1
|
Gong P, Luo Y, Huang F, Chen Y, Zhao C, Wu X, Li K, Yang X, Cheng F, Xiang X, Wu C, Pan G. Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice. PLANT MOLECULAR BIOLOGY 2019; 100:133-149. [PMID: 30843130 DOI: 10.1007/s11103-019-00848-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
The OsPLS2 locus was isolated and cloned by map-based cloning that encodes a Upf1-like helicase. Disruption of OsPLS2 accelerated light-dependent leaf senescence in the rice mutant of ospls2. Leaf senescence is a very complex physiological process controlled by both genetic and environmental factors, however its underlying molecular mechanisms remain elusive. In this study, we report a novel Oryza sativa premature leaf senescence mutant (ospls2). Through map-based cloning, a G-to-A substitution was determined at the 1st nucleotide of the 13th intron in the OsPLS2 gene that encodes a Upf1-like helicase. This mutation prompts aberrant splicing of OsPLS2 messenger and consequent disruption of its full-length protein translation, suggesting a negative role of OsPLS2 in regulating leaf senescence. Wild-type rice accordingly displayed a progressive drop of OsPSL2 protein levels with age-dependent leaf senescence. Shading and light filtration studies showed that the ospls2 phenotype, which was characteristic of photo-oxidative stress and reactive oxygen species (ROS) accumulation, was an effect of irritation by light. When continuously exposed to far-red light, exogenous H2O2 and/or abscisic acid (ABA), the ospls2 mutant sustained hypersensitive leaf senescence. In consistence, light and ROS signal pathways in ospls2 were activated by down-regulation of phytochrome genes, and up-regulation of PHYTOCHROME-INTERACTING FACTORS (PIFs) and WRKY genes, all promoting leaf senescence. Together, these data indicated that OsPLS2 played an essential role in leaf senescence and its disruption triggered light-dependent leaf senescence in rice.
Collapse
Affiliation(s)
- Pan Gong
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Yanmin Luo
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yaodong Chen
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Chaoyue Zhao
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xin Wu
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Kunyu Li
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xi Yang
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Fangmin Cheng
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xun Xiang
- Experimental Teaching Center, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Chunyan Wu
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Gang Pan
- Department of Agronomy, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
2
|
Semwal VK, Khanna-Chopra R. Reproductive sink enhanced drought induced senescence in wheat fertile line is associated with loss of antioxidant competence compared to its CMS line. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:591-604. [PMID: 30042615 PMCID: PMC6041228 DOI: 10.1007/s12298-018-0549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 05/19/2023]
Abstract
Reproductive sinks regulate monocarpic senescence in wheat as desinking delayed flag leaf senescence under irrigated condition. In this study, wheat cv. HW 2041 and its isonuclear male sterile line (CMS) were subjected to post-anthesis water deficit stress to understand the association between sink strength, senescence and drought response in relation to oxidative stress and antioxidant defense at cellular and sub-cellular level. CMS plants maintained better water relations and exhibited delayed onset and progression of flag leaf senescence in terms of green leaf area, chlorophyll and protein content than fertile plants under water deficit stress (WDS). Delayed senescence in CMS plants under water deficit stress was associated with less reactive oxygen species generation, lower damage to membranes and better antioxidant defense both in terms of antioxidant enzyme activities and metabolite content compared to fertile plants. Expression of some senescence associated genes (SAGs) such as WRKY transcription factor (WRKY53), glutamine synthetase1 (GS1), wheat cysteine protease (WCP2) and wheat serine protease (WSP) was lower while catalse 2 (CAT2) transcript levels were higher in the CMS plants compared to HW2041 during senescence under water deficit stress. Antioxidant defense in chloroplasts was better in CMS line under water deficit stress compared to HW2041. This is the first report showing that reproductive sink enhanced drought induced senescence in flag leaf of wheat fertile line is associated with higher oxidative stress and damage and loss of antioxidant competence compared to its sterile line under water deficit stress. Higher expression of some SAGs and decline in superoxide dismutase and ascorbate peroxidase activity in the chloroplasts also contributed to the accelerated senescence in fertile line compared to its CMS line under WDS.
Collapse
Affiliation(s)
- Vimal Kumar Semwal
- Stress Physiology Lab, Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110012 India
- Present Address: Africa Rice Center (AfricaRice), C/O IITA, PMB 5320, Oyo Road, Ibadan, Nigeria
| | - Renu Khanna-Chopra
- Stress Physiology Lab, Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
3
|
Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods Mol Biol 2017; 1679:83-95. [PMID: 28913795 DOI: 10.1007/978-1-4939-7337-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salinity and drought are interconnected, causing phenotypic, physiological, biochemical, and molecular changes in a cell. These stresses are the major factors adversely affecting growth and productivity in cereals. Genetic engineering methods have advanced to enable development of genotypes with improved salinity and drought tolerance. The resulting transgenic plant produces a group of progenies which includes moderate to high-stress tolerant transgenic lines. Development of reproducible screening methods to identify high-stress tolerant germplasm under laboratory, greenhouse, or field conditions is must. Further, field level demonstration of improved phenotypes and yield under salinity and drought stress conditions is both challenging and expensive. Fast and efficient screening techniques that could be used to screen transgenic lines under greenhouse conditions, for salt and drought stress tolerance, may contribute toward the identification of promising lines for field conditions. This chapter provides information on various approaches which can be developed during different stages of plant development for selecting salinity and drought tolerant plants in cereals, especially wheat.
Collapse
|
4
|
Dani KGS, Fineschi S, Michelozzi M, Loreto F. Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? PLANT, CELL & ENVIRONMENT 2016; 39:1103-11. [PMID: 26729201 DOI: 10.1111/pce.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/06/2015] [Accepted: 12/16/2015] [Indexed: 05/09/2023]
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, 2109, New South Wales, Australia
| | - Silvia Fineschi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marco Michelozzi
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185, Roma, Italy
| |
Collapse
|
5
|
Sabater B, Martín M. Hypothesis: increase of the ratio singlet oxygen plus superoxide radical to hydrogen peroxide changes stress defense response to programmed leaf death. FRONTIERS IN PLANT SCIENCE 2013; 4:479. [PMID: 24324479 PMCID: PMC3839260 DOI: 10.3389/fpls.2013.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/05/2013] [Indexed: 05/07/2023]
Abstract
The level of reactive oxygen species (ROS) increases under different stresses and, by destroying cellular components, may cause cell death. In addition, ROS are part of the complex network of transduction signals that induce defense reactions against stress or, alternatively, trigger programmed cell death, and key questions are the levels of each ROS that, respectively determine defense and death responses of the cell. The answer to those questions is difficult because there are several patterns of cell death that frequently appear mixed and are hardly distinguishable. Moreover, although considerable progresses have been achieved in the determination of the levels of specific ROS, critical questions remain on the ROS level in specific cell compartments. By considering chloroplasts as the main source of ROS in photosynthetic tissues at light, a comparison of the levels in stress and senescence of the chloroplastic activities involved in the generation and scavenging of ROS suggests plausible differences in the levels of specific ROS between stress defense and death. In effect, the three activities of the chlororespiratory chain increase similarly in stress defense response. However, in senescence, superoxide dismutase (SOD), that converts superoxide anion radical ([Formula: see text]) to hydrogen peroxide (H2O2,) decreases, while the thylakoid Ndh complex, that favors the generation of singlet oxygen ((1)O2) and [Formula: see text], and peroxidase (PX), that consumes H2O2, increase. The obvious inference is that, in respect to defense response, the ratio ((1)O2 plus [Formula: see text])/H2O2 is increased in the senescence previous to cell death. We hypothesize that the different ROS ratios, probably through changes in the jasmonic acid/H2O2 ratio, could determine the activation of the defense network or the death network response of the cell.
Collapse
Affiliation(s)
- Bartolomé Sabater
- *Correspondence: Bartolomé Sabater, Departamento de Ciencias de la Vida (Fisiología Vegetal), Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain e-mail:
| | | |
Collapse
|