1
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
2
|
Shaban NZ, Aboelsaad AM, Awad D, Abdulmalek SA, Shaban SY. Therapeutic effect of dithiophenolato chitosan nanocomposites against carbon tetrachloride-induced hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8487-8502. [PMID: 34487322 DOI: 10.1007/s11356-021-15834-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Our previous study showed that dithiophenolate (DTP) and its chitosan nanoparticles (DTP-CSNPs) have abilities to bind with DNA helixes. So in this study, their lethal doses (LD50) and therapeutic roles against rat liver injuries induced by carbon tetrachloride (CCl4) were evaluated. The study focused on the determination of the markers of oxidative stress (OS) and apoptosis and compare the results with those of cisplatin treatment. The results revealed that LD50 values of DTP and DTP-CSNPs are 2187.5 and 1462.5 mg/kg, respectively. Treatment with DPT and DPT-CSNPs after CCl4 administration reduced liver injuries, induced by CCl4, and improved liver functions and architecture through the reduction of OS and apoptosis. Where the oxidant marker was decreased with elevations of antioxidant markers. Also, there was an elevation in Bcl-2 value, with decreases in caspase-8, Bax, and Bax/Bcl-2 ratio. DPT-CSNPs treatment gave preferable results than those treated with DPT. Moreover, DTP and DPT-CSNPs treatment gave better results than cisplatin treatment. The administration of healthy rats with low doses of DTP and DTP-CSNPs for 14 days had no effect. Otherwise, the study on HepG2 cell line showed that DTP and DPT-CSNPs inhibited cell growth by arresting cells in the G2/M phase and inducing cell death. In conclusion, DTP and DTP-CSNPs have antiapoptotic and anti-oxidative stress toward hepatotoxicity induced by CCl4. Moreover, DTP and DTP-CSNPs have anticancer activity against the HepG2 cell line. Generally, DTP-CSNPs are more effective than DTP. So, they can be used in the pharmacological fields, especially DTP-CSNPs.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Ahmed M Aboelsaad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Shaymaa A Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
3
|
|
4
|
Morin-Crini N, Lichtfouse E, Torri G, Crini G. Fundamentals and Applications of Chitosan. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
6
|
Zhang J, Wang Y, Jiang Y, Liu T, Luo Y, Diao E, Cao Y, Chen L, Zhang L, Gu Q, Zhou J, Sun F, Zheng W, Liu J, Li X, Hu W. Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K. Carbohydr Polym 2018; 198:537-545. [PMID: 30093032 DOI: 10.1016/j.carbpol.2018.06.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 11/18/2022]
Abstract
Ginsenoside compound K (CK) has been shown to exhibit anticancer properties. In this study, chitosan nanoparticles loaded with ginsenoside compound K (CK-NPs) were prepared as a delivery system using a self-assembly technique with amphipathic deoxycholic acid-O carboxymethyl chitosan as the carrier, which improved the water solubility of CK. By evaluating drug loading, entrapment efficiency, and in vitro release behavior, the feasibility of CK-NPs as a drug carrier nanoparticle for the treatment of human hepatic carcinoma cells (HepG2) was investigated. Result revealed that CK and CK-NPs showed a dose-dependent inhibitory effect on HepG2 cells with IC50 values of 23.33 and 16.58 μg/mL, respectively. Furthermore, fluorescence imaging demonstrated that CK-NPs promoted cellular uptake in vitro. Therefore, all results indicated that CK-NPs might be a novel drug delivery system to improve the solubility and enhance the cytotoxic and apoptotic potentials of CK for effective liver cancer chemotherapy.
Collapse
Affiliation(s)
- Jianmei Zhang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yijun Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yunyao Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tingwu Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yanyan Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yufeng Cao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Liang Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Liang Zhang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Qian Gu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Jinyi Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Fengting Sun
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Wancai Zheng
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xueqin Li
- Department of Gerontology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huanghe West Road, Huaian, 223300, China.
| | - Weicheng Hu
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Xinjiang, 830052, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| |
Collapse
|
7
|
Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 148:460-473. [DOI: 10.1016/j.colsurfb.2016.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|