1
|
Ortega M, De Toma I, Fernández-Blanco Á, Calderón A, Barahona L, Trullàs R, Sabidó E, Dierssen M. Proteomic profiling reveals mitochondrial dysfunction in the cerebellum of transgenic mice overexpressing DYRK1A, a Down syndrome candidate gene. Front Mol Neurosci 2022; 15:1015220. [PMID: 36590914 PMCID: PMC9800213 DOI: 10.3389/fnmol.2022.1015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction DYRK1A is a dual-specificity kinase that is overexpressed in Down syndrome (DS) and plays a key role in neurogenesis, neuronal differentiation and function, cognitive phenotypes, and aging. Dyrk1A has also been implicated in cerebellar abnormalities observed in association with DS, and normalization of Dyrk1A dosage rescues granular and Purkinje cell densities in a trisomic DS mouse model. However, the underlying molecular mechanisms governing these processes are unknown. Methods To shed light on the effects of Dyrk1A overexpression in the cerebellum, here we investigated the cerebellar proteome in transgenic Dyrk1A overexpressing mice in basal conditions and after treatment with green tea extract containing epigallocatechin-3-gallate (EGCG), a DYRK1A inhibitor. Results and Discussion Our results showed that Dyrk1A overexpression alters oxidative phosphorylation and mitochondrial function in the cerebellum of transgenic mice. These alterations are significantly rescued upon EGCG-containing green tea extract treatment, suggesting that its effects in DS could depend in part on targeting mitochondria, as shown by the partially restoration by the treatment of the increased mtDNA copy number in TG non-treated mice.
Collapse
Affiliation(s)
- Mireia Ortega
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Calderón
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Lucía Barahona
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Ramón Trullàs
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain,*Correspondence: Mara Dierssen,
| |
Collapse
|
2
|
Anderson CC, Marentette JO, Prutton KM, Rauniyar AK, Reisz JA, D'Alessandro A, Maclean KN, Saba LM, Roede JR. Trisomy 21 results in modest impacts on mitochondrial function and central carbon metabolism. Free Radic Biol Med 2021; 172:201-212. [PMID: 34129926 PMCID: PMC8355208 DOI: 10.1016/j.freeradbiomed.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability. Mechanistically, oxidative stress and mitochondrial dysfunction are reported to be etiological factors for many of the DS-related comorbidities and have previously been reported in a number of in vitro and in vivo models of DS. The purpose of this study was to test for the presence of mitochondrial dysfunction in fibroblast cells obtained via skin biopsy from individuals with DS, and to assess the impact of trisomy 21 on central carbon metabolism. Using extracellular flux assays in matched dermal fibroblasts from euploid and DS individuals, we found that basal mitochondrial dysfunction is quite mild. Stressing the cells with a cocktail of mitochondrial stressors revealed a significant mitochondrial deficit in DS cells compared to euploid controls. Evaluation of extracellular acidification rate did not reveal a baseline abnormality in glycolysis; however, metabolomic assessments utilizing isotopically labeled glucose and glutamine revealed altered central carbon metabolism in DS cells. Specifically, we observed greater glucose dependency, uptake and flux into the oxidative phase of the pentose phosphate pathway in DS fibroblasts. Furthermore, using induced pluripotent stem cells (iPSC) we found that mitochondrial function in DS iPSCs was similar to the previously published studies employing fetal cells. Together, these data indicate that aberrant central carbon metabolism is a candidate mechanism for stress-related mitochondrial dysfunction in DS.
Collapse
Affiliation(s)
- Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA
| | - Kendra M Prutton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA; Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Abhishek K Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, USA
| | | | - Kenneth N Maclean
- Department of Pediatrics, USA; Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, USA; Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
3
|
Humphries C, Kohli MA, Whitehead P, Mash DC, Pericak-Vance MA, Gilbert J. Alzheimer disease (AD) specific transcription, DNA methylation and splicing in twenty AD associated loci. Mol Cell Neurosci 2015; 67:37-45. [PMID: 26004081 DOI: 10.1016/j.mcn.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies have identified twenty loci associated with late-onset Alzheimer disease (LOAD). We examined each of the twenty loci, specifically the ±50kb region surrounding the most strongly associated variant, for changes in gene(s) transcription specific to LOAD. Post-mortem human brain samples were examined for expression, methylation, and splicing differences. LOAD specific differences were detected by comparing LOAD to normal and "disease" controls. Eight loci, prominently ABCA7, contain LOAD specific differences. Significant changes in the CELF1 and ZCWPW1 loci occurred in genes not located nearest the associated variant, suggesting that these genes should be investigated further as LOAD candidates.
Collapse
Affiliation(s)
- Crystal Humphries
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Martin A Kohli
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Patrice Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Deborah C Mash
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - John Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Phillips AC, Sleigh A, McAllister CJ, Brage S, Carpenter TA, Kemp GJ, Holland AJ. Defective mitochondrial function in vivo in skeletal muscle in adults with Down's syndrome: a 31P-MRS study. PLoS One 2013; 8:e84031. [PMID: 24391872 PMCID: PMC3877137 DOI: 10.1371/journal.pone.0084031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/11/2013] [Indexed: 01/11/2023] Open
Abstract
Down's syndrome (DS) is a developmental disorder associated with intellectual disability (ID). We have previously shown that people with DS engage in very low levels of exercise compared to people with ID not due to DS. Many aspects of the DS phenotype, such as dementia, low activity levels and poor muscle tone, are shared with disorders of mitochondrial origin, and mitochondrial dysfunction has been demonstrated in cultured DS tissue. We undertook a phosphorus magnetic resonance spectroscopy ((31)P-MRS) study in the quadriceps muscle of 14 people with DS and 11 non-DS ID controls to investigate the post-exercise resynthesis kinetics of phosphocreatine (PCr), which relies on mitochondrial respiratory function and yields a measure of muscle mitochondrial function in vivo. We found that the PCr recovery rate constant was significantly decreased in adults with DS compared to non-DS ID controls (1.7 ± 0.1 min(-1) vs 2.1 ± 0.1 min(-1) respectively) who were matched for physical activity levels, indicating that muscle mitochondrial function in vivo is impaired in DS. This is the first study to investigate mitochondrial function in vivo in DS using (31)P-MRS. Our study is consistent with previous in vitro studies, supporting a theory of a global mitochondrial defect in DS.
Collapse
Affiliation(s)
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Soren Brage
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - T. Adrian Carpenter
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Graham J. Kemp
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, United Kingdom
| | - Anthony J. Holland
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Granese B, Scala I, Spatuzza C, Valentino A, Coletta M, Vacca RA, De Luca P, Andria G. Validation of microarray data in human lymphoblasts shows a role of the ubiquitin-proteasome system and NF-kB in the pathogenesis of Down syndrome. BMC Med Genomics 2013; 6:24. [PMID: 23830204 PMCID: PMC3717290 DOI: 10.1186/1755-8794-6-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is a complex disorder caused by the trisomy of either the entire, or a critical region of chromosome 21 (21q22.1-22.3). Despite representing the most common cause of mental retardation, the molecular bases of the syndrome are still largely unknown. METHODS To better understand the pathogenesis of DS, we analyzed the genome-wide transcription profiles of lymphoblastoid cell lines (LCLs) from six DS and six euploid individuals and investigated differential gene expression and pathway deregulation associated with trisomy 21. Connectivity map and PASS-assisted exploration were used to identify compounds whose molecular signatures counteracted those of DS lymphoblasts and to predict their therapeutic potential. An experimental validation in DS LCLs and fetal fibroblasts was performed for the most deregulated GO categories, i.e. the ubiquitin mediated proteolysis and the NF-kB cascade. RESULTS We show, for the first time, that the level of protein ubiquitination is reduced in human DS cell lines and that proteasome activity is increased in both basal conditions and oxidative microenvironment. We also provide the first evidence that NF-kB transcription levels, a paradigm of gene expression control by ubiquitin-mediated degradation, is impaired in DS due to reduced IkB-alfa ubiquitination, increased NF-kB inhibitor (IkB-alfa) and reduced p65 nuclear fraction. Finally, the DSCR1/DYRK1A/NFAT genes were analysed. In human DS LCLs, we confirmed the presence of increased protein levels of DSCR1 and DYRK1A, and showed that the levels of the transcription factor NFATc2 were decreased in DS along with a reduction of its nuclear translocation upon induction of calcium fluxes. CONCLUSIONS The present work offers new perspectives to better understand the pathogenesis of DS and suggests a rationale for innovative approaches to treat some pathological conditions associated to DS.
Collapse
Affiliation(s)
- Barbara Granese
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Iris Scala
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Carmen Spatuzza
- Department of Biotechnological Sciences, Federico II University, Naples 80131, Italy
| | - Anna Valentino
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Marcella Coletta
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari 70126, Italy
| | - Pasquale De Luca
- Stazione Zoologica “A. Dohrn”, c/o BioGeM, Via Camporeale, Ariano Irpino 83031, Italy
| | - Generoso Andria
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| |
Collapse
|