1
|
Perez-Hernández AB, Garmendía-Martínez A, Furlan WD, Castro-Palacio JC, Monsoriu JA, Muñoz-Pérez FM. Optical twin-vortex multi-trapping by Kolakoski lenses. Sci Rep 2024; 14:26774. [PMID: 39501010 PMCID: PMC11538554 DOI: 10.1038/s41598-024-77596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
In this work, we design and implement a new bifocal diffractive spiral lens within an optical tweezers system. The proposed diffractive optical element coined Kolokaski Kinoform Spiral Lens (KKSL), generates twin optical vortices along the propagation direction. The axial positions, as well as the diameters of the generated vortex beams, are correlated with the Kolakoski aperiodic sequence introduced in the design of the diffractive lens. The unique properties of KKSLs make it ideal for optical trapping applications, allowing independent multiple trapping and particle displacement within each optical vortex beam. We present both the focusing properties of KKSL and the experimental results of its integration into the optical tweezer setup.
Collapse
Affiliation(s)
| | | | - Walter D Furlan
- Departamento de Óptica y Optometría y Ciencias de la VisiÓn, Universitat de Valencia, 46100, Valencia, Spain
| | - Juan C Castro-Palacio
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Juan A Monsoriu
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Francisco M Muñoz-Pérez
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022, Valencia, Spain.
- Institut Universitari de Ciència dels Materials (ICMUV), Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
2
|
Valbuena A, Strobl K, Gil-Redondo JC, Valiente L, de Pablo PJ, Mateu MG. Single-Molecule Analysis of Genome Uncoating from Individual Human Rhinovirus Particles, and Modulation by Antiviral Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304722. [PMID: 37806749 DOI: 10.1002/smll.202304722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Infection of humans by many viruses is typically initiated by the internalization of a single virion in each of a few susceptible cells. Thus, the outcome of the infection process may depend on stochastic single-molecule events. A crucial process for viral infection, and thus a target for developing antiviral drugs, is the uncoating of the viral genome. Here a force spectroscopy procedure using an atomic force microscope is implemented to study uncoating for individual human rhinovirus particles. Application of an increasing mechanical force on a virion led to a high force-induced structural transition that facilitated extrusion of the viral RNA molecule without loss of capsid integrity. Application of force to virions that h ad previously extruded the RNA, or to RNA-free capsids, led to a lower force-induced event associated with capsid disruption. The kinetic parameters are determined for each reaction. The high-force event is a stochastic process governed by a moderate free energy barrier (≈20 kcal mol-1 ), which results in a heterogeneous population of structurally weakened virions in which different fractions of the RNA molecule are externalized. The effects of antiviral compounds or capsid mutation on the kinetics of this reaction reveal a correlation between the reaction rate and virus infectivity.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
3
|
Xu D, Li J, Liu L, Tang H. Boosting the Optical Trapping of a Single Virus by Quantum Dots Tagging Increases Virus Polarizability and Trap Stiffness. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55174-55182. [PMID: 37966372 DOI: 10.1021/acsami.3c14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Optical tweezers use the momentum of photons to capture and manipulate particles in a noncontact way. Although related techniques have been widely used in biology and materials, research on viruses is still relatively limited. It is hard to optically trap viruses because trap stiffness is rather low and the size of viruses is too small. Here, we used an optical tweezers system coupled with a laser confocal fluorescence imaging system, which allows individual viruses to be imaged and trapped in real time and analyzed using multiple parameters in the culture medium. We show that a single virus tagged by quantum dots (QDs) can increase the real part of polarizability, further increasing gradient force and trap stiffness. With this method, we not only can trap and manipulate viruses in real time but also can analyze their interactions with other targets.
Collapse
Affiliation(s)
- Dadi Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiangtao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
4
|
Muoz-Pérez FM, Ferrando V, Furlan WD, Monsoriu JA, Ricardo Arias-Gonzalez J. Optical multi-trapping by Kinoform m-Bonacci lenses. OPTICS EXPRESS 2022; 30:34378-34384. [PMID: 36242450 DOI: 10.1364/oe.465672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Optical manipulation is interfacing disciplines in the micro and nanoscale, from molecular biology to quantum computation. Versatile solutions for increasingly more sophisticated technological applications require multiple traps with which to maneuver dynamically several particles in three dimensions. The axial direction is usually overlooked due to difficulties in observing particles away from an objective-lens focal plane, a normal element in optical tweezers, and in managing interparticle distances along the trapping beam propagating direction, where strong radiation pressure and shadowing effects compromise the simultaneous and stable confinement of the particles. Here, aperiodic kinoform diffractive lens based on the m-Bonacci sequence are proposed as a new trapping strategy. This lens provides split first-order diffractive foci whose separation depends on the generalized m-golden ratio. We show the extended manipulation capabilities of a laser tweezers system generated by these lens, in which concomitant trapping of particles in different focal planes takes place. Positioning particles in the axial direction with computer-controlled distances allows dynamic three-dimensional all-optical lattices, useful in a variety of microscale and nanoscale applications.
Collapse
|
5
|
Pradhan S, Whitby CP, Williams MAK, Chen JLY, Avci E. Interfacial colloidal assembly guided by optical tweezers and tuned via surface charge. J Colloid Interface Sci 2022; 621:101-109. [PMID: 35452924 DOI: 10.1016/j.jcis.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS The size, shape and dynamics of assemblies of colloidal particles optically-trapped at an air-water interface can be tuned by controlling the optical potential, particle concentration, surface charge density and wettability of the particles and the surface tension of the solution. EXPERIMENTS The assembly dynamics of different colloidal particle types (silica, polystyrene and carboxyl coated polystyrene particles) at an air-water interface in an optical potential were systematically explored allowing the effect of surface charge on assembly dynamics to be investigated. Additionally, the pH of the solutions were varied in order to modulate surface charge in a controllable fashion. The effect of surface tension on these assemblies was also explored by reducing the surface tension of the supporting solution by mixing ethanol with water. FINDINGS Silica, polystyrene and carboxyl coated polystyrene particles showed distinct assembly behaviours at the air-water interface that could be rationalised taking into account changes in surface charge (which in addition to being different between the particles could be modified systematically by changing the solution pH). Additionally, this is the first report showing that wettability of the colloidal particles and the surface tension of the solution are critical in determining the resulting assembly at the solution surface.
Collapse
Affiliation(s)
- Susav Pradhan
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Catherine P Whitby
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Martin A K Williams
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, Auckland University of Technology, Auckland 1010, New Zealand; Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Universitá degli Studi di Siena, Siena 53100, Italy; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| |
Collapse
|
6
|
A DNA-centered explanation of the DNA polymerase translocation mechanism. Sci Rep 2017; 7:7566. [PMID: 28790383 PMCID: PMC5548866 DOI: 10.1038/s41598-017-08038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase couples chemical energy to translocation along a DNA template with a specific directionality while it replicates genetic information. According to single-molecule manipulation experiments, the polymerase-DNA complex can work against loads greater than 50 pN. It is not known, on the one hand, how chemical energy is transduced into mechanical motion, accounting for such large forces on sub-nanometer steps, and, on the other hand, how energy consumption in fidelity maintenance integrates in this non-equilibrium cycle. Here, we propose a translocation mechanism that points to the flexibility of the DNA, including its overstretching transition, as the principal responsible for the DNA polymerase ratcheting motion. By using thermodynamic analyses, we then find that an external load hardly affects the fidelity of the copying process and, consequently, that translocation and fidelity maintenance are loosely coupled processes. The proposed translocation mechanism is compatible with single-molecule experiments, structural data and stereochemical details of the DNA-protein complex that is formed during replication, and may be extended to RNA transcription.
Collapse
|
7
|
de Lorenzo S, Ribezzi-Crivellari M, Arias-Gonzalez JR, Smith SB, Ritort F. A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophys J 2016; 108:2854-64. [PMID: 26083925 DOI: 10.1016/j.bpj.2015.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/25/2022] Open
Abstract
To our knowledge, we have developed a novel temperature-jump optical tweezers setup that changes the temperature locally and rapidly. It uses a heating laser with a wavelength that is highly absorbed by water so it can cover a broad range of temperatures. This instrument can record several force-distance curves for one individual molecule at various temperatures with good thermal and mechanical stability. Our design has features to reduce convection and baseline shifts, which have troubled previous heating-laser instruments. As proof of accuracy, we used the instrument to carry out DNA unzipping experiments in which we derived the average basepair free energy, entropy, and enthalpy of formation of the DNA duplex in a range of temperatures between 5°C and 50°C. We also used the instrument to characterize the temperature-dependent elasticity of single-stranded DNA (ssDNA), where we find a significant condensation plateau at low force and low temperature. Oddly, the persistence length of ssDNA measured at high force seems to increase with temperature, contrary to simple entropic models.
Collapse
Affiliation(s)
- Sara de Lorenzo
- Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain; Ciber-BBN de Bioingenería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | | | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid, Spain; CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain
| | | | - Felix Ritort
- Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain; Ciber-BBN de Bioingenería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|