1
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
2
|
Cacabelos R, Naidoo V, Martínez-Iglesias O, Corzo L, Cacabelos N, Pego R, Carril JC. Pharmacogenomics of Alzheimer's Disease: Novel Strategies for Drug Utilization and Development. Methods Mol Biol 2022; 2547:275-387. [PMID: 36068470 DOI: 10.1007/978-1-0716-2573-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Olaia Martínez-Iglesias
- Department of Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Rocío Pego
- Department of Neuropsychology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Juan C Carril
- Department of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
3
|
Pharmacogenetic and Association Studies on the Influence of HLA Alleles and Rivastigmine on the Iranian Patients with Late-Onset Alzheimer's Disease. Mol Neurobiol 2021; 58:2792-2802. [PMID: 33502736 DOI: 10.1007/s12035-021-02295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting cognitive function. A number of allelic genes from HLA complex have shown variable associations with AD in different populations. In this study, we investigated the association of DQB1*06:00/x, DRB1*04:00/x, DRB1*15:00/x, and B*07:00/x genotypes with AD and their relevance to the efficacy of rivastigmine treatment in the Iranian population. Our findings suggest that DQB1*06:00/x genotype offers strong protection against AD (P = 0.0074), while B*07:00/x genotype imposes a significant susceptibility for sporadic Alzheimer's disease (SAD) (P = 0.009). Interestingly, B*07:00/x genotype does not show any apparent associations with familial Alzheimer's disease (FAD). Our studies also suggest a pharmacogenetic relationship between drug treatment and presence of a particular genotype in the Iranian LOAD patient population. The Clinical Dementia Rating analysis showed that LOAD patients carrying DRB1*04:00/x genotype tend to display a downward trend in the disease severity and symptoms after 2-year follow-up with rivastigmine treatment. Moreover, in our total patient population, the carriers of DQB1*06:00/x and B*07:00/x alleles have better and worse responses to rivastigmine respectively. We also measured the clinical relevance of the testing for these genotypes employing prevalence-corrected positive predictive value (PcPPV) formula. The PcPPV of testing for DQB1*06:00/x in the Iranian LOAD patients was 1.17% which means that people carrying this genotype have half of the probability of the absolute risk for developing LOAD, whereas the PcPPV of testing for B*07:00/x was 4.45% for SAD, which can be interpreted as a doubling chance for developing LOAD among the Iranian population carrying this genotype. These results also suggest that DQβ1 peptide containing positively charged AAs histidine30 and arginine55 and HLA class I β chain containing negatively charges aspartic acid114 and glutamic acid45,152 in their binding groove plays important roles in protection against and susceptibility for LOAD respectively.
Collapse
|
4
|
Pharmacogenetics of Neurodegenerative Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-3-319-15344-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center; Institute for CNS Disorders and Genomic Medicine; EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University; Bergondo; Corunna; Spain
| |
Collapse
|
7
|
Abstract
Dementia is a major problem of health in developed countries, and a prototypical paradigm of chronic disability, high cost, and social-family burden. Approximately, 10-20% of direct costs in this kind of neuropathology are related to pharmacological treatment, with a moderate responder rate below 30% and questionable cost-effectiveness. Over 200 different genes have been associated with the pathogenesis of dementia. Studies on structural and functional genomics, transcriptomics, proteomics and metabolomics have revealed the paramount importance of these novel technologies for the understanding of pathogenic cascades and the prediction of therapeutic outcomes in dementia. About 10-30% of Western populations are defective in genes of the CYP superfamily. The most frequent CYP2D6 variants in the Iberian peninsula are the *1/*1 (57.84%), *1/*4 (22.78%), *1×N/*1 (6.10%), *4/*4 (2.56%), and *1/*3 (2.01%) genotypes, accounting for more than 80% of the population. The frequency of extensive (EMs), intermediate (IMs), poor (PMs), and ultra-rapid metabolizers (UMs) is about 59.51%, 29,78%, 4.46%, and 6.23%, respectively, in the general population, and 57.76, 31.05%, 5.27%, and 5.90%, respectively, in AD cases. The construction of a genetic map integrating the most prevalent CYP2D6+CYP2C19+CYP2C9 polymorphic variants in a trigenic cluster yields 82 different haplotype-like profiles, with *1*1-*1*1-*1*1 (25.70%), *1*1-*1*2-*1*2 (10.66%), *1*1-*1*1-*1*1 (10.45%), *1*4-*1*1-*1*1 (8.09%), *1*4-*1*2-*1*1 (4.91%), *1*4-*1*1-*1*2 (4.65%), and *1*1-*1*3-*1*3 (4.33%), as the most frequent genotypes. Only 26.51% of AD patients show a pure 3EM phenotype, 15.29% are 2EM1IM, 2.04% are pure 3IM, 0% are pure 3PM, and 0% are 1UM2PM. EMs and IMs are the best responders, and PMs and UMs are the worst responders to a combination therapy with cholinesterase inhibitors, neuroprotectants, and vasoactive substances. The pharmacogenetic response in AD appears to be dependent upon the networking activity of genes involved in drug metabolism and genes involved in AD pathogenesis (e.g., APOE). AD patients harboring the APOE-4/4 genotypes are the worst responders to conventional antidementia drugs. To achieve a mature discipline of pharmacogenomics in CNS disorders and dementia it would be convenient to accelerate the following processes: (i) to educate physicians and the public on the use of genetic/genomic screening in daily clinical practice; (ii) to standardize genetic testing for major categories of drugs; (iii) to validate pharmacogenomic information according to drug category and pathology; (iv) to regulate ethical, social, and economic issues; and (v) to incorporate pharmacogenomic procedures both to drugs in development and drugs on the market in order to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, Bergondo, Coruña, Spain.
| | | |
Collapse
|
8
|
Abstract
Schizophrenia (SCZ) is among the most disabling of mental disorders. Several neurobiological hypotheses have been postulated as responsible for SCZ pathogenesis: polygenic/multifactorial genomic defects, intrauterine and perinatal environment-genome interactions, neurodevelopmental defects, dopaminergic, cholinergic, serotonergic, gamma-aminobutiric acid (GABAergic), neuropeptidergic and glutamatergic/N-Methyl-D-Aspartate (NMDA) dysfunctions, seasonal infection, neuroimmune dysfunction, and epigenetic dysregulation. SCZ has a heritability estimated at 60-90%. Genetic studies in SCZ have revealed the presence of chromosome anomalies, copy number variants, multiple single-nucleotide polymorphisms of susceptibility distributed across the human genome, aberrant single nucleotide polymorphisms (SNPs) in microRNA genes, mitochondrial DNA mutations, and epigenetic phenomena. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variation in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are major substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are major substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are major substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. About 10-20% of Western populations are defective in genes of the CYP superfamily. Only 26% of Southern Europeans are pure extensive metabolizers for the trigenic cluster integrated by the CYP2D6+CYP2C19+CYP2C9 genes. The pharmacogenomic response of SCZ patients to conventional psychotropic drugs also depends on genetic variants associated with SCZ-related genes. Consequently, the incorporation of pharmacogenomic procedures both to drugs in development and drugs on the market would help to optimize therapeutics in SCZ and other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, 15165-Bergondo, Coruña, Spain.
| | | |
Collapse
|
9
|
Abstract
Central nervous system disorders are the third greatest health problem in developed countries, and schizophrenia represents some of the most disabling ailments in young individuals. There is an abuse and/or misuse of antipsychotics, and recent advances in pharmacogenomics pose new challenges for the clinical management of this complex disorder. Schizophrenia is a multi-factorial/polygenic complex disorder in which hundreds of different genes are potentially involved, leading to the phenotypic expression of the disease in conjunction with epigenetic and environmental phenomena. Consequently, structural and functional genomic changes induce proteomic and metabolomic defects associated with the disease phenotype. Disease-related genomic profiles and genetic variants in genes involved in drug metabolism are responsible for drug efficacy and safety. About 20% of Caucasians are defective in CYP2D6 enzymes, which participate in the metabolism of 25-30% of central nervous system drugs. Approximately 40% of antipsychotics are substrates of CYP2D6 enzymes, 23% are substrates of CYP3A4, and 18% are substrates of CYP1A2. In order to achieve a mature discipline of pharmacogenomics of schizophrenia it would be effective to accelerate: (i) the education of physicians and the public in the use of genomic screening in daily clinical practice; (ii) the standardization of genetic testing for major categories of drugs; (iii) the validation of pharmacogenomic procedures according to drug category and pathology; (iv) the regulation of ethical, social, and economic issues; and (v) the incorporation of pharmacogenomic procedures of drugs in development and drugs on the market in order to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, Bergondo, Coruña, Spain
| | | | | |
Collapse
|
10
|
Cacabelos R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev Mol Diagn 2009; 9:567-611. [DOI: 10.1586/erm.09.42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|