1
|
Maroudas‐Sklare N, Kolodny Y, Yochelis S, Keren N, Paltiel Y. Controlling photosynthetic energy conversion by small conformational changes. PHYSIOLOGIA PLANTARUM 2022; 174:e13802. [PMID: 36259916 PMCID: PMC9828261 DOI: 10.1111/ppl.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Control phenomena in biology usually refer to changes in gene expression and protein translation and modification. In this paper, another mode of regulation is highlighted; we propose that photosynthetic organisms can harness the interplay between localization and delocalization of energy transfer by utilizing small conformational changes in the structure of light-harvesting complexes. We examine the mechanism of energy transfer in photosynthetic pigment-protein complexes, first through the scope of theoretical work and then by in vitro studies of these complexes. Next, the biological relevance to evolutionary fitness of this localization-delocalization switch is explored by in vivo experiments on desert crust and marine cyanobacteria, which are both exposed to rapidly changing environmental conditions. These examples demonstrate the flexibility and low energy cost of this mechanism, making it a competitive survival strategy.
Collapse
Affiliation(s)
- Naama Maroudas‐Sklare
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yuval Kolodny
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Shira Yochelis
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yossi Paltiel
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
2
|
Kagatani K, Nagao R, Shen JR, Yamano Y, Takaichi S, Akimoto S. Excitation relaxation dynamics of carotenoids constituting the diadinoxanthin cycle. PHOTOSYNTHESIS RESEARCH 2022; 154:13-19. [PMID: 35951151 DOI: 10.1007/s11120-022-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids (Cars) exhibit two functions in photosynthesis, light-harvesting and photoprotective functions, which are performed through the excited states of Cars. Therefore, increasing our knowledge on excitation relaxation dynamics of Cars is important for understanding of the functions of Cars. In light-harvesting complexes, there exist Cars functioning by converting the π-conjugation number in response to light conditions. It is well known that some microalgae have a mechanism controlling the conjugation number of Cars, called as the diadinoxanthin cycle; diadinoxanthin (10 conjugations) is accumulated under low light, whereas diatoxanthin (11 conjugations) appears under high light. However, the excitation relaxation dynamics of these two Cars have not been clarified. In the present study, we investigated excitation relaxation dynamics of diadinoxanthin and diatoxanthin in relation to their functions, by the ultrafast fluorescence spectroscopy. After an excitation to the S2 state, the intramolecular vibrational redistribution occurs, followed by the internal conversion to the S1 state. The S2 lifetimes were analyzed to be 175 fs, 155 fs, and 140 fs in diethyl ether, ethanol, and acetone, respectively, for diadinoxanthin, and 155 fs, 135 fs, and 125 fs in diethyl ether, ethanol, and acetone, respectively for diatoxanthin. By converting diadinoxanthin to diatoxanthin, the absorption spectra shift to longer wavelengths by 5-7 nm, and lifetimes of S2 and S1 states decrease by 11-13% and 52%, respectively. Differences in levels and lifetimes of excited states between diadinoxanthin and diatoxanthin are small; therefore, it is suggested that changes in the energy level of chlorophyll a are necessary to efficiently control the functions of the diadinoxanthin cycle.
Collapse
Affiliation(s)
- Kohei Kagatani
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Shinichi Takaichi
- Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
3
|
Nguyen HTT, Pritchard DW, Desmond MJ, Hepburn CD. Coralline photosynthetic physiology across a steep light gradient. PHOTOSYNTHESIS RESEARCH 2022; 153:43-57. [PMID: 35092556 DOI: 10.1007/s11120-022-00899-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Coralline algae (CA) are globally distributed and fulfil many important roles within coastal ecosystems. In this study, photosynthetically active radiation (PAR) measured for 616 days at 2 and 10 m in a temperate subtidal kelp forest in southern New Zealand provided context to photosynthesis vs. irradiance relationships for, and pigment concentrations of, an articulated coralline alga, Arthrocardia sp. and a crustose coralline species assemblage within the Hapalidiales order. The maximum photosynthetic rate Pmax of the Arthrocardia sp. (20.38 ± 2.38 µmol O2. gDW-1 h-1) was significantly higher than the Pmax of crustose coralline spp. (3.72 ± 0.74 µmol O2. gDW-1 h-1) at the same 2 m stratum. Pigment concentration of Arthrocardia sp. was significantly higher than that of crustose coralline spp. at the same depth, while pigment concentration of crustose coralline spp. at 2 and 10 m were not significantly affected by depth. The photosynthetic characteristics of these coralline algae represent a shade acclimated organism with low saturation irradiance (all Ek < 100 µmol photons m-2 s-1). Despite sevenfold difference in average daily dose between 2 and 10 m there was no significant effect of depth on the photosynthetic performance of crustose coralline algae measured. The lack of evidence for acclimation to low light could be because periods of clear water provide enough light to maintain photosynthesis, lower energetic requirements of species found at depth or constraints on the synthesis of photosynthetic pigments at greater depth.
Collapse
Affiliation(s)
- Hang T T Nguyen
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
- University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam.
| | - Daniel W Pritchard
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Coastal People Southern Skies, Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Te Ao Tūroa, Te Rūnanga O Ngāi Tahu, PO Box 799, Dunedin, 9054, New Zealand
| | - Matthew J Desmond
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Coastal People Southern Skies, Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Christopher D Hepburn
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Coastal People Southern Skies, Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
4
|
Castro-Varela PA, Celis-Plá PSM, Abdala-Díaz R, Figueroa FL. Photobiological Effects on Biochemical Composition in Porphyridium cruentum (Rhodophyta) with a Biotechnological Application. Photochem Photobiol 2021; 97:1032-1042. [PMID: 33829505 DOI: 10.1111/php.13426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
This study describes the relation of photosynthetic capacity, growth and biochemical compounds in the microalgae Porphyridium cruentum under saturated irradiance (200 μmol m-2 s-1 ) by white light (WL) and low-pressure sodium vapor lamps (SOX lamps-control) and supplemented by fluorescent lamps (FLs) with different light qualities (blue: λmax = 440 nm; green: λmax = 560 nm; and red: λmax = 660 nm). The maximum photosynthetic efficiency (Fv / Fm ) showed a positive correlation with the light quality by saturating light SOX in mixture with stimulating blue light than the white light (WL) at the harvest day (10 days). The production, that is maximal electron transport rate (ETRmax ), and energy dissipation, that is maximal nonphotochemical quenching (NPQmax ), had the same pattern throughout the time (3-6 days) being the values higher under white light (WL) compared with SOX and SOX plus supplemented different light qualities. Total protein levels increased significantly in the presence of SOX light, while phycoerythrin (B-PE) showed significant differences under SOX+ blue light. Arachidonic acid (ARA) was higher under SOX and SOX plus supplemented different light qualities than that under WL, whereas eicosapentaenoic acid (EPA) was the reverse. The high photomorphogenic potential by SOX light shows promising application for microalgal biotechnology.
Collapse
Affiliation(s)
- Pablo A Castro-Varela
- Department of Ecology and Geology, Faculty of Sciences, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Málaga, Spain.,Department of Chemical Engineering, University of La Frontera, Temuco, Chile
| | - Paula S M Celis-Plá
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Traslaviña, Viña del Mar, Chile.,HUB-AMBIENTAL UPLA, Vicerrectoría de Investigación Postgrado e Innovación, University of Playa Ancha, Valparaíso, Chile
| | - Roberto Abdala-Díaz
- Department of Ecology and Geology, Faculty of Sciences, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Málaga, Spain
| | - Félix L Figueroa
- Department of Ecology and Geology, Faculty of Sciences, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Málaga, Spain
| |
Collapse
|
5
|
Tan X, Zhang D, Duan Z, Parajuli K, Hu J. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:344-352. [PMID: 31788731 DOI: 10.1007/s11356-019-06650-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
In lakes, suspended inorganic particles and dissolved substance are able to absorb or scatter different light wavelengths, leading to the changes of underwater light spectra which are highly related to the water quality. In turn, such changes could form environmental filtering for phytoplankton community to select particular algal populations via intensive competition for light resources. As an example, eutrophic lakes where underwater light spectra changed dramatically have a result of cyanobacterial blooms. In this study, in order to test the effect of light spectrum on growth and competition of green algae and cyanobacteria, Chlorella pyrenoidosa (a common green alga) and Microcystis aeruginosa (a bloom-forming cyanobacterium) grew and competed under three light colors: white (400-700 nm), red (620-700 nm), and blue (410-490 nm) light. Mono- and co-cultured systems were designed and population dynamics of the two species were monitored. The Lotka-Volterra model was used to quantify interspecific competition. Moreover, their photosynthetic activities were measured in mono-cultures. Results showed that in mono-cultures, red light was more favorable for M. aeruginosa, while blue light promoted the growth of C. pyrenoidosa. In co-cultures, M. aeruginosa won in red light and white light, while C. pyrenoidosa dominated under blue light. Light color mainly affected the absorption flux of reaction center (ABS/RC) in photosynthetic system II (PSII) and its potential photosynthetic capacity (Fv/Fm). Fv/Fm of M. aeruginosa in red light (or C. pyrenoidosa in blue light) was significantly enhanced. This study revealed that light color showed a significant influence on interspecific competition between green algae and cyanobacteria, which offers new insights into the dominance establishment and bloom formation of Microcystis.
Collapse
Affiliation(s)
- Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Danfeng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Keshab Parajuli
- School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianyong Hu
- Institute of Water Resources and Ocean Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| |
Collapse
|
6
|
Janchot K, Rauytanapanit M, Honda M, Hibino T, Sirisattha S, Praneenararat T, Kageyama H, Waditee‐Sirisattha R. Effects of Potassium Chloride‐Induced Stress on the Carotenoids Canthaxanthin, Astaxanthin, and Lipid Accumulations in the Green Chlorococcal Microalga StrainTISTR9500. J Eukaryot Microbiol 2019; 66:778-787. [DOI: 10.1111/jeu.12726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kantima Janchot
- Department of Microbiology Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Monrawat Rauytanapanit
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Department of Chemistry Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Masaki Honda
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
| | - Takashi Hibino
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
- Graduate School of Environmental and Human Sciences Meijo University Nagoya 468‐8502 Japan
| | - Sophon Sirisattha
- Thailand Institute of Scientific and Technological Research (TISTR) Khlong Luang Pathum Thani 12120 Thailand
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Department of Chemistry Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Hakuto Kageyama
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
- Graduate School of Environmental and Human Sciences Meijo University Nagoya 468‐8502 Japan
| | - Rungaroon Waditee‐Sirisattha
- Department of Microbiology Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
7
|
Khoroshyy P, Bína D, Gardian Z, Litvín R, Alster J, Pšenčík J. Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. PHOTOSYNTHESIS RESEARCH 2018; 135:213-225. [PMID: 28669083 DOI: 10.1007/s11120-017-0416-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
Collapse
Affiliation(s)
- Petro Khoroshyy
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - David Bína
- Biological Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Zdenko Gardian
- Biological Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Radek Litvín
- Biological Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Jan Alster
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic.
| |
Collapse
|
8
|
Neale PJ, Thomas BC. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events. ASTROBIOLOGY 2016; 16:245-258. [PMID: 27027533 DOI: 10.1089/ast.2015.1360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
Collapse
Affiliation(s)
- Patrick J Neale
- 1 Smithsonian Environmental Research Center , Edgewater, Maryland
| | - Brian C Thomas
- 2 Department of Physics and Astronomy, Washburn University , Topeka, Kansas
| |
Collapse
|
9
|
Stadnichuk IN, Tropin IV. Antenna replacement in the evolutionary origin of chloroplasts. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Sobiechowska-Sasim M, Stoń-Egiert J, Kosakowska A. Quantitative analysis of extracted phycobilin pigments in cyanobacteria-an assessment of spectrophotometric and spectrofluorometric methods. JOURNAL OF APPLIED PHYCOLOGY 2014; 26:2065-2074. [PMID: 25346572 PMCID: PMC4200375 DOI: 10.1007/s10811-014-0244-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 05/22/2023]
Abstract
Phycobilins are an important group of pigments that through complementary chromatic adaptation optimize the light-harvesting process in phytoplankton cells, exhibiting great potential as cyanobacteria species biomarkers. In their extracted form, concentrations of these water-soluble molecules are not easily determined using the chromatographic methods well suited to solvent-soluble pigments. Insights regarding the quantitative spectroscopic analysis of extracted phycobilins also remain limited. Here, we present an in-depth study of two methods that utilize the spectral properties of phycobilins in aqueous extracts. The technical work was carried out using high-purity standards of phycocyanin, phycoerythrin, and allophycocyanin. Calibration parameters for the spectrofluorometer and spectrophotometer were established. This analysis indicated the possibility of detecting pigments in concentrations ranging from 0.001 to 10 μg cm-3. Fluorescence data revealed a reproducibility of 95 %. The differences in detection limits between the two methods enable the presence of phycobilins to be investigated and their amounts to be monitored from oligotrophic to eutrophic aquatic environments.
Collapse
Affiliation(s)
- Monika Sobiechowska-Sasim
- Institute of Oceanology, Polish Academy of Sciences, P.O. box 148, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Joanna Stoń-Egiert
- Institute of Oceanology, Polish Academy of Sciences, P.O. box 148, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Alicja Kosakowska
- Institute of Oceanology, Polish Academy of Sciences, P.O. box 148, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
11
|
Subramanian S, Barry AN, Pieris S, Sayre RT. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:150. [PMID: 24139286 PMCID: PMC4015678 DOI: 10.1186/1754-6834-6-150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/12/2013] [Indexed: 05/03/2023]
Abstract
Due to the growing need to provide alternatives to fossil fuels as efficiently, economically, and sustainably as possible there has been growing interest in improved biofuel production systems. Biofuels produced from microalgae are a particularly attractive option since microalgae have production potentials that exceed the best terrestrial crops by 2 to 10-fold. In addition, autotrophically grown microalgae can capture CO2 from point sources reducing direct atmospheric greenhouse gas emissions. The enhanced biomass production potential of algae is attributed in part to the fact that every cell is photosynthetic. Regardless, overall biological energy capture, conversion, and storage in microalgae are inefficient with less than 8% conversion of solar into chemical energy achieved. In this review, we examine the thermodynamic and kinetic constraints associated with the autotrophic conversion of inorganic carbon into storage carbohydrate and oil, the dominant energy storage products in Chlorophytic microalgae. We discuss how thermodynamic restrictions including the loss of fixed carbon during acetyl CoA synthesis reduce the efficiency of carbon accumulation in lipids. In addition, kinetic limitations, such as the coupling of proton to electron transfer during plastoquinone reduction and oxidation and the slow rates of CO2 fixation by Rubisco reduce photosynthetic efficiency. In some cases, these kinetic limitations have been overcome by massive increases in the numbers of effective catalytic sites, e.g. the high Rubisco levels (mM) in chloroplasts. But in other cases, including the slow rate of plastoquinol oxidation, there has been no compensatory increase in the abundance of catalytically limiting protein complexes. Significantly, we show that the energetic requirements for producing oil and starch relative to the recoverable energy stored in these molecules are very similar on a per carbon basis. Presently, the overall rates of starch and lipid synthesis in microalgae are very poorly characterized. Increased understanding of the kinetic constraints of lipid and starch synthesis, accumulation and turnover would facilitate the design of improved biomass production systems.
Collapse
Affiliation(s)
| | - Amanda N Barry
- Bioscience Division, Los Alamos National Lab, M888, Los Alamos, NM 87545, USA
| | - Shayani Pieris
- Natural Sciences Division, Missouri Baptist University, One College Park Drive, St. Louis, MO 63141, USA
| | - Richard T Sayre
- New Mexico Consortium, 100 Entrada Rd., Los Alamos, NM 87544, USA
- Bioscience Division, Los Alamos National Lab, M888, Los Alamos, NM 87545, USA
| |
Collapse
|
12
|
Esteban R, Becerril JM, García-Plazaola JI. Lutein epoxide cycle, more than just a forest tale. PLANT SIGNALING & BEHAVIOR 2009; 4:342-4. [PMID: 19794858 PMCID: PMC2664502 DOI: 10.4161/psb.4.4.8197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 05/22/2023]
Abstract
Two xanthophyll cycles have been described in higher plants: the ubiquitous violaxanthin (V) cycle and the taxonomically restricted lutein epoxide (Lx) cycle. Both involve the light induced de-epoxidation of an epoxidated xanthophyll (V or Lx) and the epoxidation back in the dark. Evolutionary trends and function of the Lx cycle are still not clear. Up to nowadays, significant amounts of Lx have been found in several unrelated taxa, but it is a character almost exclusive from woody plants (except in the case of the parasitic plant Cuscuta reflexa ). We have found an exception to this pattern in Cucumis sativus L., which showed high concentrations of Lx. Since Lx cycle was operative in leaves and cotyledons of this species and Lx concentration were much higher in cotyledons than in leaves, we speculate a role for the early stages of development. To date, this species is the first herbaceous non-parasitic species with operative Lx cycle. Since this species can be much more easily and rapidly grown and investigated than woody plants, these data can open new horizons and new lines of investigation for Lx cycle.
Collapse
Affiliation(s)
- Raquel Esteban
- Department of Plant Biology, University of Basque Country, Bilbao, Spain.
| | | | | |
Collapse
|
13
|
Esteban R, Olano JM, Castresana J, Fernández-Marín B, Hernández A, Becerril JM, García-Plazaola JI. Distribution and evolutionary trends of photoprotective isoprenoids (xanthophylls and tocopherols) within the plant kingdom. PHYSIOLOGIA PLANTARUM 2009; 135:379-89. [PMID: 19210752 DOI: 10.1111/j.1399-3054.2008.01196.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The earliest land photosynthesis would have increased the risk of photo-oxidations and the demand of anti-oxidative protection. In this work, we aimed to determine the evolutionary trends in photoprotection across a wide representation of the plant kingdom and to verify whether the non-ubiquitous lutein-epoxide (Lx) cycle is a polyphyletic or an ancient character. Carotenoids and alpha-tocopherol (alpha-toc) were analysed by HPLC in 266 species. Phylogenetic analyses of the presence of photoprotective compounds and zeaxanthin-epoxidase (ZE) sequences were performed. Violaxanthin-cycle pigments (VAZ) and alpha-toc were taxonomically ubiquitous. Ancient groups showed higher contents of VAZ than vascular plants, while alpha-toc showed the opposite pattern. Lutein-epoxide was present in 45% of the species. It showed a remarkable variation across groups but with a clear increasing trend from algae to basal angiosperms. Lutein-epoxide was also related to woody trait and leaf longevity. No correlation between the presence of Lx and recurrent mutations in ZE sequences, including the duplications, was found. Thus, there is an evolutionary trend to increase the content of alpha-toc and to decrease the total amount of VAZ pigments. Absence of Lx in algae discards an ancestral origin. Present results are also inconsistent with a polyphyletic origin of Lx in angiosperms.
Collapse
Affiliation(s)
- Raquel Esteban
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Bilbao, Spain.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wagner H, Jakob T, Wilhelm C. Balancing the energy flow from captured light to biomass under fluctuating light conditions. THE NEW PHYTOLOGIST 2006; 169:95-108. [PMID: 16390422 DOI: 10.1111/j.1469-8137.2005.01550.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.
Collapse
Affiliation(s)
- H Wagner
- Biology I, Plant Physiology, University Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
15
|
Chen M, Bibby TS, Nield J, Larkum A, Barber J. Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:367-74. [PMID: 15975547 DOI: 10.1016/j.bbabio.2005.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/10/2005] [Accepted: 05/16/2005] [Indexed: 11/26/2022]
Abstract
The prochlorophyte-like cyanobacterium Acaryochloris marina contains two pcb genes, pcbA and pcbC, which encode chlorophyll (Chl) d-binding antenna proteins PcbA and PcbC, respectively. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR), it is shown that when Acaryochloris cells are grown in an iron-deficient medium, the transcription of the pcbC gene is up-regulated compared to that of pcbA. Biochemical and immunological analyses indicated that under the same iron-deficient conditions, the level of Photosystem I (PSI) decreased compared with that of Photosystem II (PSII). Electron microscopy revealed that concomitant with these changes was the formation of Pcb-PSI supercomplexes which, in their largest form, were composed of 18 Pcb subunits forming a ring around the trimeric PSI reaction centre core. Mass spectrometry indicated that the PcbC protein is the main constituent of this outer PSI antenna system. It is therefore concluded that in Acaryochloris, the PcbC protein forms an antenna for PSI when iron levels become limiting and in this way compensates for the drop in the level of PSI relative to PSII which occurs under these conditions.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
16
|
Jakob T, Schreiber U, Kirchesch V, Langner U, Wilhelm C. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. PHOTOSYNTHESIS RESEARCH 2005; 83:343-61. [PMID: 16143924 DOI: 10.1007/s11120-005-1329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/27/2005] [Indexed: 05/04/2023]
Abstract
The performance and methodological limits of the Phyto-PAM chlorophyll fluorometer were investigated with laboratory grown algae cultures and natural phytoplankton from the rivers Saar and Saale. The Phyto-PAM is a 4-wavelength chlorophyll fluorometer with the functional combination of chlorophyll (Chl) estimation and assessment of photosynthetic activity, both differentiated into the main algal groups. The reliability of fluorescence-based Chl estimation strongly depends on the group specific calibration of the instrument and the resulting chlorophyll/fluorescence (Chl/F) ratios in reference algal cultures. A very high reliability of the Chl estimation was obtained in the case of constant Chl/F-ratios. Algae grown at different light intensities showed marked differences in Chl/F-ratios, reflecting differences in pigment composition and Chl a specific absorption (a*). When the Phyto-PAM was calibrated with laboratory grown diatoms, the Chl a in river grown diatoms was underestimated, due a lower content of accessory pigments and stronger pigment packaging. While this aspect presently limits the application of PAM fluorometry in limnology, this limitation may be overcome by future technical progress in the detection of dynamic changes in Chl/F-ratio via fluorescence-based measurements of the functional PS II absorption cross-section. Practically identical Chl/F-ratios were found for the diatom-dominated waters of the rivers Saar and Saale, suggesting that the same instrument calibration parameters may be applied for hydrographically similar surface waters. For this particular case, despite of the present methodological limitations, the potential of PAM fluorometry in limnology could be demonstrated. Light response curves were measured to estimate primary production with a spectrally resolved model in daily courses at two sampling sites. Fluorescence based primary production was closely correlated with measured oxygen evolution rates until midday. In the afternoon, at the water surface the fluorescence approach gave higher rates than the measured oxygen evolution. Possible explanations for the observed differences are discussed.
Collapse
Affiliation(s)
- Torsten Jakob
- Biology I/Plant Physiology, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|