovation, Arizona State University, Mesa, Arizona, United States of America
| |
Collapse
|