1
|
Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, Dessimoz C, Dolezal P, Fritz-Laylin LK, Gabaldón T, Hampl V, Kops GJPL, Leger MM, Lopez-Garcia P, McInerney JO, Moreira D, Muñoz-Gómez SA, Richter DJ, Ruiz-Trillo I, Santoro AE, Sebé-Pedrós A, Snel B, Stairs CW, Tromer EC, van Hooff JJE, Wickstead B, Williams TA, Roger AJ, Dacks JB, Wideman JG. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol 2024; 22:e3002917. [PMID: 39585925 PMCID: PMC11627563 DOI: 10.1371/journal.pbio.3002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.
Collapse
Affiliation(s)
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United States of America
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pavel Dolezal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Lillian K. Fritz-Laylin
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Geert J. P. L. Kops
- Hubrecht Institute-KNAW, Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Michelle M. Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - James O. McInerney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Arnau Sebé-Pedrós
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
2
|
Hoffman RA, MacAlpine HK, MacAlpine DM. Disruption of origin chromatin structure by helicase activation in the absence of DNA replication. Genes Dev 2021; 35:1339-1355. [PMID: 34556529 PMCID: PMC8494203 DOI: 10.1101/gad.348517.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Prior to initiation of DNA replication, the eukaryotic helicase, Mcm2-7, must be activated to unwind DNA at replication start sites in early S phase. To study helicase activation within origin chromatin, we constructed a conditional mutant of the polymerase α subunit Cdc17 (or Pol1) to prevent priming and block replication. Recovery of these cells at permissive conditions resulted in the generation of unreplicated gaps at origins, likely due to helicase activation prior to replication initiation. We used micrococcal nuclease (MNase)-based chromatin occupancy profiling under restrictive conditions to study chromatin dynamics associated with helicase activation. Helicase activation in the absence of DNA replication resulted in the disruption and disorganization of chromatin, which extends up to 1 kb from early, efficient replication origins. The CMG holohelicase complex also moves the same distance out from the origin, producing single-stranded DNA that activates the intra-S-phase checkpoint. Loss of the checkpoint did not regulate the progression and stalling of the CMG complex but rather resulted in the disruption of chromatin at both early and late origins. Finally, we found that the local sequence context regulates helicase progression in the absence of DNA replication, suggesting that the helicase is intrinsically less processive when uncoupled from replication.
Collapse
Affiliation(s)
- Rachel A Hoffman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
3
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
4
|
Ocaña-Pallarès E, Vergara Z, Desvoyes B, Tejada-Jimenez M, Romero-Jurado A, Galván A, Fernández E, Ruiz-Trillo I, Gutierrez C. Origin Recognition Complex (ORC) Evolution Is Influenced by Global Gene Duplication/Loss Patterns in Eukaryotic Genomes. Genome Biol Evol 2020; 12:3878-3889. [PMID: 31990293 PMCID: PMC7058166 DOI: 10.1093/gbe/evaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
The conservation of orthologs of most subunits of the origin recognition complex (ORC) has served to propose that the whole complex is common to all eukaryotes. However, various uncertainties have arisen concerning ORC subunit composition in a variety of lineages. Also, it is unclear whether the ancestral diversification of ORC in eukaryotes was accompanied by the neofunctionalization of some subunits, for example, role of ORC1 in centriole homeostasis. We have addressed these questions by reconstructing the distribution and evolutionary history of ORC1-5/CDC6 in a taxon-rich eukaryotic data set. First, we identified ORC subunits previously undetected in divergent lineages, which allowed us to propose a series of parsimonious scenarios for the origin of this multiprotein complex. Contrary to previous expectations, we found a global tendency in eukaryotes to increase or decrease the number of subunits as a consequence of genome duplications or streamlining, respectively. Interestingly, parasites show significantly lower number of subunits than free-living eukaryotes, especially those with the lowest genome size and gene content metrics. We also investigated the evolutionary origin of the ORC1 role in centriole homeostasis mediated by the PACT region in human cells. In particular, we tested the consequences of reducing ORC1 levels in the centriole-containing green alga Chlamydomonas reinhardtii. We found that the proportion of centrioles to flagella and nuclei was not dramatically affected. This, together with the PACT region not being significantly more conserved in centriole-bearing eukaryotes, supports the notion that this neofunctionalization of ORC1 would be a recent acquisition rather than an ancestral eukaryotic feature.
Collapse
Affiliation(s)
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Manuel Tejada-Jimenez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Ainoa Romero-Jurado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
5
|
Damasceno JD, Marques CA, Black J, Briggs E, McCulloch R. Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replication. Trends Genet 2020; 37:21-34. [PMID: 32993968 PMCID: PMC9213392 DOI: 10.1016/j.tig.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome’s content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read–write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read–write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes. Polycistronic transcription dominates and shapes kinetoplastid genomes, inevitably leading to clashes with DNA replication. By harnessing the resultant DNA damage for adaptation, kinetoplastids have huge potential for dynamic read–write genome variation. Major origins of DNA replication are confined to the boundaries of polycistronic transcription units in the Trypanosoma brucei and Leishmania genomes, putatively limiting DNA damage. Subtelomeres may lack this arrangement, generating read–write hotspots. In T. brucei, early replication of the highly transcribed subtelomeric variant surface glycoprotein (VSG) expression site may ensure replication-transcription clashes within this site to trigger DNA recombination, an event critical for antigenic variation. Leishmania genomes show extensive aneuploidy and copy number variation. Notably, DNA replication requires recombination factors and relies on post-S phase replication of subtelomeres. Evolution of compartmentalised DNA replication programmes underpin important aspects of genome biology in kinetoplastids, illustrating the consolidation of genome maintenance strategies to promote genome plasticity.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jennifer Black
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK; Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
6
|
LaBar T, Phoebe Hsieh YY, Fumasoni M, Murray AW. Evolutionary Repair Experiments as a Window to the Molecular Diversity of Life. Curr Biol 2020; 30:R565-R574. [PMID: 32428498 PMCID: PMC7295036 DOI: 10.1016/j.cub.2020.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Comparative genomics reveals an unexpected diversity in the molecular mechanisms underlying conserved cellular functions, such as DNA replication and cytokinesis. However, the genetic bases and evolutionary processes underlying this 'molecular diversity' remain to be explained. Here, we review a tool to generate alternative mechanisms for conserved cellular functions and test hypotheses concerning the generation of molecular diversity - evolutionary repair experiments, in which laboratory microbial populations adapt in response to a genetic perturbation. We summarize the insights gained from evolutionary repair experiments, the spectrum and dynamics of compensatory mutations, and the alternative molecular mechanisms used to repair perturbed cellular functions. We relate these experiments to the modifications of conserved functions that have occurred outside the laboratory. We end by proposing strategies to improve evolutionary repair experiments as a tool to explore the molecular diversity of life.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
8
|
Fumasoni M, Murray AW. The evolutionary plasticity of chromosome metabolism allows adaptation to constitutive DNA replication stress. eLife 2020; 9:e51963. [PMID: 32043971 PMCID: PMC7069727 DOI: 10.7554/elife.51963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Many biological features are conserved and thus considered to be resistant to evolutionary change. While rapid genetic adaptation following the removal of conserved genes has been observed, we often lack a mechanistic understanding of how adaptation happens. We used the budding yeast, Saccharomyces cerevisiae, to investigate the evolutionary plasticity of chromosome metabolism, a network of evolutionary conserved modules. We experimentally evolved cells constitutively experiencing DNA replication stress caused by the absence of Ctf4, a protein that coordinates the enzymatic activities at replication forks. Parallel populations adapted to replication stress, over 1000 generations, by acquiring multiple, concerted mutations. These mutations altered conserved features of two chromosome metabolism modules, DNA replication and sister chromatid cohesion, and inactivated a third, the DNA damage checkpoint. The selected mutations define a functionally reproducible evolutionary trajectory. We suggest that the evolutionary plasticity of chromosome metabolism has implications for genome evolution in natural populations and cancer.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
9
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
10
|
Xuan F, Huang M, Zhao E, Cui H. MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death Dis 2018; 9:1062. [PMID: 30333481 PMCID: PMC6193027 DOI: 10.1038/s41419-018-1084-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
MYC-induced nuclear antigen (MINA53) is a JmjC (jumonji C domain)-containing protein, which is highly expressed in many cancers including glioblastoma. We have revealed in our previous report that MINA53 is a poor prognostic indicator for glioblastoma patients, and knockdown of MINA53 could reduce glioblastoma malignancy. In this study, we found that MINA53 knockdown could decrease the DNA replication initiation in glioblastoma cells. Through further investigations, we revealed that MINA53 could regulate the expression of the CDC45-MCM-GINS (CMG) complex genes, which are vital for DNA replication initiation. Knockdown of MINA53 reduced the CMG genes expression and thus induced DNA replication stress and DNA damage. Furthermore, MINA53 knockdown diminished DNA damage response (DDR) by reducing the ATM/ATR-H2AX pathway activity and finally led glioblastoma cells to apoptosis and death. We further applied a genotoxic drug Doxorubicin and found that MINA53 deficiency sensitized glioblastoma cells to Doxorubicin. Our study reveals that MINA53 is involved in DNA replication initiation and DNA damage response, and provides support for MINA53 as a novel and potential therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
11
|
Marques CA, McCulloch R. Conservation and Variation in Strategies for DNA Replication of Kinetoplastid Nuclear Genomes. Curr Genomics 2018; 19:98-109. [PMID: 29491738 PMCID: PMC5814967 DOI: 10.2174/1389202918666170815144627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/19/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction: Understanding how the nuclear genome of kinetoplastid parasites is replicated received experimental stimulus from sequencing of the Leishmania major, Trypanosoma brucei and Trypanosoma cruzi genomes around 10 years ago. Gene annotations suggested key players in DNA replication initiation could not be found in these organisms, despite considerable conservation amongst characterised eukaryotes. Initial studies that indicated trypanosomatids might possess an archaeal-like Origin Recognition Complex (ORC), composed of only a single factor termed ORC1/CDC6, have been supplanted by the more recent identification of an ORC in T. brucei. However, the constituent subunits of T. brucei ORC are highly diverged relative to other eukaryotic ORCs and the activity of the complex appears subject to novel, positive regulation. The availability of whole genome sequences has also allowed the deployment of genome-wide strategies to map DNA replication dynamics, to date in T. brucei and Leishmania. ORC1/CDC6 binding and function in T. brucei displays pronounced overlap with the unconventional organisation of gene expression in the genome. Moreover, mapping of sites of replication initiation suggests pronounced differences in replication dynamics in Leishmania relative to T. brucei. Conclusion: Here we discuss what implications these emerging data may have for parasite and eukaryotic biology of DNA replication.
Collapse
Affiliation(s)
- Catarina A Marques
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, Dow Street, University of Dundee, Dundee, DD1 5EH, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
12
|
Ausiannikava D, Allers T. Diversity of DNA Replication in the Archaea. Genes (Basel) 2017; 8:genes8020056. [PMID: 28146124 PMCID: PMC5333045 DOI: 10.3390/genes8020056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
DNA replication is arguably the most fundamental biological process. On account of their shared evolutionary ancestry, the replication machinery found in archaea is similar to that found in eukaryotes. DNA replication is initiated at origins and is highly conserved in eukaryotes, but our limited understanding of archaea has uncovered a wide diversity of replication initiation mechanisms. Archaeal origins are sequence-based, as in bacteria, but are bound by initiator proteins that share homology with the eukaryotic origin recognition complex subunit Orc1 and helicase loader Cdc6). Unlike bacteria, archaea may have multiple origins per chromosome and multiple Orc1/Cdc6 initiator proteins. There is no consensus on how these archaeal origins are recognised—some are bound by a single Orc1/Cdc6 protein while others require a multi- Orc1/Cdc6 complex. Many archaeal genomes consist of multiple parts—the main chromosome plus several megaplasmids—and in polyploid species these parts are present in multiple copies. This poses a challenge to the regulation of DNA replication. However, one archaeal species (Haloferax volcanii) can survive without replication origins; instead, it uses homologous recombination as an alternative mechanism of initiation. This diversity in DNA replication initiation is all the more remarkable for having been discovered in only three groups of archaea where in vivo studies are possible.
Collapse
Affiliation(s)
- Darya Ausiannikava
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;.
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;.
| |
Collapse
|
13
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
14
|
Marques CA, Tiengwe C, Lemgruber L, Damasceno JD, Scott A, Paape D, Marcello L, McCulloch R. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation. Nucleic Acids Res 2016; 44:4763-84. [PMID: 26951375 PMCID: PMC4889932 DOI: 10.1093/nar/gkw147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 01/14/2023] Open
Abstract
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.
Collapse
Affiliation(s)
- Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jeziel D Damasceno
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Alan Scott
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Lucio Marcello
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
15
|
Traver S, Coulombe P, Peiffer I, Hutchins J, Kitzmann M, Latreille D, Méchali M. MCM9 Is Required for Mammalian DNA Mismatch Repair. Mol Cell 2015; 59:831-9. [DOI: 10.1016/j.molcel.2015.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/23/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
|
16
|
Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma 2015; 124:309-21. [PMID: 25575982 DOI: 10.1007/s00412-014-0500-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed.
Collapse
Affiliation(s)
- Philip Zegerman
- Department of Biochemistry, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK,
| |
Collapse
|
17
|
Wang RH, Lahusen TJ, Chen Q, Xu X, Jenkins LMM, Leo E, Fu H, Aladjem M, Pommier Y, Appella E, Deng CX. SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. Int J Biol Sci 2014; 10:1193-202. [PMID: 25516717 PMCID: PMC4261203 DOI: 10.7150/ijbs.11066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022] Open
Abstract
SIRT1, the mammalian homolog of yeast Sir2, is a founding member of a family of 7 protein and histone deacetylases that are involved in numerous biological functions. Previous studies revealed that SIRT1 deficiency results in genome instability, which eventually leads to cancer formation, yet the underlying mechanism is unclear. To investigate this, we conducted a proteomics study and found that SIRT1 interacted with many proteins involved in replication fork protection and origin firing. We demonstrated that loss of SIRT1 resulted in increased replication origin firing, asymmetric fork progression, defective intra-S-phase checkpoint, and chromosome damage. Mechanistically, SIRT1 deacetylates and affects the activity of TopBP1, which plays an essential role in DNA replication fork protection and replication origin firing. Our study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylated form of TopBP1 lost this function. Thus, SIRT1 acts upstream of TopBP1 and plays an essential role in maintaining genome stability by modulating DNA replication fork initiation and the intra-S-phase cell cycle checkpoint.
Collapse
Affiliation(s)
- Rui-Hong Wang
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA; ; 4. Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China
| | - Tyler J Lahusen
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Qiang Chen
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Xiaoling Xu
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA; ; 4. Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China
| | - Lisa M Miller Jenkins
- 2. Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Elisabetta Leo
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Haiqing Fu
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Mirit Aladjem
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Yves Pommier
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Ettore Appella
- 2. Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Chu-Xia Deng
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA; ; 4. Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China
| |
Collapse
|
18
|
González Besteiro MA, Gottifredi V. The fork and the kinase: a DNA replication tale from a CHK1 perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:168-80. [PMID: 25795119 DOI: 10.1016/j.mrrev.2014.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022]
Abstract
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
19
|
The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549719. [PMID: 25243149 PMCID: PMC4163376 DOI: 10.1155/2014/549719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
Collapse
|
20
|
Raymann K, Forterre P, Brochier-Armanet C, Gribaldo S. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea. Genome Biol Evol 2014; 6:192-212. [PMID: 24398374 PMCID: PMC3914693 DOI: 10.1093/gbe/evu004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The archaeal machinery responsible for DNA replication is largely homologous to that of eukaryotes and is clearly distinct from its bacterial counterpart. Moreover, it shows high diversity in the various archaeal lineages, including different sets of components, heterogeneous taxonomic distribution, and a large number of additional copies that are sometimes highly divergent. This has made the evolutionary history of this cellular system particularly challenging to dissect. Here, we have carried out an exhaustive identification of homologs of all major replication components in over 140 complete archaeal genomes. Phylogenomic analysis allowed assigning them to either a conserved and probably essential core of replication components that were mainly vertically inherited, or to a variable and highly divergent shell of extra copies that have likely arisen from integrative elements. This suggests that replication proteins are frequently exchanged between extrachromosomal elements and cellular genomes. Our study allowed clarifying the history that shaped this key cellular process (ancestral components, horizontal gene transfers, and gene losses), providing important evolutionary and functional information. Finally, our precise identification of core components permitted to show that the phylogenetic signal carried by DNA replication is highly consistent with that harbored by two other key informational machineries (translation and transcription), strengthening the existence of a robust organismal tree for the Archaea.
Collapse
Affiliation(s)
- Kasie Raymann
- Département de Microbiologie, Institut Pasteur, Unité Biologie Moléculaire du Gene chez les Extrêmophiles, Paris, France
| | | | | | | |
Collapse
|
21
|
Janbon G, Ormerod KL, Paulet D, Byrnes EJ, Yadav V, Chatterjee G, Mullapudi N, Hon CC, Billmyre RB, Brunel F, Bahn YS, Chen W, Chen Y, Chow EWL, Coppée JY, Floyd-Averette A, Gaillardin C, Gerik KJ, Goldberg J, Gonzalez-Hilarion S, Gujja S, Hamlin JL, Hsueh YP, Ianiri G, Jones S, Kodira CD, Kozubowski L, Lam W, Marra M, Mesner LD, Mieczkowski PA, Moyrand F, Nielsen K, Proux C, Rossignol T, Schein JE, Sun S, Wollschlaeger C, Wood IA, Zeng Q, Neuvéglise C, Newlon CS, Perfect JR, Lodge JK, Idnurm A, Stajich JE, Kronstad JW, Sanyal K, Heitman J, Fraser JA, Cuomo CA, Dietrich FS. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 2014; 10:e1004261. [PMID: 24743168 PMCID: PMC3990503 DOI: 10.1371/journal.pgen.1004261] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/07/2014] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence. Cryptococcus neoformans var. grubii is a major human pathogen responsible for deadly meningoencephalitis in immunocompromised patients. Here, we report the sequencing and annotation of its genome. Evidence for extensive intron splicing, antisense transcription, non-coding RNAs, and alternative polyadenylation indicates the potential for highly intricate regulation of gene expression in this opportunistic pathogen. In addition, detailed molecular, genetic, and genomic studies were performed to characterize structural features of the genome, including centromeres and origins of replication. Finally, the phenotypic and genome re-sequencing analysis of a collection of isolates of the reference H99 strain resulting from laboratory passage revealed that microevolutionary processes during in vitro culturing of pathogenic fungi can impact virulence.
Collapse
Affiliation(s)
- Guilhem Janbon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail: (GJ); (JH); (CAC); (FSD)
| | - Kate L. Ormerod
- University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland, Australia
| | - Damien Paulet
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | - Edmond J. Byrnes
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Jawaharlal Nehru Centre for Advanced Scientific Research, Molecular Biology and Genetics Unit, Bangalore, India
| | - Gautam Chatterjee
- Jawaharlal Nehru Centre for Advanced Scientific Research, Molecular Biology and Genetics Unit, Bangalore, India
| | | | - Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Département Biologie Cellulaire et Infection, Paris, France
| | - R. Blake Billmyre
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | | | - Yong-Sun Bahn
- Yonsei University, Center for Fungal Pathogenesis, Department of Biotechnology, Seoul, Republic of Korea
| | - Weidong Chen
- Rutgers New Jersey Medical School, Department of Microbiology and Molecular Genetics, Newark, New Jersey, United States of America
| | - Yuan Chen
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | - Eve W. L. Chow
- University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland, Australia
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | - Anna Floyd-Averette
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | | | - Kimberly J. Gerik
- Washington University School of Medicine, Department of Molecular Microbiology, St. Louis, Missouri, United States of America
| | - Jonathan Goldberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sara Gonzalez-Hilarion
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joyce L. Hamlin
- University of Virginia, Department of Biochemistry and Molecular Genetics, Charlottesville, Virginia, United States of America
| | - Yen-Ping Hsueh
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
- California Institute of Technology, Division of Biology, Pasadena, California, United States of America
| | - Giuseppe Ianiri
- University of Missouri-Kansas City, School of Biological Sciences, Division of Cell Biology and Biophysics, Kansas City, Missouri, United States of America
| | - Steven Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Chinnappa D. Kodira
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lukasz Kozubowski
- Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina, United States of America
| | - Woei Lam
- Washington University School of Medicine, Department of Molecular Microbiology, St. Louis, Missouri, United States of America
| | - Marco Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Larry D. Mesner
- University of Virginia, Department of Biochemistry and Molecular Genetics, Charlottesville, Virginia, United States of America
| | - Piotr A. Mieczkowski
- University of North Carolina, Department of Genetics, Chapel Hill, North Carolina, United States of America
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Kirsten Nielsen
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - Caroline Proux
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | | | - Jacqueline E. Schein
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sheng Sun
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | - Carolin Wollschlaeger
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Ian A. Wood
- University of Queensland, School of Mathematics and Physics, Brisbane, Queensland, Australia
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Carol S. Newlon
- Rutgers New Jersey Medical School, Department of Microbiology and Molecular Genetics, Newark, New Jersey, United States of America
| | - John R. Perfect
- Duke University Medical Center, Duke Department of Medicine and Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | - Jennifer K. Lodge
- Washington University School of Medicine, Department of Molecular Microbiology, St. Louis, Missouri, United States of America
| | - Alexander Idnurm
- University of Missouri-Kansas City, School of Biological Sciences, Division of Cell Biology and Biophysics, Kansas City, Missouri, United States of America
| | - Jason E. Stajich
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
- University of California, Department of Plant Pathology & Microbiology, Riverside, California, United States of America
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, Vancouver, British Columbia, Canada
| | - Kaustuv Sanyal
- Jawaharlal Nehru Centre for Advanced Scientific Research, Molecular Biology and Genetics Unit, Bangalore, India
| | - Joseph Heitman
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
- * E-mail: (GJ); (JH); (CAC); (FSD)
| | - James A. Fraser
- University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland, Australia
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (GJ); (JH); (CAC); (FSD)
| | - Fred S. Dietrich
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
- * E-mail: (GJ); (JH); (CAC); (FSD)
| |
Collapse
|
22
|
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| | - Sy Redding
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| | - Eric C. Greene
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| |
Collapse
|
23
|
Jeffries EP, Denq WI, Bartko JC, Trakselis MA. Identification, quantification, and evolutionary analysis of a novel isoform of MCM9. Gene 2013; 519:41-9. [DOI: 10.1016/j.gene.2013.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/29/2022]
|
24
|
Structure and evolutionary origins of the CMG complex. Chromosoma 2013; 122:47-53. [PMID: 23412083 DOI: 10.1007/s00412-013-0397-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 01/20/2023]
Abstract
The CMG (Cdc45-MCM-GINS) complex is the eukaryotic replicative helicase, the enzyme that unwinds double-stranded DNA at replication forks. All three components of the CMG complex are essential for its function, but only in the case of MCM, the molecular motor that harnesses the energy of ATP hydrolysis to catalyse strand separation, is that function clear. Here, we review current knowledge of the three-dimensional structure of the CMG complex and its components and highlight recent advances in our understanding of its evolutionary origins.
Collapse
|