1
|
Vinyard DJ, Govindjee G. Bicarbonate is a key regulator but not a substrate for O 2 evolution in Photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 162:93-99. [PMID: 39037690 DOI: 10.1007/s11120-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.
Collapse
Affiliation(s)
- David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
3
|
Shevela D, Do HN, Fantuzzi A, Rutherford AW, Messinger J. Bicarbonate-Mediated CO 2 Formation on Both Sides of Photosystem II. Biochemistry 2020; 59:2442-2449. [PMID: 32574489 PMCID: PMC7467574 DOI: 10.1021/acs.biochem.0c00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Indexed: 01/25/2023]
Abstract
The effect of bicarbonate (HCO3-) on photosystem II (PSII) activity was discovered in the 1950s, but only recently have its molecular mechanisms begun to be clarified. Two chemical mechanisms have been proposed. One is for the electron-donor side, in which mobile HCO3- enhances and possibly regulates water oxidation by acting as proton acceptor, after which it dissociates into CO2 and H2O. The other is for the electron-acceptor side, in which (i) reduction of the QA quinone leads to the release of HCO3- from its binding site on the non-heme iron and (ii) the Em potential of the QA/QA•- couple increases when HCO3- dissociates. This suggested a protective/regulatory role of HCO3- as it is known that increasing the Em of QA decreases the extent of back-reaction-associated photodamage. Here we demonstrate, using plant thylakoids, that time-resolved membrane-inlet mass spectrometry together with 13C isotope labeling of HCO3- allows donor- and acceptor-side formation of CO2 by PSII to be demonstrated and distinguished, which opens the door for future studies of the importance of both mechanisms under in vivo conditions.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department
of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Hoang-Nguyen Do
- Department
of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Andrea Fantuzzi
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - A. William Rutherford
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Johannes Messinger
- Department
of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
- Molecular
Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
4
|
Fratamico A, Tocquin P, Franck F. The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis: further insight into the nature of the P-S-M fluctuation and its relationship with the "low-wave" phenomenon at steady-state. PHOTOSYNTHESIS RESEARCH 2016; 128:271-85. [PMID: 26980274 DOI: 10.1007/s11120-016-0241-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 05/27/2023]
Abstract
Chlorophyll fluorescence is an information-rich signal which provides an access to the management of light absorbed by PSII. A good example of this is the succession of fast fluorescence fluctuations during light-induced photosynthetic induction after dark-adaptation. During this period, the fluorescence trace exhibits several inflexion points: O-J-I-P-S-M-T. Whereas the OJIP part of this kinetics has been the subject of many studies, the processes that underly the PSMT transient are less understood. Here, we report an analysis of the PSMT phase in the green microalga Haematococcus pluvialis in terms of electron acceptors and light use by photochemistry, fluorescence and non-photochemical quenching (NPQ). We identify additional sub-phases between P and S delimited by an inflexion point, that we name Q, found in the second time scale. The P-Q phase expresses a transient photochemical quenching specifically due to alternative electron transport to oxygen. During the transition from Q to S, the NPQ increases and then relaxes during the S-M phase in about 1 min. It is suggested that this transient NPQ observed during induction is a high energy state quenching (qE) dependent on the alternative electron transport to molecular oxygen. We further show that this NPQ is of the same nature than the NPQ, known as the low-wave phenomenon, which is transiently observed after a saturating light pulse given at steady-state. In both cases, the NPQ is oxygen-dependent. This NPQ is observed at external pH 6.0, but not at pH 7.5, which seems correlated with faster saturation of the PQ pool at pH 6.0.
Collapse
Affiliation(s)
- Anthony Fratamico
- InBioS - Laboratory of Bioenergetics, University of Liège, Quartier Vallée 1, Sart-Tilman Campus, 4 Chemin de la Vallée, Liège, Belgium
- InBioS - Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1, Sart-Tilman Campus, 4 Chemin de la Vallée, Liège, Belgium
| | - Pierre Tocquin
- InBioS - Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1, Sart-Tilman Campus, 4 Chemin de la Vallée, Liège, Belgium
| | - Fabrice Franck
- InBioS - Laboratory of Bioenergetics, University of Liège, Quartier Vallée 1, Sart-Tilman Campus, 4 Chemin de la Vallée, Liège, Belgium.
| |
Collapse
|
5
|
Koroidov S, Shevela D, Shutova T, Samuelsson G, Messinger J. Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation. Proc Natl Acad Sci U S A 2014; 111:6299-304. [PMID: 24711433 PMCID: PMC4035973 DOI: 10.1073/pnas.1323277111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria, algae, and plants oxidize water to the O2 we breathe, and consume CO2 during the synthesis of biomass. Although these vital processes are functionally and structurally well separated in photosynthetic organisms, there is a long-debated role for CO2/ in water oxidation. Using membrane-inlet mass spectrometry we demonstrate that acts as a mobile proton acceptor that helps to transport the protons produced inside of photosystem II by water oxidation out into the chloroplast's lumen, resulting in a light-driven production of O2 and CO2. Depletion of from the media leads, in the absence of added buffers, to a reversible down-regulation of O2 production by about 20%. These findings add a previously unidentified component to the regulatory network of oxygenic photosynthesis and conclude the more than 50-y-long quest for the function of CO2/ in photosynthetic water oxidation.
Collapse
Affiliation(s)
| | | | - Tatiana Shutova
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Göran Samuelsson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
6
|
Shevela D, Nöring B, Koroidov S, Shutova T, Samuelsson G, Messinger J. Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon. PHOTOSYNTHESIS RESEARCH 2013; 117:401-12. [PMID: 23828399 DOI: 10.1007/s11120-013-9875-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/20/2013] [Indexed: 05/09/2023]
Abstract
Over 40 years ago, Joliot et al. (Photochem Photobiol 10:309-329, 1969) designed and employed an elegant and highly sensitive electrochemical technique capable of measuring O2 evolved by photosystem II (PSII) in response to trains of single turn-over light flashes. The measurement and analysis of flash-induced oxygen evolution patterns (FIOPs) has since proven to be a powerful method for probing the turnover efficiency of PSII. Stemler et al. (Proc Natl Acad Sci USA 71(12):4679-4683, 1974), in Govindjee's lab, were the first to study the effect of "bicarbonate" on FIOPs by adding the competitive inhibitor acetate. Here, we extend this earlier work by performing FIOPs experiments at various, strictly controlled inorganic carbon (Ci) levels without addition of any inhibitors. For this, we placed a Joliot-type bare platinum electrode inside a N2-filled glove-box (containing 10-20 ppm CO2) and reduced the Ci concentration simply by washing the samples in Ci-depleted media. FIOPs of spinach thylakoids were recorded either at 20-times reduced levels of Ci or at ambient Ci conditions (390 ppm CO2). Numerical analysis of the FIOPs within an extended Kok model reveals that under Ci-depleted conditions the miss probability is discernibly larger (by 2-3 %) than at ambient conditions, and that the addition of 5 mM HCO3 (-) to the Ci-depleted thylakoids largely restores the original miss parameter. Since a "mild" Ci-depletion procedure was employed, we discuss our data with respect to a possible function of free or weakly bound HCO3 (-) at the water-splitting side of PSII.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Department of Chemistry, Chemical Biological Centre, University of Umeå, 90187, Umeå, Sweden,
| | | | | | | | | | | |
Collapse
|
7
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|