1
|
Hsueh YS, Chen YS, Tai HC, Mestak O, Chao SC, Chen YY, Shih Y, Lin JF, Shieh MJ, Lin FH. Laminin-Alginate Beads as Preadipocyte Carriers to Enhance Adipogenesis In Vitro and In Vivo. Tissue Eng Part A 2016; 23:185-194. [PMID: 27814669 DOI: 10.1089/ten.tea.2016.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The use of autologous fat grafting in breast reconstruction still requires optimization. Fat survival and calcification are the main issues that affect the outcomes of the procedure. In this study, a cell-based therapy utilizing laminin-alginate beads (LABs) as carriers was proposed to promote cell survival and adipogenesis by providing short-term physical support and facilitate nutrient diffusion of the implants. Laminin-modified alginate beads were fabricated by immobilizing laminin onto ring-opened alginate, used to encapsulate 3T3-L1 preadipocytes, and evaluated in vitro and in vivo. LABs as preadipocyte carriers showed better biocompatibility and stability than unmodified alginate beads. Preadipocytes in LABs had higher survival rate and enhanced adipogenesis than those in unmodified alginate beads. In vivo studies showed that LABs gradually degraded and the sites were replaced by newly formed fat tissues, and new blood vessels were also observed. 7T-MRI study mimicking clinical fat grafting showed that LABs carrying adipose stem cells improved the results of conventional fat grafts. Therefore, we believe that LABs represent promising cell carriers and can be potentially used for the reconstruction of breasts or other soft tissues in the future.
Collapse
Affiliation(s)
- Yu-Sheng Hsueh
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Taiwan Food and Drug Administration, Ministry of Health and Welfare , Taipei, Taiwan
| | - Yo-Shen Chen
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,3 Department of Plastic Surgery, Far Eastern Memorial Hospital , New Taipei City, Taiwan
| | - Hao-Chih Tai
- 4 Department of Plastic Surgery, National Taiwan University Hospital , Taipei, Taiwan
| | - Ondrej Mestak
- 5 Department of Plastic Surgery, First Faculty of Medicine, Charles University in Prague , Bulovka Hospital, Prague, Czech Republic
| | - Sung-Chuan Chao
- 6 Department of Surgery, National Taiwan University Hospital , Taipei, Taiwan
| | - Yen-Yu Chen
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Ying Shih
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Jung-Feng Lin
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Ming-Jium Shieh
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Feng-Huei Lin
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,7 Division of Medical Engineering, National Health Research Institute , Maoli, Taiwan
| |
Collapse
|
2
|
Clevenger TN, Luna G, Fisher SK, Clegg DO. Strategies for bioengineered scaffolds that support adipose stem cells in regenerative therapies. Regen Med 2016; 11:589-99. [PMID: 27484203 DOI: 10.2217/rme-2016-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine possesses the potential to ameliorate damage to tissue that results from a vast range of conditions, including traumatic injury, tumor resection and inherited tissue defects. Adult stem cells, while more limited in their potential than pluripotent stem cells, are still capable of differentiating into numerous lineages and provide feasible allogeneic and autologous treatment options for many conditions. Adipose stem cells are one of the most abundant types of stem cell in the adult human. Here, we review recent advances in the development of synthetic scaffolding systems used in concert with adipose stem cells and assess their potential use for clinical applications.
Collapse
Affiliation(s)
- Tracy N Clevenger
- Center for Stem Cell Biology & Engineering, University of California, Santa Barbara, CA, USA.,Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA.,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Center for Bio-Image Informatics, University of California, Santa Barbara, CA, USA
| | - Steven K Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Center for Bio-Image Informatics, University of California, Santa Barbara, CA, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology & Engineering, University of California, Santa Barbara, CA, USA.,Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA.,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Santhakumar R, Vidyasekar P, Verma RS. Cardiogel: a nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells. PLoS One 2014; 9:e114697. [PMID: 25521816 PMCID: PMC4270637 DOI: 10.1371/journal.pone.0114697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023] Open
Abstract
3-Dimensional conditions for the culture of Bone Marrow-derived Stromal/Stem Cells (BMSCs) can be generated with scaffolds of biological origin. Cardiogel, a cardiac fibroblast-derived Extracellular Matrix (ECM) has been previously shown to promote cardiomyogenic differentiation of BMSCs and provide protection against oxidative stress. To determine the matrix composition and identify significant proteins in cardiogel, we investigated the differences in the composition of this nanomatrix and a BMSC-derived ECM scaffold, termed as ‘mesogel’. An optimized protocol was developed that resulted in efficient decellularization while providing the maximum yield of ECM. The proteins were sequentially solubilized using acetic acid, Sodium Dodecyl Sulfate (SDS) and Dithiothreitol (DTT). These proteins were then analyzed using surfactant-assisted in-solution digestion followed by nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). The results of these analyses revealed significant differences in their respective compositions and 17 significant ECM/matricellular proteins were differentially identified between cardiogel and mesogel. We observed that cardiogel also promoted cell proliferation, adhesion and migration while enhancing cardiomyogenic differentiation and angiogenesis. In conclusion, we developed a reproducible method for efficient extraction and solubilization of in vitro cultured cell-derived extracellular matrix. We report several important proteins differentially identified between cardiogel and mesogel, which can explain the biological properties of cardiogel. We also demonstrated the cardiomyogenic differentiation and angiogenic potential of cardiogel even in the absence of any external growth factors. The transplantation of Bone Marrow derived Stromal/Stem Cells (BMSCs) cultured on such a nanomatrix has potential applications in regenerative therapy for Myocardial Infarction (MI).
Collapse
Affiliation(s)
- Rajalakshmi Santhakumar
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
| | - Prasanna Vidyasekar
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
4
|
Godwin J, Kuraitis D, Rosenthal N. Extracellular matrix considerations for scar-free repair and regeneration: Insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 2014; 56:47-55. [DOI: 10.1016/j.biocel.2014.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
|
5
|
Soininen A, Kaivosoja E, Sillat T, Virtanen S, Konttinen YT, Tiainen VM. Osteogenic differentiation on DLC-PDMS-h surface. J Biomed Mater Res B Appl Biomater 2014; 102:1462-72. [PMID: 24574187 DOI: 10.1002/jbm.b.33125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 11/08/2022]
Abstract
The hypothesis was that anti-fouling diamond-like carbon polydimethylsiloxane hybrid (DLC-PDMS-h) surface impairs early and late cellular adhesion and matrix-cell interactions. The effect of hybrid surface on cellular adhesion and cytoskeletal organization, important for osteogenesis of human mesenchymal stromal cells (hMSC), where therefore compared with plain DLC and titanium (Ti). hMSCs were induced to osteogenesis and followed over time using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and hydroxyapatite (HA) staining. SEM at 7.5 hours showed that initial adherence and spreading of hMSC was poor on DLC-PDMS-h. At 5 days some hMSC were undergoing condensation and apoptotic fragmentation, whereas cells on DLC and Ti grew well. DAPI-actin-vinculin triple staining disclosed dwarfed cells with poorly organized actin cytoskeleton-focal complex/adhesion-growth substrate attachments on hybrid coating, whereas spread cells, organized microfilament bundles, and focal adhesions were seen on DLC and in particular on Ti. Accordingly, at day one ToF-SIMS mass peaks showed poor protein adhesion to DLC-PDMS-h compared with DLC and Ti. COL1A1, ALP, OP mRNA levels at days 0, 7, 14, 21, and/or 28 and lack of HA deposition at day 28 demonstrated delayed or failed osteogenesis on DLC-PDMS-h. Anti-fouling DLC-PDMS-h is a poor cell adhesion substrate during the early protein adsorption-dependent phase and extracellular matrix-dependent late phase. Accordingly, some hMSCs underwent anoikis-type apoptosis and failed to complete osteogenesis, due to few focal adhesions and poor cell-to-ECM contacts. DLC-PDMS-h seems to be a suitable coating for non-integrating implants/devices designed for temporary use.
Collapse
Affiliation(s)
- Antti Soininen
- ORTON Research Institute, Helsinki, Finland; ORTON Orthopedic Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
6
|
Noro A, Sillat T, Virtanen I, Ingerpuu S, Bäck N, Konttinen YT, Korhonen M. Laminin production and basement membrane deposition by mesenchymal stem cells upon adipogenic differentiation. J Histochem Cytochem 2013; 61:719-30. [PMID: 23900596 DOI: 10.1369/0022155413502055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim was to study laminin (LM) synthesis, integration, and deposition into the basement membrane (BM) during adipogenesis. Human bone marrow-derived mesenchymal stromal cells (MSCs) were induced along the adipogenic lineage. LM chain mRNA and protein levels were followed using quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) staining, transmission electron microscopy (TEM), and immunoprecipitation. MSCs produced low levels of LM mRNAs but were not surrounded by BM in IF and TEM imaging. LM-α4, LM-β1, and LM-γ1 mRNAs increased during adipogenesis 3.9-, 5.8-, and 2.8-fold by day 28. LM-411 was immunoprecipitated from the ECM of the differentiated cells. Immunostaining suggested deposition of LM-411 and some LM-421. BM build-up was probably organized in part by integrin (Int) α6β1. At day 28, TEM images revealed BM-like structures around fat droplet-containing cells. The first signs of BM formation and Int α6β1 were seen using IF imaging at day 14. Laminin-411 and Int α6β1 were expressed in vivo in mature human subcutaneous fat tissue. Undifferentiated human MSCs did not organize LM subunits into BM, whereas LM-411 and some LM-421 are precipitated in the BM around adipocytes. This is the first demonstration of LM-411 precipitation during hMSC adipogenesis around adipocytes as a structural scaffold and Int-regulated signaling element.
Collapse
Affiliation(s)
- Ariel Noro
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland (AN,TS,IV,NB,MK)
| | | | | | | | | | | | | |
Collapse
|
7
|
Schulz S, Tomakidi P, Mauth C, Kohal R, Steinberg T. Interactive Fibroblast-Keratinocyte Co-cultures: AnIn Vivo-Like Test Platform for Dental Implant-Based Soft Tissue Integration. Tissue Eng Part C Methods 2012; 18:785-96. [DOI: 10.1089/ten.tec.2012.0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simon Schulz
- Department of Oral Biotechnology, Dental School, University Hospital Freiburg, Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Dental School, University Hospital Freiburg, Freiburg, Germany
| | | | - Ralf Kohal
- Department of Prosthodontics, Dental School, University Hospital Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Dental School, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Kaivosoja E, Suvanto P, Barreto G, Aura S, Soininen A, Franssila S, Konttinen YT. Cell adhesion and osteogenic differentiation on three-dimensional pillar surfaces. J Biomed Mater Res A 2012; 101:842-52. [PMID: 22968914 DOI: 10.1002/jbm.a.34378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
We hypothesized that when compared with conventional two-dimensional (2D) cultures, substrates containing 3D micropillars would allow cells to grow at levels, activating their cytoskeleton to promote osteogenesis. Fibroblasts, osteoblast-like cells, and mesenchymal stem cells (MSCs) were studied. Planar substrates were compared with 200-nm-, 5-μm-, and 20-μm-high pillars of Ormocomp®, Si, diamond-like carbon, or TiO(2). Scanning electron microscopy and staining of actin cytoskeleton showed 7.5-h adhesion to pillar edges and 5-day stretching between adhesion contacts > 100-μm distances of fibroblast and MSC in 3D networks, whereas SaOS-2 cells adhered flatly and individually on horizontal and vertical surfaces. ERK and ROCK immunostaining at 14 and 21 days confirmed activation of the cytoskeleton. In contrast to expectations, success to induce osteogenesis was dominated by the cytocompatibility of the substrate over the 3D structure. This was shown using early alkaline phosphatase, intermediate osteopontin, and late mineralization markers, together with bone nodule formation, which were seen in planar substrates and low-profile TiO(2) pillars, but were poor in the 20-μm landscape. The lack of intercellular contacts seems to halt the osteogenesis-promoting effects of cytoskeletal organization and tension described earlier.
Collapse
Affiliation(s)
- Emilia Kaivosoja
- Department of Medicine, Institute of Clinical Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|