1
|
Tasevski S, Kyung Nam H, Ghannam A, Moughni S, Atoui T, Mashal Y, Hatch N, Zhang Z. Tissue nonspecific alkaline phosphatase deficiency impairs Purkinje cell development and survival in a mouse model of infantile hypophosphatasia. Neuroscience 2024; 560:357-370. [PMID: 39369942 DOI: 10.1016/j.neuroscience.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13-14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.
Collapse
Affiliation(s)
- Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Tia Atoui
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Yara Mashal
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA.
| |
Collapse
|
2
|
Dragic M, Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Grkovic I, Nedeljkovic N. Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood. Neurochem Res 2022; 47:1637-1650. [PMID: 35320461 DOI: 10.1007/s11064-022-03557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
The present study demonstrates altered topographic distribution and enhanced neuronal expression of major adenosine-metabolizing enzymes, i.e. ecto-5'-nucleotidase (eN) and tissue non-specific alkaline phosphatase (TNAP), as well as adenosine receptor subtype A2A in the hippocampus and cortex of male rats from early to late adulthood (3, 6, 12 and 15 months old males). The significant effect of age was demonstrated for the increase in the activity and the protein expression of eN and TNAP. At 15-m, enzyme histochemistry demonstrated enhanced expression of eN in synapse-rich hippocampal and cortical layers, whereas the upsurge of TNAP was observed in the hippocampal and cortical neuropil, rather than in cells and layers where two enzymes mostly reside in 3-m old brain. Furthermore, a dichotomy in A1R and A2AR expression was demonstrated in the cortex and hippocampus from early to late adulthood. Specifically, a decrease in A1R and enhancement of A2AR expression were demonstrated by immunohistochemistry, the latter being almost exclusively localized in hippocampal pyramidal and cortical superficial cell layers. We did not observe any glial upregulation of A2AR, which was common for both advanced age and chronic neurodegeneration. Taken together, the results imply that the adaptative changes in adenosine signaling occurring in neuronal elements early in life may be responsible for the later prominent glial enhancement in A2AR-mediated adenosine signaling, and neuroinflammation and neurodegeneration, which are the hallmarks of both advanced age and age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Milorad Dragic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Andjela Stekic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Milica Zeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department for Molecular biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Marija Adzic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Ivana Grkovic
- Department for Molecular biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia.
| |
Collapse
|
3
|
Hanschkow M, Boulet N, Kempf E, Bouloumié A, Kiess W, Stein R, Körner A, Landgraf K. Expression of the Adipocyte Progenitor Markers MSCA1 and CD36 is Associated With Adipose Tissue Function in Children. J Clin Endocrinol Metab 2022; 107:e836-e851. [PMID: 34448000 PMCID: PMC8764220 DOI: 10.1210/clinem/dgab630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/05/2022]
Abstract
CONTEXT MSCA1 (mesenchymal stem cell antigen 1) and CD36 (cluster of differentiation 36) have been described as novel adipocyte progenitor markers in adults with a potential relevance for obesity and adipocyte progenitor function. OBJECTIVE With the early manifestation of obesity in children and formation of adipose tissue (AT) dysfunction, children provide the opportunity to characterize the function of MSCA1 and CD36 during physiological AT accumulation and with obesity and related disease. METHODS We investigated MSCA1 and CD36 expression in adipocytes and stroma vascular fraction (SVF) cells from 133 children of the Leipzig AT Childhood cohort with regard to AT accumulation and biology. In a subsample we analyzed how MSCA1 and CD36 expression is related to adipose progenitor capacities in vitro (ie, proliferation, differentiation and mitochondrial function). RESULTS Both MSCA1 and CD36 are differentially expressed in adipocytes and SVF cells of children. MSCA1 expression is positively correlated to obesity-associated AT dysfunction (ie, adipocyte hypertrophy and serum high-sensitivity C-reactive protein), and high SVF MSCA1 expression is associated with increased mitochondrial respiration in vitro. CD36 expression is not associated with AT dysfunction but SVF CD36 expression is downregulated in children with overweight and obesity and shows a positive association with the differentiation capacity of SVF cells ex vivo and in vitro. CONCLUSION Both MSCA1 and CD36 are associated with obesity-related alterations in AT of children. In particular, CD36 expression predicts adipogenic potential of SVF cells, indicating a potential role in the regulation of adipocyte hyperplasia and hypertrophy with obesity development in children.
Collapse
Affiliation(s)
- Martha Hanschkow
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Nathalie Boulet
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Elena Kempf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Anne Bouloumié
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Wieland Kiess
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Robert Stein
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Antje Körner
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Kathrin Landgraf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Correspondence: Kathrin Landgraf, PhD, Center for Pediatric Research Leipzig (CPL), Liebigstr. 19-21, 04103 Leipzig, Germany. E-mail:
| |
Collapse
|
4
|
Li S, Wang W, Zhang Q, Wang Y, Wang A, Zhao X. Association Between Alkaline Phosphatase and Clinical Outcomes in Patients With Spontaneous Intracerebral Hemorrhage. Front Neurol 2021; 12:677696. [PMID: 34526953 PMCID: PMC8435581 DOI: 10.3389/fneur.2021.677696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Spontaneous intracerebral hemorrhage (ICH) is associated with high rates of mortality and morbidity. Alkaline phosphatase (ALP) is related to increased risk of cardiovascular events and is also closely associated with adverse outcomes after ischemic or hemorrhagic stroke. However, there are limited data about the effect of ALP on clinical outcomes after ICH. Therefore, we aimed to investigate the relationship between serum ALP level and prognosis in ICH patients. Methods: From January 2014 to September 2016, 939 patients with spontaneous ICH were enrolled in our study from 13 hospitals in Beijing. Patients were categorized into four groups based on the ALP quartiles (Q1, Q2, Q3, Q4). The main outcomes were 30-day, 90-day, and 1-year poor functional outcomes (modified Rankin Scale score of 3-6). Multivariable logistic regression and interaction analyses were performed to evaluate the relationships between ALP and clinical outcomes after ICH. Results: In the logistic regression analysis, compared with the third quartile of ALP, the adjusted odds ratios of the Q1, Q2, and Q4 for 30-day poor functional outcome were 1.31 (0.80-2.15), 1.16 (0.71-1.89), and 2.16 (1.32-3.55). In terms of 90-day and 1-year poor functional outcomes, the risks were significantly higher in the highest quartile of ALP compared with the third quartile after adjusting the confounding factors [90-day: highest quartile OR = 1.86 (1.12-3.10); 1-year: highest quartile OR = 2.26 (1.34-3.80)]. Moreover, there was no significant interaction between ALP and variables like age or sex. Conclusions: High ALP level (>94.8 U/L) was independently associated with 30-day, 90-day, and 1-year poor functional outcomes in ICH patients. Serum ALP might serve as a predictor for poor functional outcomes after ICH onset.
Collapse
Affiliation(s)
- Sijia Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Tissue-Nonspecific Alkaline Phosphatase-A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease. Biomolecules 2020; 10:biom10121648. [PMID: 33302551 PMCID: PMC7763311 DOI: 10.3390/biom10121648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Collapse
|
6
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
7
|
Zhu Y, Jiang H, Li Y, Weng Y, Xu K, Zhou L, Lin H, Sun T, Cheng D, Shen J, Zeng J, Ye D, Wang D, Zhan R. Serum Alkaline Phosphatase Level is Associated with Angiographic Vasospasm, Delayed Cerebral Ischemia-Caused Clinical Deterioration, and Functional Outcome After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2020; 31:466-475. [PMID: 31016639 DOI: 10.1007/s12028-019-00714-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alkaline phosphatase (ALP) has been implicated to be associated with poor outcome in ischemic stroke patients, yet its role in aneurysmal subarachnoid hemorrhage (aSAH) patients is unknown. The current study aimed to investigate the on-admission and short-term variation trend of ALP levels in aSAH patients as well as its associations with vasospasm, delayed cerebral ischemia (DCI), and outcome after aSAH. METHODS Between January 2014 and May 2018, all consecutive aSAH patients were prospectively enrolled. Blood samples from patients and 78 healthy individuals were obtained. Baseline information, clinical data, and radiologic data were collected, and serum ALP levels during hospitalization were measured. Patients were followed up for 6 months. RESULTS One hundred and ninety-six aSAH patients were included. The serum ALP levels in aSAH patients were significantly higher compared to controls (71 vs. 61 U/L, p = 0.0002), yet did not differ significantly between patients with severe (WFNS 4-5) and mild clinical condition (72 vs. 63 U/L, p = 0.3362). However, ALP was significantly higher in patients with severe radiologic status (modified Fisher 3-4) compared to those with mild radiologic status (77 vs. 61.5 U/L, p = 0.0005). A significant correlation emerged between modified Fisher score and ALP level (r = 0.246, p = 0.001). Multivariable analysis found that higher ALP level was associated with angiographic vasospasm (OR 1.019, 95% CI 1.002-1.036, p = 0.026) and DCI-caused clinical deterioration (OR 1.019, 95% CI 1.001-1.037, p = 0.037), while higher WFNS score, modified Fisher score, and ALP level were independently associated with unfavorable outcome (serum ALP level, OR 1.083, 95% CI 1.041-1.127, p < 0.001). Trend analysis of ALP level based on 103 patients' data revealed a significant decrease in ALP level on post-admission day 7-9 (median; on-admission day vs. post-admission day 7-9, 72 vs. 60 U/L, p = 0.0012; post-admission day 3-5 vs. day 7-9, 70 vs. 60 U/L, p = 0.0052) and subsequent increase in ALP level on post-admission day 12-14 (median, 84 U/L, p < 0.0001). Higher ALP levels were observed in patients with unfavorable outcome on on-admission day, post-admission day 3-5, and 12-14 (median; unfavorable vs. favorable; on-admission day, 86 vs. 67 U/L, p = 0.0122; post-admission day 3-5, 80 vs. 64 U/L, p = 0.0044; post-admission day 7-9, 75 vs. 53.5 U/L, p < 0.0001) but not on post-admission day 12-14. CONCLUSIONS Elevated serum ALP level is associated with vasospasm, DCI-caused clinical deterioration, and functional outcome after aSAH. Further studies are required to examine the potential role of serum ALP as an outcome predictor for aSAH patients.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Hao Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China.,Department of Neurosurgery, Shulan Hospital, 848 Dongxin Road, Hangzhou, Zhejiang Province, China
| | - Yongda Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China.,Emergency Department Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Lei Zhou
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Hongwei Lin
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Tianfu Sun
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Dexin Cheng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Jie Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Jianping Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Di Ye
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Duanbu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China.,Department of Neurosurgery, Sanmen People's Hospital, Sanmen, Zhejiang Province, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Zaher DM, El‐Gamal MI, Omar HA, Aljareh SN, Al‐Shamma SA, Ali AJ, Zaib S, Iqbal J. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000011. [DOI: 10.1002/ardp.202000011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
| | - Mohammed I. El‐Gamal
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of Medicinal ChemistryFaculty of PharmacyMansoura Egypt
| | - Hany A. Omar
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of PharmacologyFaculty of PharmacyBeni‐Suef Egypt
| | | | | | - Aya J. Ali
- College of PharmacySharjah United Arab Emirates
| | - Sumera Zaib
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| |
Collapse
|
9
|
Perea JR, Ávila J, Bolós M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol 2018; 310:14-21. [PMID: 30138606 DOI: 10.1016/j.expneurol.2018.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/04/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023]
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by the aggregation of Tau protein. Activated microglia and elevated levels of pro-inflammatory molecules are also pathological hallmarks of tauopathies. In these diseases, intracellular Tau is secreted to the extracellular space, where it interacts with other cells, such as neurons and glia, promoting inflammation. However, the mechanism through which extracellular Tau triggers pro-inflammatory responses in microglia remains unknown. Primary microglia cultures were treated with extracellular Tau in its hyperphosphorylated, dephosphorylated or non-phosphorylated form. Protein cytokine arrays, real-time PCR, inhibition of the p38 MAPK pathway, phosphatase assays, and quantification of proteins through immunoblotting were used to analyze the effect of extracellular Tau on the pro-inflammatory response of microglia. The main finding of this work is that extracellular non-phosphorylated and dephosphorylated forms of Tau, rather than hyperphosphorylated Tau, activate the p38 MAPK pathway in microglia, thus triggering a pro-inflammatory response in these cells.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
10
|
Abstract
We review here clinical, pathophysiological, diagnostic, genetic and molecular aspects of Hypophosphatasia (HPP), a rare inherited metabolic disorder. The clinical presentation is a continuum ranging from a prenatal lethal form with no skeletal mineralization to a mild form with late adult onset presenting with nonpathognomonic symptoms. The prevalence of severe forms is low, whereas less severe forms are more frequently observed. The disease is caused by loss-of-function mutations in the ALPL gene encoding the Tissue Nonspecific Alkaline Phosphatase (TNSALP), a central regulator of mineralization. Severe forms are recessively inherited, whereas moderate forms are either recessively or dominantly inherited, and the more severe the disease is, the more often it is subject to recessive inheritance. The diagnosis is based on a constantly low alkaline phosphatase (AP) activity in serum and genetic testing that identifies ALPL mutations. More than 340 mutations have been identified and are responsible for the extraordinary clinical heterogeneity. A clear but imperfect genotype-phenotype correlation has been observed, suggesting that other genetic or environmental factors modulate the phenotype. Enzyme replacement therapy is now available for HPP, and other approaches, such as gene therapy, are currently being investigated.
Collapse
Affiliation(s)
- Etienne Mornet
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay, France.
| |
Collapse
|