1
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Hill MJ, Sarkar D. Polyurethane Microgel Based Microtissue: Interface-Guided Assembly and Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6167-6181. [PMID: 28564546 PMCID: PMC7214101 DOI: 10.1021/acs.langmuir.7b01493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Colloidal gels are three-dimensional networks of microgel particles and can be utilized to design microtissues where the differential adhesive interactions between the particles and cells, guided by their surface energetics, are engineered to spatially assemble the cellular and colloidal components into three-dimensional microtissues. In this work we utilized a colloidal interaction approach to design cell-polyurethane (PU) microgel bimodal microtissues using endothelial cells (ECs) as a normal cell model and a nonmalignant breast cancer cell line (MCF-7) as a cancer cell model. PU microgels were developed from a library of segmental polyurethanes with poly(ethylene glycol) soft segment and aliphatic diisocyanate/l-tyrosine based chain extender as hard segment to modulate the interactions between PU colloidal particles and cells. The surface energies of the microgel particles and cells were estimated using Zisman's critical surface tension and van Oss-Good-Chaudhury theory (vOGCT) from liquid contact angle analysis. Binary interaction potentials between colloidal PU particles and cells and the ternary interaction between colloidal PU particle, cell, and collagen I/Matrigel were calculated to explain the formation of microtissues and their spreading in extraneous biomatrix respectively by using classical and extended DLVO theory (XDLVO). Furthermore, rheological analysis and in silico simulations were used to analyze the assembly and spreading of the PU microgel based microtissues. In vitro experiments showed that ECs and MCF-7 displayed more differentiated (EC spreading/MCF-7 lumen formation) character when mixed with microgel particles that were stable in aqueous medium and more undifferentiated character (EC nonspreading/MCF-7 spreading) when mixed with microgel particles unstable in aqueous medium.
Collapse
Affiliation(s)
- Michael J. Hill
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanjan Sarkar
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Roncati L, Gatti AM, Capitani F, Bonacorsi G, Barbolini G, Maiorana A. A Novel Forensic Investigation Applied to Bone Remains Exhumed near to Quirra Interforce Firing Range. J Forensic Sci 2015; 61:858-861. [DOI: 10.1111/1556-4029.13016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/01/2015] [Accepted: 06/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Roncati
- Department of Diagnostic and Clinical Medicine and of Public Health; Section of Pathology; University of Modena and Reggio Emilia; Policlinico Hospital; I-41124 Modena (MO) Italy
| | - Antonietta M. Gatti
- Institute of Science and Technology for Ceramics; National Research Council; I-48018 Faenza (RA) Italy
- Nanodiagnostics srl; I-41057 San Vito di Spilamberto Modena (MO) Italy
| | - Federico Capitani
- Nanodiagnostics srl; I-41057 San Vito di Spilamberto Modena (MO) Italy
| | - Goretta Bonacorsi
- Department of Medical and Surgical Sciences; Section of Hematology; Policlinico Hospital; I-41124 Modena (MO) Italy
| | - Giuseppe Barbolini
- Department of Diagnostic and Clinical Medicine and of Public Health; Section of Pathology; University of Modena and Reggio Emilia; Policlinico Hospital; I-41124 Modena (MO) Italy
| | - Antonio Maiorana
- Department of Diagnostic and Clinical Medicine and of Public Health; Section of Pathology; University of Modena and Reggio Emilia; Policlinico Hospital; I-41124 Modena (MO) Italy
| |
Collapse
|