1
|
Lu R, Zhang Y, Chen R, Li L, Huang C, Zhou Z, Cao Y, Li H, Li J, Zhang Y, Wang Y, Huang J, Zhao X, Feng J, Yu J, Du C. A novel regulatory axis of MSI2-AGO2/miR-30a-3p-CGRRF1 drives cancer chemoresistance by upregulating the KRAS/ERK pathway. Neoplasia 2024; 59:101082. [PMID: 39522321 DOI: 10.1016/j.neo.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The KRAS/ERK pathway is crucial in cancer progression and chemotherapy resistance, yet its upstream regulatory mechanism remains elusive. We identified MSI2 as a new promoter of chemotherapy resistance in cancers. MSI2 directly binds to a specific class of mature miRNAs by recognizing the 'UAG' motif and interacts with the essential effector AGO2, highlighting MSI2 as a novel regulatory factor within the miRNA pathway. Specifically, MSI2 recruits UAG-miRNA miR-30a-3p to facilitate its loading onto AGO2, efficiently inhibiting the expression of CGRRF1. Further analysis reveals that CGRRF1 functions as a new ubiquitin E3 ligase for KRAS, mediating the ubiquitination and proteasome degradation of KRAS. Consequently, a novel regulatory axis involving MSI2-AGO2/miR-30a-3p-CGRRF1 positively regulates the KRAS/ERK pathway. Remarkably, platinum-based chemotherapy drugs significantly enhance the levels of phosphorylated ERK1/2 (p-ERK1/2) in cancer cells, and the EGFR inhibitor Gefitinib also increases p-ERK1/2 levels in Gefitinib-resistant cancer cells. Combining small-molecule inhibitors targeting MSI2, such as Ro 08-2750, efficiently alleviated chemoresistance in tumor cells exposed to Platinum and Gefitinib. These findings suggest that MSI2 could be a novel therapeutic target for developing strategies to counteract cancer resistance to treatment.
Collapse
Affiliation(s)
- Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yafan Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai 201700, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyan Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yixin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Feng
- Department of Laboratory Medicine,The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai 201700, China.
| | - Chunling Du
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai 201700, China.
| |
Collapse
|
2
|
Liu D, Lopez-Paz C, Li Y, Zhuang X, Umen J. Subscaling of a cytosolic RNA binding protein governs cell size homeostasis in the multiple fission alga Chlamydomonas. PLoS Genet 2024; 20:e1010503. [PMID: 38498520 PMCID: PMC10977881 DOI: 10.1371/journal.pgen.1010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/28/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- University of Missouri—St. Louis, Cell and Molecular Biology Program, St. Louis. Missouri, United States of America
| | - Cristina Lopez-Paz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Yubing Li
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Xiaohong Zhuang
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Bai N, Adeshina Y, Bychkov I, Xia Y, Gowthaman R, Miller SA, Gupta AK, Johnson DK, Lan L, Golemis EA, Makhov PB, Xu L, Pillai MM, Boumber Y, Karanicolas J. Rationally designed inhibitors of the Musashi protein-RNA interaction by hotspot mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523326. [PMID: 36711508 PMCID: PMC9882015 DOI: 10.1101/2023.01.09.523326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Yusuf Adeshina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yan Xia
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Ragul Gowthaman
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Sven A. Miller
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | | | - David K. Johnson
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Petr B. Makhov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City KS 66160
| | - Manoj M. Pillai
- Section of Hematology, Yale Cancer Center, New Haven CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven CT 06520
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140
| |
Collapse
|
4
|
Hall HN, Bengani H, Hufnagel RB, Damante G, Ansari M, Marsh JA, Grimes GR, von Kriegsheim A, Moore D, McKie L, Rahmat J, Mio C, Blyth M, Keng WT, Islam L, McEntargart M, Mannens MM, Heyningen VV, Rainger J, Brooks BP, FitzPatrick DR. Monoallelic variants resulting in substitutions of MAB21L1 Arg51 Cause Aniridia and microphthalmia. PLoS One 2022; 17:e0268149. [PMID: 36413568 PMCID: PMC9681113 DOI: 10.1371/journal.pone.0268149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.
Collapse
Affiliation(s)
- Hildegard Nikki Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hemant Bengani
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert B. Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme R. Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David Moore
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, United Kingdom
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamalia Rahmat
- Ophthalmology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Catia Mio
- Department of Medicine, University of Udine, Udine, Italy
| | - Moira Blyth
- University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Wee Teik Keng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Lily Islam
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, England
| | - Meriel McEntargart
- Medical Genetics, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marcel M. Mannens
- Genome Diagnostics laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Veronica Van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joe Rainger
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian P. Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - David R. FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Likos E, Bhattarai A, Weyman CM, Shukla GC. The androgen receptor messenger RNA: what do we know? RNA Biol 2022; 19:819-828. [PMID: 35704670 PMCID: PMC9225383 DOI: 10.1080/15476286.2022.2084839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Androgen Receptor (AR), transcriptionally activated by its ligands, testosterone and dihydrotestosterone (DHT), is widely expressed in cells and tissues, influencing normal biology and disease states. The protein product of the AR gene is involved in the regulation of numerous biological functions, including the development and maintenance of the normal prostate gland and of the cardiovascular, musculoskeletal and immune systems. Androgen signalling, mediated by AR protein, plays a crucial role in the development of prostate cancer (PCa), and is presumed to be involved in other cancers including those of the breast, bladder, liver and kidney. Significant research and reviews have focused on AR protein function; however, inadequate research and literature exist to define the function of AR mRNA in normal and cancer cells. The AR mRNA transcript is nearly 11 Kb long and contains a long 3’ untranslated region (UTR), suggesting its biological role in post-transcriptional regulation, consequently affecting the overall functions of both normal and cancer cells. Research has demonstrated that many biological activities, including RNA stability, translation, cellular trafficking and localization, are associated with the 3’ UTRs of mRNAs. In this review, we describe the potential role of the AR 3’ UTR and summarize RNA-binding proteins (RBPs) that interact with the AR mRNA to regulate post-transcriptional metabolism. We highlight the importance of AR mRNA as a critical modulator of carcinogenesis and its important role in developing therapy-resistant prostate cancer.
Collapse
Affiliation(s)
- Eviania Likos
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA
| | - Asmita Bhattarai
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA
| | - Crystal M Weyman
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Girish C Shukla
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
6
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Dvir S, Argoetti A, Lesnik C, Roytblat M, Shriki K, Amit M, Hashimshony T, Mandel-Gutfreund Y. Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. Cell Rep 2021; 35:109198. [PMID: 34077720 DOI: 10.1016/j.celrep.2021.109198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cell (ESC) self-renewal and cell fate decisions are driven by a broad array of molecular signals. While transcriptional regulators have been extensively studied in human ESCs (hESCs), the extent to which RNA-binding proteins (RBPs) contribute to human pluripotency remains unclear. Here, we carry out a proteome-wide screen and identify 810 proteins that bind RNA in hESCs. We reveal that RBPs are preferentially expressed in hESCs and dynamically regulated during early stem cell differentiation. Notably, many RBPs are affected by knockdown of OCT4, a master regulator of pluripotency, several dozen of which are directly targeted by this factor. Using cross-linking and immunoprecipitation (CLIP-seq), we find that the pluripotency-associated STAT3 and OCT4 transcription factors interact with RNA in hESCs and confirm the binding of STAT3 to the conserved NORAD long-noncoding RNA. Our findings indicate that RBPs have a more widespread role in human pluripotency than previously appreciated.
Collapse
Affiliation(s)
- Shlomi Dvir
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Chen Lesnik
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | | | | | - Michal Amit
- Accellta LTD, Haifa 320003, Israel; Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel; Computer Science Department, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
8
|
Lee SA, Li KN, Tumbar T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp Dermatol 2020; 30:430-447. [PMID: 33278851 DOI: 10.1111/exd.14251] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Adult hair follicle stem cells (HFSCs) undergo dynamic and periodic molecular changes in their cellular states throughout the hair homeostatic cycle. These states are tightly regulated by cell-intrinsic mechanisms and by extrinsic signals from the microenvironment. HFSCs are essential not only for fuelling hair growth, but also for skin wound healing. Increasing evidence suggests an important role of HFSCs in organizing multiple skin components around the hair follicle, thus functioning as an organizing centre during adult skin homeostasis. Here, we focus on recent findings on cell-intrinsic mechanisms of HFSC homeostasis, which include transcription factors, histone modifications, DNA regulatory elements, non-coding RNAs, cell metabolism, cell polarity and post-transcriptional mRNA processing. Several transcription factors are now known to participate in well-known signalling pathways that control hair follicle homeostasis, as well as in super-enhancer activities to modulate HFSC and progenitor lineage progression. Interestingly, HFSCs have been shown to secrete molecules that are important in guiding the organization of several skin components around the hair follicle, including nerves, arrector pili muscle and vasculature. Finally, we discuss recent technological advances in the field such as single-cell RNA sequencing and live imaging, which revealed HFSC and progenitor heterogeneity and brought new light to understanding crosstalking between HFSCs and the microenvironment. The field is well on its way to generate a comprehensive map of molecular interactions that should serve as a solid theoretical platform for application in hair and skin disease and ageing.
Collapse
Affiliation(s)
- Seon A Lee
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kefei Nina Li
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Lan L, Liu J, Xing M, Smith AR, Wang J, Wu X, Appelman C, Li K, Roy A, Gowthaman R, Karanicolas J, Somoza AD, Wang CCC, Miao Y, De Guzman R, Oakley BR, Neufeld KL, Xu L. Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers (Basel) 2020; 12:cancers12082221. [PMID: 32784494 PMCID: PMC7463734 DOI: 10.3390/cancers12082221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
RNA-binding protein Musashi-1 (MSI1) is a key regulator of several stem cell populations. MSI1 is involved in tumor proliferation and maintenance, and it regulates target mRNAs at the translational level. The known mRNA targets of MSI1 include Numb, APC, and P21WAF-1, key regulators of Notch/Wnt signaling and cell cycle progression, respectively. In this study, we aim to identify small molecule inhibitors of MSI1-mRNA interactions, which could block the growth of cancer cells with high levels of MSI1. Using a fluorescence polarization (FP) assay, we screened small molecules from several chemical libraries for those that disrupt the binding of MSI1 to its consensus RNA. One cluster of hit compounds is the derivatives of secondary metabolites from Aspergillus nidulans. One of the top hits, Aza-9, from this cluster was further validated by surface plasmon resonance and nuclear magnetic resonance spectroscopy, which demonstrated that Aza-9 binds directly to MSI1, and the binding is at the RNA binding pocket. We also show that Aza-9 binds to Musashi-2 (MSI2) as well. To test whether Aza-9 has anti-cancer potential, we used liposomes to facilitate Aza-9 cellular uptake. Aza-9-liposome inhibits proliferation, induces apoptosis and autophagy, and down-regulates Notch and Wnt signaling in colon cancer cell lines. In conclusion, we identified a series of potential lead compounds for inhibiting MSI1/2 function, while establishing a framework for identifying small molecule inhibitors of RNA binding proteins using FP-based screening methodology.
Collapse
Affiliation(s)
- Lan Lan
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jiajun Liu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Minli Xing
- Bio-NMR Core Facility, the University of Kansas, Lawrence, KS 66045, USA;
| | - Amber R. Smith
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jinan Wang
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Xiaoqing Wu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Carl Appelman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Ke Li
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, the University of Kansas, Lawrence, KS 66045, USA;
| | - Ragul Gowthaman
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Amber D. Somoza
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
| | - Clay C. C. Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA
| | - Yinglong Miao
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Roberto De Guzman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Berl R. Oakley
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Kristi L. Neufeld
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Cancer Biology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Radiation Oncology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
10
|
Zhao J, Zhang Y, Liu XS, Zhu FM, Xie F, Jiang CY, Zhang ZY, Gao YL, Wang YC, Li B, Xia SJ, Han BM. RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Sci 2020; 111:369-382. [PMID: 31833612 PMCID: PMC7004550 DOI: 10.1111/cas.14280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
The androgen receptor (AR) pathway is critical for prostate cancer carcinogenesis and development; however, after 18‐24 months of AR blocking therapy, patients invariably progress to castration‐resistant prostate cancer (CRPC), which remains an urgent problem to be solved. Therefore, finding key molecules that interact with AR as novel strategies to treat prostate cancer and even CRPC is desperately needed. In the current study, we focused on the regulation of RNA‐binding proteins (RBPs) associated with AR and determined that the mRNA and protein levels of AR were highly correlated with Musashi2 (MSI2) levels. MSI2 was upregulated in prostate cancer specimens and significantly correlated with advanced tumor grades. Downregulation of MSI2 in both androgen sensitive and insensitive prostate cancer cells inhibited tumor formation in vivo and decreased cell growth in vitro, which could be reversed by AR overexpression. Mechanistically, MSI2 directly bound to the 3′‐untranslated region (UTR) of AR mRNA to increase its stability and, thus, enhanced its transcriptional activity. Our findings illustrate a previously unknown regulatory mechanism in prostate cancer cell proliferation regulated by the MSI2‐AR axis and provide novel evidence towards a strategy against prostate cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Sheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Ming Zhu
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xie
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Ye Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,First Clinical Medical College of Nanjing Medical University, Jiangsu, China
| | - Ying-Li Gao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Chuan Wang
- Department of Urology, Weifang Traditional Chinese Medicine Hospital, Shandong, China
| | - Bin Li
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Liu Q, Zhou C, Zhang B. Upregulation of musashi1 increases malignancy of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway and predicts a poor prognosis. BMC Gastroenterol 2019; 19:230. [PMID: 31888604 PMCID: PMC6937928 DOI: 10.1186/s12876-019-1150-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common human malignant cancer due to a high metastatic capacity and the recurrence rate is also high. This study is aim to investigate the role of musashi1 as a potential biomarker for therapy of HCC. Methods The mRNA and protein expression levels of musashi1 were detected in HCC samples and cell lines. The malignant properties of HCC cells, including proliferation, invasion and migration were measured by overexpressing or knocking down expression of musashi1. Additionally, the correlation between musashi1 and clinicopathological indexes and prognosis were analyzed. The expression of CD44 was measured and the correlation between CD44 and musashi1 was analyzed. Results In vitro cytological experiments demonstrated that musashi1 was elevated in HCC samples and cell lines and this increased expression affected cancer cell viability, migration and invasive capacity by activating of the Wnt/β-catenin signaling pathway. Analysis of clinicopathological characteristics suggested that up-regulation of musashi1 was related to metastasis potential and a poor prognosis. Besides, there was a positive correlation between CD44 and musashi1 expression. Upregulation of musashi1 in malignant liver tumors may have contributed to the maintenance of stem-cell like characteristics of HCC cells. Conclusions Upregulation of musashi1 could enhance malignant development of HCC cells and thus might be a novel marker for HCC therapy.
Collapse
Affiliation(s)
- Qiuhua Liu
- Department of General Surgery, The First People's Hospital of Zhangjiagang, The Affiliated Zhangjiagang Hospital of Soochow University, 68 West Jiyang Road, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Cuijie Zhou
- Department of General Surgery, The First People's Hospital of Zhangjiagang, The Affiliated Zhangjiagang Hospital of Soochow University, 68 West Jiyang Road, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Bo Zhang
- Department of General Surgery, The First People's Hospital of Zhangjiagang, The Affiliated Zhangjiagang Hospital of Soochow University, 68 West Jiyang Road, Zhangjiagang, Jiangsu, 215600, People's Republic of China.
| |
Collapse
|
12
|
Mahalingam R, Walling JG. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare). Genomics 2019; 112:1829-1839. [PMID: 31669702 DOI: 10.1016/j.ygeno.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/29/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023]
Abstract
One of the major mechanisms of post-transcriptional gene regulation is achieved by proteins bearing well-defined sequence motifs involved in 'RNA binding'. In eukaryotes, RNA binding proteins (RBPs) are key players of RNA metabolism that includes synthesis, processing, editing, modifying, transport, storage and stability of RNA. In plants, the family of RBPs is vastly expanded compared to other eukaryotes including humans. In this study we identified 363 RBPs in the barley genome. Gene ontology enrichment analysis of barley RBPs indicated these proteins were in all the major cellular compartments and associated with key biological processes including translation, splicing, seed development and stress signaling. Members with the classical RNA binding motifs such as the RNA recognition motif (RRM), KH domain, Helicase, CRM, dsRNA and Pumilio were identified in the repertoire of barley RBPs. Similar to Arabidopsis, the RRM containing RBPs were the most abundant in barley genome. In-depth analysis of the RRM containing proteins - polyA binding proteins, Ser/Arg rich proteins and Glycine-rich RBPs were undertaken. Reanalysis of the proteome dataset of various stages during barley malting identified 38 RBPs suggesting an important role for these proteins during the malting process. This survey provides a systematic analysis of barley RBPs and serves as the basis for the further functional characterization of this important family of proteins.
Collapse
Affiliation(s)
| | - Jason G Walling
- 502 Walnut Street, Cereal Crops Research Unit, USDA-ARS, Madison, WI 53726, USA.
| |
Collapse
|
13
|
Duggimpudi S, Kloetgen A, Maney SK, Münch PC, Hezaveh K, Shaykhalishahi H, Hoyer W, McHardy AC, Lang PA, Borkhardt A, Hoell JI. Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2's RNA-binding activity on IL-6 signaling. J Biol Chem 2018; 293:15359-15369. [PMID: 30126842 DOI: 10.1074/jbc.ra118.002243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
The RNA-binding protein Musashi 2 (MSI2) has emerged as an important regulator in cancer initiation, progression, and drug resistance. Translocations and deregulation of the MSI2 gene are diagnostic of certain cancers, including chronic myeloid leukemia (CML) with translocation t(7;17), acute myeloid leukemia (AML) with translocation t(10;17), and some cases of B-precursor acute lymphoblastic leukemia (pB-ALL). To better understand the function of MSI2 in leukemia, the mRNA targets that are bound and regulated by MSI2 and their MSI2-binding motifs need to be identified. To this end, using photoactivatable ribonucleoside cross-linking and immunoprecipitation (PAR-CLIP) and the multiple EM for motif elicitation (MEME) analysis tool, here we identified MSI2's mRNA targets and the consensus RNA-recognition element (RRE) motif recognized by MSI2 (UUAG). Of note, MSI2 knockdown altered the expression of several genes with roles in eukaryotic initiation factor 2 (eIF2), hepatocyte growth factor (HGF), and epidermal growth factor (EGF) signaling pathways. We also show that MSI2 regulates classic interleukin-6 (IL-6) signaling by promoting the degradation of the mRNA of IL-6 signal transducer (IL6ST or GP130), which, in turn, affected the phosphorylation statuses of signal transducer and activator of transcription 3 (STAT3) and the mitogen-activated protein kinase ERK. In summary, we have identified multiple MSI2-regulated mRNAs and provided evidence that MSI2 controls IL6ST activity that control oncogenic signaling networks. Our findings may help inform strategies for unraveling the role of MSI2 in leukemia to pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Sujitha Duggimpudi
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Kloetgen
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Department of Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, and
| | - Sathish Kumar Maney
- Department of Molecular Medicine II, Heinrich Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Philipp C Münch
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, and
| | - Kebria Hezaveh
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Hamed Shaykhalishahi
- Institute of Physical Biology, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Physical Biology, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, and
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Arndt Borkhardt
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jessica I Hoell
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany,
| |
Collapse
|
14
|
Human oncoprotein Musashi-2 N-terminal RNA recognition motif backbone assignment and identification of RNA-binding pocket. Oncotarget 2017; 8:106587-106597. [PMID: 29290973 PMCID: PMC5739758 DOI: 10.18632/oncotarget.22540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
RNA-binding protein Musashi-2 (MSI2) is a key regulator in stem cells, it is over-expressed in a variety of cancers and its higher expression is associated with poor prognosis. Like Musashi-1, it contains two N-terminal RRMs (RNA-recognition Motifs, also called RBDs (RNA-binding Domains)), RRM1 and RRM2, which mediate the binding to their target mRNAs. Previous studies have obtained the three-dimensional structures of the RBDs of Musashi-1 and the RBD1:RNA complex. Here we show the binding of MSI2-RRM1 to a 15nt Numb RNA in Fluorescence Polarization assay and time resolved Fluorescence Resonance Energy Transfer assay. Using nuclear magnetic resonance (NMR) spectroscopy we assigned the backbone resonances of MSI2-RRM1, and characterized the direct interaction of RRM1 to Numb RNA r(GUAGU). Our NMR titration and structure modeling studies showed that MSI2-RRM1 and MSI1-RBD1 have similar RNA binding events and binding pockets. This work adds significant information to MSI2-RRM1 structure and RNA binding pocket, and contributes to the development of MSI2 specific and MSI1/MSI2 dual inhibitors.
Collapse
|
15
|
Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Siddall NA, Koopman P, Hime GR, McLaughlin EA. RNA binding protein Musashi‐2 regulates PIWIL1 and TBX1 in mouse spermatogenesis. J Cell Physiol 2017; 233:3262-3273. [DOI: 10.1002/jcp.26168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jessie M. Sutherland
- School of Biomedical Science & PharmacyUniversity of NewcastleCallaghanAustralia
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | - Alexander P. Sobinoff
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
- Telomere Length Regulation GroupChildren's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Barbara A. Fraser
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | - Kate A. Redgrove
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | | | - Peter Koopman
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
| | - Gary R. Hime
- Anatomy and NeuroscienceUniversity of MelbourneParkvilleAustralia
| | - Eileen A. McLaughlin
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
16
|
Muñoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol Microbiol 2017; 106:266-284. [PMID: 28787542 DOI: 10.1111/mmi.13762] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Transmission of the malaria parasite occurs in an unpredictable moment, when a mosquito takes a blood meal. Plasmodium has therefore evolved strategies to prepare for transmission, including translationally repressing and protecting mRNAs needed to establish the infection. However, mechanisms underlying these critical controls are not well understood, including whether Plasmodium changes its translationally repressive complexes and mRNA targets in different stages. Efforts to understand this have been stymied by severe technical limitations due to substantial mosquito contamination of samples. Here using P. yoelii, for the first time we provide a proteomic comparison of a protein complex across asexual blood, sexual and sporozoite stages, along with a transcriptomic comparison of the mRNAs that are affected in these stages. We find that the Apicomplexan-specific ALBA4 RNA-binding protein acts to regulate development of the parasite's transmission stages, and that ALBA4 associates with both stage-specific and stage-independent partners to produce opposing mRNA fates. These efforts expand our understanding and ability to interrogate both sexual and sporozoite transmission stages and the molecular preparations they evolved to perpetuate their infectious cycle.
Collapse
Affiliation(s)
- Elyse E Muñoz
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mark F Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 2017; 545:500-504. [PMID: 28514443 PMCID: PMC5554449 DOI: 10.1038/nature22314] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022]
Abstract
Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.
Collapse
|
18
|
Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets. Clin Cancer Res 2017; 23:2143-2153. [PMID: 28143872 DOI: 10.1158/1078-0432.ccr-16-2728] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila, the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR.
Collapse
Affiliation(s)
- Alexander E Kudinov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yanis Boumber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res 2017; 54:47-54. [PMID: 28107692 DOI: 10.1016/j.leukres.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
FLT3 is frequently mutated and overexpressed in acute myelogenous leukemia (AML) and other hematologic malignancies. Although signaling events downstream of FLT3 receptor tyrosine kinase have been studied in depth, molecular mechanisms of how FLT3 expression is regulated at the post-transcriptional level in particular remain elusive. In this study, we investigated the roles of an RNA binding protein MSI2 as a regulator of FLT3 expression. MSI2 and FLT3 are significantly co-regulated in human AML and chronic myelogenous leukemia in blast crisis (BC-CML). Genetic loss of MSI2 leads to down-regulation of the FLT3 receptor in both AML and BC-CML cells and concomitant impairment of clonogenic growth potential. Furthermore, we demonstrate that MSI2 protein is physically bound to FLT3 mRNA transcripts, suggesting post-transcriptional control of FLT3 expression. Collectively, these results reveal a novel mode of FLT3 regulation essential for leukemia growth, which may aid in designing a targeted therapy to treat human myeloid leukemia.
Collapse
|
20
|
Lee J, An S, Choi YM, Lee J, Ahn KJ, Lee JH, Kim TJ, An IS, Bae S. Musashi-2 is a novel regulator of paclitaxel sensitivity in ovarian cancer cells. Int J Oncol 2016; 49:1945-1952. [PMID: 27600258 DOI: 10.3892/ijo.2016.3683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
As few prognostic markers and symptoms have been identified, ovarian cancer is typically diagnosed at an advanced stage, and a majority of patients will relapse and develop resistance to anticancer drugs such as paclitaxel. Musashi-2 (MSI2) is a regulator of gene translation and functions as an oncogenic protein and a marker of poor prognosis in various types of cancer. However, the biological and clinical significance of MSI2 in ovarian cancer remains unclear. Using a tissue microarray-based assay, we demonstrated that MSI2 was highly expressed in advanced, serous ovarian cancer tissues. In addition, MSI2-overexpressing ovarian cancer cells exhibited increased viability, proliferation and growth. We found that MSI2 was overexpressed in paclitaxel-resistant ovarian cancer SKOV3-TR cells but not in paclitaxel-sensitive cell lines. The loss of MSI2 expression in lentivirus-mediated stable MSI2 knockdown SKOV3-TR cells impaired paclitaxel resistance as determined using cell viability and apoptosis assays. In contrast, lentivirus-mediated MSI2 overexpression promoted the development of paclitaxel resistance in paclitaxel-sensitive ovarian cancer cells. The results of the present study are the first to demonstrate that MSI2 is a valuable marker of advanced, serous ovarian cancer and that MSI2 plays an important role in paclitaxel resistance.
Collapse
Affiliation(s)
- Jeongsuk Lee
- Research Institute for Molecular-Targeted Drugs, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong Min Choi
- Research Institute for Molecular-Targeted Drugs, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Junwoo Lee
- Research Institute for Molecular-Targeted Drugs, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Jae Ho Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul 04619, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul 04619, Republic of Korea
| | - In-Sook An
- Gene Cell Pharm Corporation, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Giuffrida R, Adamo L, Iannolo G, Vicari L, Giuffrida D, Eramo A, Gulisano M, Memeo L, Conticello C. Resistance of papillary thyroid cancer stem cells to chemotherapy. Oncol Lett 2016; 12:687-691. [PMID: 27347201 DOI: 10.3892/ol.2016.4666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
Thyroid carcinoma is the most common endocrine neoplasm, with the highest mortality rate of all the endocrine cancers. Among the endocrine malignancies, ~80% are papillary thyroid carcinomas (PTCs). In the initiation and progression of this tumor, genetic alterations in the mitogen-associated protein kinase pathway, including RAS point mutations, RET/PTC oncogene rearrangements and BRAF point mutations, play an important role, particularly in deciding targeted therapy. In the present study, a small population of thyroid tumor cells, known as tumor spheres, were isolated and characterized from PTC surgical samples. These spheres can be expanded indefinitely in vitro and give rise to differentiated adherent cells when cultivated in differentiative conditions. The present study showed by reverse transcription-polymerase chain reaction and flow cytometric analysis that the undifferentiated PTC cells exhibited a characteristic antigen expression profile of adult progenitor/stem cells. The cells were more resistant to chemotherapeutics, including bortezomib, taxol, cisplatin, etoposide, doxorubicin and vincristine, than differentiated PTC cells and the majority possessed a quiescent status, as revealed by the various cell cycle characteristics and anti-apoptotic protein expression. Such advances in cancer thyroid stem cell biology may provide relevant information for future targeted therapies.
Collapse
Affiliation(s)
| | - Luana Adamo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| | - Gioacchin Iannolo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy; Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced Biotechnologies, Mediterranean Institute for Transplantation and Advanced Specialized Therapies, I-90127 Palermo, Italy
| | - Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, National Institute of Health, I-00161 Rome, Italy
| | - Massimo Gulisano
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Concetta Conticello
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| |
Collapse
|
22
|
Bertolin AP, Katz MJ, Yano M, Pozzi B, Acevedo JM, Blanco-Obregón D, Gándara L, Sorianello E, Kanda H, Okano H, Srebrow A, Wappner P. Musashi mediates translational repression of the Drosophila hypoxia inducible factor. Nucleic Acids Res 2016; 44:7555-67. [PMID: 27141964 PMCID: PMC5027473 DOI: 10.1093/nar/gkw372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/23/2016] [Indexed: 12/22/2022] Open
Abstract
Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.
Collapse
Affiliation(s)
| | - Maximiliano J Katz
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Berta Pozzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| | - Julieta M Acevedo
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | | | - Lautaro Gándara
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | | | - Hiroshi Kanda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| | - Pablo Wappner
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| |
Collapse
|
23
|
Regulation of Stem Cell Self-Renewal and Oncogenesis by RNA-Binding Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:153-88. [PMID: 27256386 DOI: 10.1007/978-3-319-29073-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Throughout their life span, multicellular organisms rely on stem cell systems. During development pluripotent embryonic stem cells give rise to all cell types that make up the organism. After birth, tissue stem cells maintain properly functioning tissues and organs under homeostasis as well as promote regeneration after tissue damage or injury. Stem cells are capable of self-renewal, which is the ability to divide indefinitely while retaining the potential of differentiation into multiple cell types. The ability to self-renew, however, is a double-edged sword; the molecular mechanisms of self-renewal can be a target of malignant transformation driving tumor development and progression. Growing lines of evidence have shown that RNA-binding proteins (RBPs) play pivotal roles in the regulation of self-renewal by modulating metabolism of coding and non-coding RNAs both in normal tissues and in cancers. In this review, we discuss our current understanding of tissue stem cell systems and how RBPs regulate stem cell fates as well as how the regulatory functions of RBPs contribute to oncogenesis.
Collapse
|
24
|
Fox RG, Park FD, Koechlein CS, Kritzik M, Reya T. Musashi Signaling in Stem Cells and Cancer. Annu Rev Cell Dev Biol 2015; 31:249-67. [DOI: 10.1146/annurev-cellbio-100814-125446] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raymond G. Fox
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Frederick D. Park
- Department of Pharmacology,
- Moores Cancer Center, and
- Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla, California 92093;
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Claire S. Koechlein
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Marcie Kritzik
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Tannishtha Reya
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| |
Collapse
|
25
|
Osteoarticular Expression of Musashi-1 in an Experimental Model of Arthritis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:681456. [PMID: 26064941 PMCID: PMC4433648 DOI: 10.1155/2015/681456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
Background. Collagen-induced arthritis (CIA), a murine experimental disease model induced by immunization with type II collagen (CII), is used to evaluate novel therapeutic strategies for rheumatoid arthritis. Adult stem cell marker Musashi-1 (Msi1) plays an important role in regulating the maintenance and differentiation of stem/precursor cells. The objectives of this investigation were to perform a morphological study of the experimental CIA model, evaluate the effect of TNFα-blocker (etanercept) treatment, and determine the immunohistochemical expression of Msi1 protein. Methods. CIA was induced in 50 male DBA1/J mice for analyses of tissue and serum cytokine; clinical and morphological lesions in limbs; and immunohistochemical expression of Msi1. Results. Clinically, TNFα-blocker treatment attenuated CIA on day 32 after immunization (P < 0.001). Msi1 protein expression was significantly higher in joints damaged by CIA than in those with no lesions (P < 0.0001) and was related to the severity of the lesions (Spearman's rho = 0.775, P = 0.0001). Conclusions. Treatment with etanercept attenuates osteoarticular lesions in the murine CIA model. Osteoarticular expression of Msi1 protein is increased in joints with CIA-induced lesion and absent in nonlesioned joints, suggesting that this protein is expressed when the lesion is produced in order to favor tissue repair.
Collapse
|
26
|
Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J. TGF-β1-Induced Epithelial-Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells. Front Oncol 2015; 5:3. [PMID: 25674539 PMCID: PMC4306317 DOI: 10.3389/fonc.2015.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Breast cancer progression toward metastatic disease is linked to re-activation of epithelial–mesenchymal transition (EMT), a latent developmental process. Breast cancer cells undergoing EMT lose epithelial characteristics and gain the capacity to invade the surrounding tissue and migrate away from the primary tumor. However, less is known about the possible role of EMT in providing cancer cells with properties that allow them to traffic to distant sites. Given the fact that pro-metastatic cancer cells share a unique capacity with immune cells to traffic in-and-out of blood and lymphatic vessels we hypothesized that tumor cells undergoing EMT may acquire properties of immune cells. To study this, we performed gene-profiling analysis of mouse mammary EpRas tumor cells that had been allowed to adopt an EMT program after long-term treatment with TGF-β1 for 2 weeks. As expected, EMT cells acquired traits of mesenchymal cell differentiation and migration. However, in addition, we found another cluster of induced genes, which was specifically enriched in monocyte-derived macrophages, mast cells, and myeloid dendritic cells, but less in other types of immune cells. Further studies revealed that this monocyte/macrophage gene cluster was enriched in human breast cancer cell lines displaying an EMT or a Basal B profile, and in human breast tumors with EMT and undifferentiated (ER−/PR−) characteristics. The results identify an EMT-induced monocyte/macrophage gene cluster, which may play a role in breast cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Joel Johansson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| | - Vedrana Tabor
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| | - Anna Wikell
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku , Turku , Finland
| | - Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute , Stockholm , Sweden
| |
Collapse
|
27
|
Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33:747-62. [PMID: 24452120 PMCID: PMC3976132 DOI: 10.3892/ijmm.2014.1629] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy
| |
Collapse
|
28
|
Zhang H, Tan S, Wang J, Chen S, Quan J, Xian J, Zhang SS, He J, Zhang L. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway. Exp Cell Res 2014; 320:119-27. [DOI: 10.1016/j.yexcr.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022]
|