1
|
Talevi A, Bellera C. An update on the novel methods for the discovery of antiseizure and antiepileptogenic medications: where are we in 2024? Expert Opin Drug Discov 2024; 19:975-990. [PMID: 38963148 DOI: 10.1080/17460441.2024.2373165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| |
Collapse
|
2
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
4
|
Abstract
Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Developing strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.
Collapse
|
5
|
Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain Sci 2021; 11:brainsci11050663. [PMID: 34069567 PMCID: PMC8161227 DOI: 10.3390/brainsci11050663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurring spontaneous seizures. Drug resistance appears in 30% of patients and it can lead to premature death, brain damage or a reduced quality of life. The purpose of the study was to analyze the drug resistance mechanisms, especially neuroinflammation, in the epileptogenesis. The information bases of biomedical literature Scopus, PubMed, Google Scholar and SciVerse were used. To obtain full-text documents, electronic resources of PubMed Central and Research Gate were used. The article examines the recent research of the mechanisms of drug resistance in epilepsy and discusses the hypotheses of drug resistance development (genetic, epigenetic, target hypothesis, etc.). Drug-resistant epilepsy is associated with neuroinflammatory, autoimmune and neurodegenerative processes. Neuroinflammation causes immune, pathophysiological, biochemical and psychological consequences. Focal or systemic unregulated inflammatory processes lead to the formation of aberrant neural connections and hyperexcitable neural networks. Inflammatory mediators affect the endothelium of cerebral vessels, destroy contacts between endothelial cells and induce abnormal angiogenesis (the formation of “leaky” vessels), thereby affecting the blood–brain barrier permeability. Thus, the analysis of pro-inflammatory and other components of epileptogenesis can contribute to the further development of the therapeutic treatment of drug-resistant epilepsy.
Collapse
|
6
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|
7
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
8
|
Jha M, Alam O, Naim MJ, Sharma V, Bhatia P, Sheikh AA, Nawaz F, Alam P, Manaithiya A, Kumar V, Nazar S, Siddiqui N. Recent advancement in the discovery and development of anti-epileptic biomolecules: An insight into structure activity relationship and Docking. Eur J Pharm Sci 2020; 153:105494. [PMID: 32730845 DOI: 10.1016/j.ejps.2020.105494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Although there have been many advancements in scientific research and development, the cause of epilepsy still remains an open challenge. In spite of high throughput research in the field of anti-epileptic drugs, efficacy void is still prevalent before the researchers. Researchers have persistently been exploring all the possibilities to curb undesirable side effects of the anti-epileptic drugs or looking for a more substantial approach to diminish or cure epilepsy. The drug development has shown a hope to medicinal chemists and researchers to carry further research by going through a substantial literature survey. This review article attempts to describe the recent developments in the anti-epileptic agents, pertaining to different molecular scaffolds considering their structure-activity relationship, docking studies and their mechanism of actions.
Collapse
Affiliation(s)
- Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Aadil Ahmad Sheikh
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Nawaz
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vivek Kumar
- Department of Cardiology, Fortis Heart Institute, New Delhi, 110025, India
| | - Shagufi Nazar
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
9
|
Aourz N, Serruys ASK, Chabwine JN, Balegamire PB, Afrikanova T, Edrada-Ebel R, Grey AI, Kamuhabwa AR, Walrave L, Esguerra CV, van Leuven F, de Witte PAM, Smolders I, Crawford AD. Identification of GSK-3 as a Potential Therapeutic Entry Point for Epilepsy. ACS Chem Neurosci 2019; 10:1992-2003. [PMID: 30351911 DOI: 10.1021/acschemneuro.8b00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action.
Collapse
Affiliation(s)
- Najat Aourz
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann-Sophie K. Serruys
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Joëlle N. Chabwine
- Salama Neuroscience Center, Bukavu, South Kivu BP 54, Democratic Republic of the Congo
| | | | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Alexander I. Grey
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Appolinary R. Kamuhabwa
- Department of Pharmacognosy, Muhimbili University of Health & Allied Sciences, Dar es Salaam 11000, Tanzania
| | - Laura Walrave
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Fred van Leuven
- Experimental Genetics Group (LEGTEGG), Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ilse Smolders
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
11
|
Brandt C, Seja P, Töllner K, Römermann K, Hampel P, Kalesse M, Kipper A, Feit PW, Lykke K, Toft-Bertelsen TL, Paavilainen P, Spoljaric I, Puskarjov M, MacAulay N, Kaila K, Löscher W. Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy. Neuropharmacology 2018; 143:186-204. [DOI: 10.1016/j.neuropharm.2018.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
|
12
|
Nie A, Zehnder A, Page RL, Zhang Y, Pineda AL, Rivas MA, Bustamante CD, Zou J. DeepTag: inferring diagnoses from veterinary clinical notes. NPJ Digit Med 2018; 1:60. [PMID: 31304339 PMCID: PMC6550285 DOI: 10.1038/s41746-018-0067-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Large scale veterinary clinical records can become a powerful resource for patient care and research. However, clinicians lack the time and resource to annotate patient records with standard medical diagnostic codes and most veterinary visits are captured in free-text notes. The lack of standard coding makes it challenging to use the clinical data to improve patient care. It is also a major impediment to cross-species translational research, which relies on the ability to accurately identify patient cohorts with specific diagnostic criteria in humans and animals. In order to reduce the coding burden for veterinary clinical practice and aid translational research, we have developed a deep learning algorithm, DeepTag, which automatically infers diagnostic codes from veterinary free-text notes. DeepTag is trained on a newly curated dataset of 112,558 veterinary notes manually annotated by experts. DeepTag extends multitask LSTM with an improved hierarchical objective that captures the semantic structures between diseases. To foster human-machine collaboration, DeepTag also learns to abstain in examples when it is uncertain and defers them to human experts, resulting in improved performance. DeepTag accurately infers disease codes from free-text even in challenging cross-hospital settings where the text comes from different clinical settings than the ones used for training. It enables automated disease annotation across a broad range of clinical diagnoses with minimal preprocessing. The technical framework in this work can be applied in other medical domains that currently lack medical coding resources.
Collapse
Affiliation(s)
- Allen Nie
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Ashley Zehnder
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Rodney L. Page
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Yuhui Zhang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Arturo Lopez Pineda
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Manuel A. Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Carlos D. Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
13
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
14
|
Wenzel M, Hamm JP, Peterka DS, Yuste R. Reliable and Elastic Propagation of Cortical Seizures In Vivo. Cell Rep 2018; 19:2681-2693. [PMID: 28658617 DOI: 10.1016/j.celrep.2017.05.090] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/27/2022] Open
Abstract
Mapping the fine-scale neural activity that underlies epilepsy is key to identifying potential control targets of this frequently intractable disease. Yet, the detailed in vivo dynamics of seizure progression in cortical microcircuits remain poorly understood. We combine fast (30-Hz) two-photon calcium imaging with local field potential (LFP) recordings to map, cell by cell, the spread of locally induced (4-AP or picrotoxin) seizures in anesthetized and awake mice. Using single-layer and microprism-assisted multilayer imaging in different cortical areas, we uncover reliable recruitment of local neural populations within and across cortical layers, and we find layer-specific temporal delays, suggesting an initial supra-granular invasion followed by deep-layer recruitment during lateral seizure spread. Intriguingly, despite consistent progression pathways, successive seizures show pronounced temporal variability that critically depends on GABAergic inhibition. We propose an epilepsy circuit model resembling an elastic meshwork, wherein ictal progression faithfully follows preexistent pathways but varies flexibly in time, depending on the local inhibitory restraint.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Jordan P Hamm
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Gastrodin Suppresses Pentylenetetrazole-Induced Seizures Progression by Modulating Oxidative Stress in Zebrafish. Neurochem Res 2018; 43:904-917. [DOI: 10.1007/s11064-018-2496-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/06/2023]
|
16
|
The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach? Neurochem Res 2016; 42:1926-1938. [DOI: 10.1007/s11064-016-2025-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
|
17
|
Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016; 126:157-84. [PMID: 27505294 DOI: 10.1016/j.eplepsyres.2016.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Animal seizure and epilepsy models continue to play an important role in the early discovery of new therapies for the symptomatic treatment of epilepsy. Since 1937, with the discovery of phenytoin, almost all anti-seizure drugs (ASDs) have been identified by their effects in animal models, and millions of patients world-wide have benefited from the successful translation of animal data into the clinic. However, several unmet clinical needs remain, including resistance to ASDs in about 30% of patients with epilepsy, adverse effects of ASDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk following brain injury. The aim of this review is to critically discuss the translational value of currently used animal models of seizures and epilepsy, particularly what animal models can tell us about epilepsy therapies in patients and which limitations exist. Principles of translational medicine will be used for this discussion. An essential requirement for translational medicine to improve success in drug development is the availability of animal models with high predictive validity for a therapeutic drug response. For this requirement, the model, by definition, does not need to be a perfect replication of the clinical condition, but it is important that the validation provided for a given model is fit for purpose. The present review should guide researchers in both academia and industry what can and cannot be expected from animal models in preclinical development of epilepsy therapies, which models are best suited for which purpose, and for which aspects suitable models are as yet not available. Overall further development is needed to improve and validate animal models for the diverse areas in epilepsy research where suitable fit for purpose models are urgently needed in the search for more effective treatments.
Collapse
|
18
|
Twele F, Töllner K, Bankstahl M, Löscher W. The effects of carbamazepine in the intrahippocampal kainate model of temporal lobe epilepsy depend on seizure definition and mouse strain. Epilepsia Open 2016; 1:45-60. [PMID: 29588928 PMCID: PMC5867834 DOI: 10.1002/epi4.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Objective Mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis is a predominant form of acquired epilepsy, characterized by recurrent simple and complex partial seizures that are often resistant to treatment. Mice developing spontaneous recurrent nonconvulsive and convulsive seizures after intrahippocampal injection of the excitotoxic glutamate agonist kainate are thought to represent a valuable model of mesial TLE. Epileptic electroencephalogram (EEG) activity recorded in this model from the kainate focus in the ipsilateral hippocampus is resistant to antiseizure drugs such as carbamazepine (CBZ). We compared the efficacy of CBZ in this model in two different mouse strains (FVB/N and NMRI). Furthermore, we evaluated whether changes in the definition of electrographic seizures affect the antiseizure efficacy of CBZ. Methods As in previous studies, two types of epileptic EEG activity were defined: high-voltage sharp waves (HVSWs) and hippocampal paroxysmal discharges (HPDs). The characteristics of these paroxysmal EEG events in epileptic mice were compared with EEG criteria for nonconvulsive seizures in patients. For HVSWs, different spike frequencies, interevent intervals, and amplitudes were used as inclusion and exclusion criteria. In addition to CBZ, some experiments were performed with diazepam (DZP) and phenobarbital (PB). Results Female epileptic FVB/N mice predominantly exhibited frequent HVSWs, but only infrequent HPDs or secondarily generalized convulsive seizures. Slight changes in HVSW definition determined whether they were resistant or responsive to CBZ. Male NMRI mice exhibited both HVSWs and HPDs. HVSWs were more resistant than HPDs to suppression by CBZ. Both types of epileptic EEG activity were rapidly suppressed by DZP and PB. Significance The data demonstrate that focal electrographic seizures in the intrahippocampal kainate mouse model are less resistant than previously thought. Both mouse strain and the criteria chosen for definition of EEG seizures determine whether such seizures are drug-resistant or -responsive.
Collapse
Affiliation(s)
- Friederike Twele
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany.,Center for Systems Neuroscience Hannover Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany.,Center for Systems Neuroscience Hannover Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany.,Center for Systems Neuroscience Hannover Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany.,Center for Systems Neuroscience Hannover Germany
| |
Collapse
|
19
|
Bankstahl M, Klein S, Römermann K, Löscher W. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 2016; 109:183-195. [PMID: 27288003 DOI: 10.1016/j.neuropharm.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023]
Abstract
Pharmacoresistance to antiepileptic drugs (AEDs) is a major challenge in epilepsy therapy, affecting at least 30% of patients. Thus, there is considerable interest in the mechanisms responsible for such pharmacoresistance, with particular attention on the specific cellular and molecular factors that lead to reduced drug sensitivity. Current hypotheses of refractory epilepsy include the multidrug transporter hypothesis, which posits that increased expression or function of drug efflux transporters, such as P-glycoprotein (Pgp), in brain capillaries reduces the local concentration of AEDs in epileptic brain regions to subtherapeutic levels. In the present study, this hypothesis was addressed by evaluating the efficacy of six AEDs in wildtype and Pgp deficient Mdr1a/b(-/-) mice in the intrahippocampal kainate model of mesial temporal lobe epilepsy. In this model, frequent focal electrographic seizures develop after an initial kainate-induced status epilepticus. These seizures are resistant to major AEDs, but the mechanisms of this resistance are unknown. In the present experiments, the focal nonconvulsive seizures were resistant to carbamazepine and phenytoin, whereas high doses of valproate and levetiracetam exerted moderate and phenobarbital and diazepam marked anti-seizure effects. All AEDs suppressed generalized convulsive seizures. No significant differences between wildtype and Pgp-deficient mice were observed in anti-seizure drug efficacies. Also, the individual responder and nonresponder rates in each experiment did not differ between mouse genotypes. This does not argue against the multidrug transporter hypothesis in general, but indicates that Pgp is not involved in the mechanisms explaining that focal electrographic seizures are resistant to some AEDs in the intrahippocampal mouse model of partial epilepsy. This was substantiated by the finding that epileptic wildtype mice do not exhibit increased Pgp expression in this model.
Collapse
Affiliation(s)
- Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sabine Klein
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
20
|
Shao LR, Stafstrom CE. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models. Semin Pediatr Neurol 2016; 23:98-107. [PMID: 27544466 DOI: 10.1016/j.spen.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
21
|
Indomethacin treatment prior to pentylenetetrazole-induced seizures downregulates the expression of il1b and cox2 and decreases seizure-like behavior in zebrafish larvae. BMC Neurosci 2016; 17:12. [PMID: 26961169 PMCID: PMC4785663 DOI: 10.1186/s12868-016-0246-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background It has been demonstrated that the zebrafish model of pentylenetetrazole (PTZ)-evoked seizures and the well-established rodent models of epilepsy are similar pertaining to behavior, electrographic features, and c-fos expression. Although this zebrafish model is suitable for studying seizures, to date, inflammatory response after seizures has not been investigated using this model. Because a relationship between epilepsy and inflammation has been established, in the present study we investigated the transcript levels of the proinflammatory cytokines interleukin-1 beta (il1b) and cyclooxygenase-2 (cox2a and cox2b) after PTZ-induced seizures in the brain of zebrafish 7 days post fertilization. Furthermore, we exposed the fish to the nonsteroidal anti-inflammatory drug indomethacin prior to PTZ, and we measured its effect on seizure latency, number of seizure behaviors, and mRNA expression of il1b, cox2b, and c-fos. We used quantitative real-time PCR to assess the mRNA expression of il1b, cox2a, cox2b, and c-fos, and visual inspection was used to monitor seizure latency and the number of seizure-like behaviors. Results We found a short-term upregulation of il1b, and we revealed that cox2b, but not cox2a, was induced after seizures. Indomethacin treatment prior to PTZ-induced seizures downregulated the mRNA expression of il1b, cox2b, and c-fos. Moreover, we observed that in larvae exposed to indomethacin, seizure latency increased and the number of seizure-like behaviors decreased. Conclusions This is the first study showing that il1b and cox-2 transcripts are upregulated following PTZ-induced seizures in zebrafish. In addition, we demonstrated the anticonvulsant effect of indomethacin based on (1) the inhibition of PTZ-induced c-fos transcription, (2) increase in seizure latency, and (3) decrease in the number of seizure-like behaviors. Furthermore, anti-inflammatory effect of indomethacin is clearly demonstrated by the downregulation of the mRNA expression of il1b and cox2b. Our results are supported by previous evidences suggesting that zebrafish is a suitable alternative for studying inflammation, seizures, and the effect of anti-inflammatory compounds on seizure suppression.
Collapse
|
22
|
Single dose efficacy evaluation of two partial benzodiazepine receptor agonists in photosensitive epilepsy patients: A placebo-controlled pilot study. Epilepsy Res 2016; 122:30-6. [PMID: 26921854 DOI: 10.1016/j.eplepsyres.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022]
Abstract
Benzodiazepines (BZDs) are highly effective to suppress various types of seizures; however, their clinical use is limited due to adverse effects and tolerance and dependence liability. Drugs that act only as partial agonists at the BZD recognition site (initially termed "BZD receptor") of the GABAA receptor chloride ionophore complex or exhibit a GABAA receptor subtype-selectivity are thought to have advantages vs. full agonists such as diazepam and most other clinically used BZDs in that such compounds have less adverse effects and reduced or absent tolerance and dependence liability. One of such compounds, abecarnil, has been clinically evaluated as a novel anxiolytic drug, but, despite its potent preclinical anti-seizure activity, it has not yet been evaluated in patients with epilepsy. In the present proof-of-concept study, we performed a within-subject placebo-controlled, single oral dose study of abecarnil in patients with photosensitive epilepsy. Flumazenil, which is generally considered a BZD receptor antagonist, but has slight partial agonistic properties, was used for comparison. In total, 12 patients were enrolled in this study. Abecarnil, 5 or 10mg, completely abolished the photo-paroxysmal EEG response, while flumazenil, 30, 60 or 100mg, was less effective. The anti-epileptic effect of abecarnil was significantly different from both placebo and flumazenil. Sedative adverse effects were observed after abecarnil but not flumazenil. The study substantiates previous pre-clinical experiments that abecarnil exerts pronounced anti-seizure activity. Epilepsy is often associated with anxiety, so that the anxiolytic activity of abecarnil would be an added advantage when using this compound in epilepsy patients.
Collapse
|
23
|
Guida M, Iudice A, Bonanni E, Giorgi FS. Effects of antiepileptic drugs on interictal epileptiform discharges in focal epilepsies: an update on current evidence. Expert Rev Neurother 2015; 15:947-59. [PMID: 26162283 DOI: 10.1586/14737175.2015.1065180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interictal epileptiform discharges (IEDs), occurring in the electroencephalograms (EEG) of patients with focal epilepsy, are crucial for diagnosis, while their relationship with seizure severity and recurrence is controversial. The effects of antiepileptic drugs (AEDs) on IEDs are even more debated. In general, it is currently believed by experts in the field that most of the classical AEDs do not significantly affect IEDs occurrence in these patients, and that monitoring their EEG effects during treatment is useless. In this review, we update the existing literature on the effects of classical and newer AEDs on focal IEDs, emphasizing the scarcity of data concerning the latter. We also discuss potential limits of available clinical and experimental data and future perspectives.
Collapse
Affiliation(s)
- Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa-Pisa University Hospital, Pisa, Italy
| | | | | | | |
Collapse
|