1
|
Zhang C, Ge L, Xie H, Liu X, Xun C, Chen Y, Chen H, Lu M, Chen P. Retinoic acid induced specific changes in the phosphoproteome of C17.2 neural stem cells. J Cell Mol Med 2024; 28:e18205. [PMID: 38506089 PMCID: PMC10951872 DOI: 10.1111/jcmm.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/β-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Cheng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouPR China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated HospitalHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Huali Xie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Xiaoqian Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Yan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Haiyan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| |
Collapse
|
2
|
Jin Q, Huo C, Yang W, Jin K, Cai S, Zheng Y, Huang B, Wei L, Zhang M, Han Y, Zhang X, Liu Y, Wang X. Regulation of Tyrosinase Gene Expression by Retinoic Acid Pathway in the Pacific Oyster Crassostrea gigas. Int J Mol Sci 2022; 23:12840. [PMID: 36361629 PMCID: PMC9656583 DOI: 10.3390/ijms232112840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 08/26/2023] Open
Abstract
Retinoic acid (RA) plays important roles in various biological processes in animals. RA signaling is mediated by two types of nuclear receptors, namely retinoic acid receptor (RAR) and retinoid x receptor (RXR), which regulate gene expression by binding to retinoic acid response elements (RAREs) in the promoters of target genes. Here, we explored the effect of all-trans retinoic acid (ATRA) on the Pacific oyster Crassostera gigas at the transcriptome level. A total of 586 differentially expressed genes (DEGs) were identified in C. gigas upon ATRA treatment, with 309 upregulated and 277 downregulated genes. Bioinformatic analysis revealed that ATRA affects the development, metabolism, reproduction, and immunity of C. gigas. Four tyrosinase genes, including Tyr-6 (LOC105331209), Tyr-9 (LOC105346503), Tyr-20 (LOC105330910), and Tyr-12 (LOC105320007), were upregulated by ATRA according to the transcriptome data and these results were verified by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. In addition, increased expression of Tyr (a melanin-related TYR gene in C. gigas) and Tyr-2 were detected after ATRA treatment. The yeast one-hybrid assay revealed the DNA-binding activity of the RA receptors CgRAR and CgRXR, and the interaction of CgRAR with RARE present in the Tyr-2 promoter. These results provide evidence for the further studies on the role of ATRA and the mechanism of RA receptors in mollusks.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chuncao Huo
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenhao Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Kaidi Jin
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
3
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
5
|
Ligands and DNA in the allosteric control of retinoid receptors function. Essays Biochem 2021; 65:887-899. [PMID: 34296739 DOI: 10.1042/ebc20200168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,β,γ) and three retinoid X receptor (RXRα,β,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.
Collapse
|
6
|
Yang FC, Xu F, Wang TN, Chen GX. Roles of vitamin A in the regulation of fatty acid synthesis. World J Clin Cases 2021; 9:4506-4519. [PMID: 34222419 PMCID: PMC8223857 DOI: 10.12998/wjcc.v9.i18.4506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary macronutrients and micronutrients play important roles in human health. On the other hand, the excessive energy derived from food is stored in the form of triacylglycerol. A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase, fatty acid synthase, fatty acid elongases, and desaturases. As a micronutrient, vitamin A is essential for the health of humans. Recently, vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism. This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis. It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo. It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis. Future research directions are also discussed.
Collapse
Affiliation(s)
- Fu-Chen Yang
- Food College, Jiangsu Food and Pharmaceutical College, Huaian 223003, Jiangsu Province, China
| | - Feng Xu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Tian-Nan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37909, United States
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37909, United States
| |
Collapse
|
7
|
Jin K, Jin Q, Cai Z, Huang B, Wei L, Zhang M, Guo W, Liu Y, Wang X. Molecular Characterization of Retinoic Acid Receptor CgRAR in Pacific Oyster ( Crassostrea gigas). Front Physiol 2021; 12:666842. [PMID: 33897474 PMCID: PMC8060629 DOI: 10.3389/fphys.2021.666842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Retinoic acid (RA) signaling pathways mediated by RA receptors (RARs) are essential for many physiological processes such as organ development, regeneration, and differentiation in animals. Recent studies reveal that RARs identified in several mollusks, including Pacific oyster Crassostrea gigas, have a different function mechanism compared with that in chordates. In this report, we identified the molecular characteristics of CgRAR to further explore the mechanism of RAR in mollusks. RT-qPCR analysis shows that CgRAR has a higher expression level in the hemocytes and gonads, indicating that CgRAR may play roles in the processes of development and metabolism. The mRNA expression level of both CgRAR and CgRXR was analyzed by RT-qPCR after injection with RA. The elevated expression of CgRAR and CgRXR was detected upon all-trans-RA (ATRA) exposure. Finally, according to the results of Yeast Two-Hybrid assay and co-immunoprecipitation analysis, CgRAR and CgRXR can interact with each other through the C-terminal region. Taken together, our results suggest that CgRAR shows a higher expression level in gonads and hemocytes. ATRA exposure up-regulates the expression of CgRAR and CgRXR. Besides, CgRAR can interact with CgRXR to form a heterodimer complex.
Collapse
Affiliation(s)
- Kaidi Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Qianqian Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
8
|
Hughes CHK, Murphy BD. Nuclear receptors: Key regulators of somatic cell functions in the ovulatory process. Mol Aspects Med 2020; 78:100937. [PMID: 33288229 DOI: 10.1016/j.mam.2020.100937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
The development of the ovarian follicle to its culmination by ovulation is an essential element of fertility. The final stages of ovarian follicular growth are characterized by granulosa cell proliferation and differentiation, and steroid synthesis under the influence of follicle-stimulating hormone (FSH). The result is a population of granulosa cells poised to respond to the ovulatory surge of luteinizing hormone (LH). Members of the nuclear receptor superfamily of transcription factors play indispensable roles in the regulation of these events. The key regulators of the final stages of follicular growth that precede ovulation from this family include the estrogen receptor beta (ESR2) and the androgen receptor (AR), with additional roles for others, including steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1). Following the LH surge, the mural and cumulus granulosa cells undergo rapid changes that result in expansion of the cumulus layer, and a shift in ovarian steroid hormone biosynthesis from estradiol to progesterone production. The nuclear receptor best associated with these events is LRH-1. Inadequate cumulus expansion is also observed in the absence of AR and ESR2, but not the progesterone receptor (PGR). The terminal stages of ovulation are regulated by PGR, which increases the abundance of the proteases that are directly responsible for rupture. It further regulates the prostaglandins and cytokines associated with the inflammatory-like characteristics of ovulation. LRH-1 regulates PGR, and is also a key regulator of steroidogenesis, cellular proliferation, and cellular migration, and cytoskeletal remodeling. In summary, nuclear receptors are among the panoply of transcriptional regulators with roles in ovulation, and several are necessary for normal ovarian function.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada.
| |
Collapse
|
9
|
Guo P, Ji Z, Jiang H, Huang X, Wang C, Pan B. Identification of a novel CYP26A1 mutation in a Chinese family with congenital microtia. Int J Pediatr Otorhinolaryngol 2020; 139:110488. [PMID: 33197841 DOI: 10.1016/j.ijporl.2020.110488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Microtia is defined as a congenital malformation characterized by a small, abnormally shaped auricle, with atresia or stenosis of the auditory canal. This study investigated a mutation of the cytochrome P450, family 26, subfamily A, polypeptide 1(CYP26A1) gene, which is considered important in craniofacial development, in a family affected with microtia. METHODS Whole-exome sequencing (WES) was performed on the proband and his family members to identify disease-associated variants. Computational predictions of the altered protein were analyzed using several bioinformatics tools. The wild-type (WT) and mutant forms of CYP26A1 cDNA were transfected into human embryonic kidney cells, and the mRNA and protein levels were compared using quantitative polymerase chain reaction (qPCR) and Western blot analyses. RESULTS In this two-generation family, the proband and his mother were diagnosed with unilateral microtia. Unilateral microtia and ipsilateral accessory ear were observed in one of the twins, who were sisters of the proband. The father and the other twin showed no abnormal clinical features. A heterozygous mutation of a C to T in the CYP26A1 gene, which leads to truncation of the CYP26A1 protein, was identified in this family. The nonsense mutation cosegregated with patients and was absent in normal members of the family. The prediction software indicated that it was a possibly pathogenic mutation. The structure of the protein varied significantly between the WT and mutant proteins. Functional analysis showed that this mutation caused a significant decrease in both the mRNA and protein levels. CONCLUSIONS Our findings suggest that this mutation of CYP26A1 may be a pathogenic factor leading to the phenotypes of microtia and accessory ear in this family. Further studies are needed to prove the function of this mutation and to explore the possible mechanism by which this variant is involved in the occurrence of microtia.
Collapse
Affiliation(s)
- Peipei Guo
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China.
| | - Zhonglei Ji
- Affiliated Hospital of Weifang Medical University, Shandong, 261031, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China
| | - Xin Huang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China
| | - Changchen Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China.
| |
Collapse
|
10
|
Tan M, Yang T, Liu H, Xiao L, Li C, Zhu J, Chen J, Li T. Maternal vitamin A deficiency impairs cholinergic and nitrergic neurons, leading to gastrointestinal dysfunction in rat offspring via RARβ. Life Sci 2020; 264:118688. [PMID: 33130074 DOI: 10.1016/j.lfs.2020.118688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
AIMS Many gastrointestinal (GI) disorders are developmental in origin and are caused by abnormal enteric nervous system (ENS) formation. Maternal vitamin A deficiency (VAD) during pregnancy affects multiple central nervous system developmental processes during embryogenesis and fetal life. Here, we evaluated whether maternal diet-induced VAD during pregnancy alone can cause changes in the ENS that lead to GI dysfunction in rat offspring. MAIN METHODS Rats were selected to construct animal models of normal VA, VA deficiency and VA supplementation. The fecal water content, total gastrointestinal transmission time and colonic motility were measured to evaluate gastrointestinal function of eight-week-old offspring rats. The expression levels of RARβ, SOX10, cholinergic (ChAT) and nitrergic (nNOS) enteric neurons in colon tissues were detected through western blot and immunofluorescence. Primary enteric neurospheres were treated with retinoic acid (RA), infection with Ad-RARβ and siRARβ adenovirus, respectively. KEY FINDINGS Our data revealed marked reductions in the mean densities of cholinergic and nitrergic enteric neurons in the colon and GI dysfunction evidenced by mild intestinal flatulence, increased fecal water content, prolonged total GI transit time and reduced colon motility in adult offspring of the VAD group. Interestingly, maternal VA supplementation (VAS) during pregnancy rescued these changes. In addition, in vitro experiments demonstrated that exposure to appropriate doses of RA promoted enteric neurosphere differentiation into cholinergic and nitrergic neurons, possibly by upregulating RARβ expression, leading to enhanced SOX10 expression. SIGNIFICANCE Maternal VAD during pregnancy is an environmental risk factor for GI dysfunction in rat offspring.
Collapse
Affiliation(s)
- Mei Tan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Cheng Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
11
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
12
|
Chevalier RL. Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD. KIDNEY360 2020; 1:863-879. [PMID: 35372951 PMCID: PMC8815749 DOI: 10.34067/kid.0002012020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 05/24/2023]
Abstract
There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.
Collapse
|
13
|
Fonseca E, Ruivo R, Borges D, Franco JN, Santos MM, C. Castro LF. Of Retinoids and Organotins: The Evolution of the Retinoid X Receptor in Metazoa. Biomolecules 2020; 10:biom10040594. [PMID: 32290525 PMCID: PMC7225927 DOI: 10.3390/biom10040594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors (NRs) are transcription factors accomplishing a multiplicity of functions, essential for organismal homeostasis. Among their numerous members, the retinoid X receptor (RXR) is a central player of the endocrine system, with a singular ability to operate as a homodimer or a heterodimer with other NRs. Additionally, RXR has been found to be a critical actor in various processes of endocrine disruption resulting from the exposure to a known class of xenobiotics termed organotins (e.g., tributyltin (TBT)), including imposex in gastropod molluscs and lipid perturbation across different metazoan lineages. Thus, given its prominent physiological and endocrine role, RXR is present in the genomes of most extant metazoan species examined to date. Here, we expand on the phylogenetic distribution of RXR across the metazoan tree of life by exploring multiple next-generation sequencing projects of protostome lineages. By addressing amino acid residue conservation in combination with cell-based functional assays, we show that RXR induction by 9-cis retinoic acid (9cisRA) and TBT is conserved in more phyla than previously described. Yet, our results highlight distinct activation efficacies and alternative modes of RXR exploitation by the organotin TBT, emphasizing the need for broader species sampling to clarify the mechanistic activation of RXR.
Collapse
Affiliation(s)
- Elza Fonseca
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- MARE—Marine and Environmental Sciences Centre, ESTM, 2520-637 Peniche, Portugal
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
| | - Débora Borges
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
| | - João N. Franco
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- MARE—Marine and Environmental Sciences Centre, ESTM, 2520-637 Peniche, Portugal
| | - Miguel M. Santos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Correspondence: (M.M.S.); (L.F.C.C.); Tel.: +351-223-401-800 (M.M.S. or L.F.C.C.)
| | - L. Filipe C. Castro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Correspondence: (M.M.S.); (L.F.C.C.); Tel.: +351-223-401-800 (M.M.S. or L.F.C.C.)
| |
Collapse
|
14
|
Retinoic Acid Signaling Regulates the Metamorphosis of Feather Stars (Crinoidea, Echinodermata): Insight into the Evolution of the Animal Life Cycle. Biomolecules 2019; 10:biom10010037. [PMID: 31881787 PMCID: PMC7023313 DOI: 10.3390/biom10010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Many marine invertebrates have a life cycle with planktonic larvae, although the evolution of this type of life cycle remains enigmatic. We recently proposed that the regulatory mechanism of life cycle transition is conserved between jellyfish (Cnidaria) and starfish (Echinoderm); retinoic acid (RA) signaling regulates strobilation and metamorphosis, respectively. However, the function of RA signaling in other animal groups is poorly understood in this context. Here, to determine the ancestral function of RA signaling in echinoderms, we investigated the role of RA signaling during the metamorphosis of the feather star, Antedon serrata (Crinoidea, Echinodermata). Although feather stars have different larval forms from starfish, we found that exogenous RA treatment on doliolaria larvae induced metamorphosis, like in starfish. Furthermore, blocking RA synthesis or binding to the RA receptor suppressed metamorphosis. These results suggested that RA signaling functions as a regulator of metamorphosis in the ancestor of echinoderms. Our data provides insight into the evolution of the animal life cycle from the viewpoint of RA signaling.
Collapse
|
15
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
16
|
Champeris Tsaniras S, Delinasios GJ, Petropoulos M, Panagopoulos A, Anagnostopoulos AK, Villiou M, Vlachakis D, Bravou V, Stathopoulos GT, Taraviras S. DNA Replication Inhibitor Geminin and Retinoic Acid Signaling Participate in Complex Interactions Associated With Pluripotency. Cancer Genomics Proteomics 2019; 16:593-601. [PMID: 31659113 PMCID: PMC6885373 DOI: 10.21873/cgp.20162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Several links between DNA replication, pluripotency and development have been recently identified. The involvement of miRNA in the regulation of cell cycle events and pluripotency factors has also gained attention. MATERIALS AND METHODS In the present study, we used the g:Profiler platform to analyze transcription factor binding sites, miRNA networks and protein-protein interactions to identify novel links among the aforementioned processes. RESULTS AND CONCLUSION A complex circuitry between retinoic acid signaling, SWI/SNF components, pluripotency factors including Oct4, Sox2 and Nanog and cell cycle regulators was identified. It is suggested that the DNA replication inhibitor geminin plays a central role in this circuitry.
Collapse
Affiliation(s)
- Spyridon Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | | | | | | | - Athanasios K Anagnostopoulos
- International Institute of Anticancer Research, Kapandriti, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Villiou
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
17
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
18
|
Barandeh B, Amini Mahabadi J, Azadbakht M, Gheibi Hayat SM, Amini A. The protective effects of curcumin on cytotoxic and teratogenic activity of retinoic acid in mouse embryonic liver. J Cell Biochem 2019; 120:19371-19376. [DOI: 10.1002/jcb.28934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Behrouz Barandeh
- Department of Biology, Faculty of Science Razi University Kermanshah Iran
| | | | - Mehri Azadbakht
- Department of Biology, Faculty of Science Razi University Kermanshah Iran
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Ali Amini
- Department of Biology, Faculty of Science Razi University Kermanshah Iran
| |
Collapse
|
19
|
Yamada S, Kanda Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J Pharmacol Sci 2019; 140:337-344. [DOI: 10.1016/j.jphs.2019.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
|
20
|
Kim HM, Weber JA, Lee N, Park SG, Cho YS, Bhak Y, Lee N, Jeon Y, Jeon S, Luria V, Karger A, Kirschner MW, Jo YJ, Woo S, Shin K, Chung O, Ryu JC, Yim HS, Lee JH, Edwards JS, Manica A, Bhak J, Yum S. The genome of the giant Nomura's jellyfish sheds light on the early evolution of active predation. BMC Biol 2019; 17:28. [PMID: 30925871 PMCID: PMC6441219 DOI: 10.1186/s12915-019-0643-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. RESULTS We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). CONCLUSIONS Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.
Collapse
Affiliation(s)
- Hak-Min Kim
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nayoung Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Seung Gu Park
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yun Sung Cho
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Clinomics Inc., Ulsan, 44919, Republic of Korea
| | - Youngjune Bhak
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nayun Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Yeonsu Jeon
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungwon Jeon
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Victor Luria
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT - Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Jin Jo
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Seonock Woo
- Faculty of Marine Environmental Science, University of Science and Technology (UST), Geoje, 53201, Republic of Korea
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Kyoungsoon Shin
- Ballast Water Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Oksung Chung
- Clinomics Inc., Ulsan, 44919, Republic of Korea
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea
| | - Jae-Chun Ryu
- Cellular and Molecular Toxicology Laboratory, Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Jeremy S Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jong Bhak
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Clinomics Inc., Ulsan, 44919, Republic of Korea.
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea.
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea.
- Faculty of Marine Environmental Science, University of Science and Technology (UST), Geoje, 53201, Republic of Korea.
| |
Collapse
|
21
|
Liu J, Huang JG, Zeng JZ. Targeting Non-Genomic Activity of Retinoic Acid Receptor-Gamma by Acacetin. Methods Mol Biol 2019; 2019:15-31. [PMID: 31359386 DOI: 10.1007/978-1-4939-9585-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Retinoic acid receptors (RARs) are ligand-dependent transcription factors of nuclear hormone receptor superfamily (NR). They are important pharmacological targets and current drug development paradigms are largely based on their nuclear transcription mechanism (genomic action). However, the side effects and limited therapeutic efficacy of retinoid-like drugs with such strategy remain a problem in clinical practice. Increasing evidences have demonstrated that many NRs including RARs can act outside the nucleus in a transcription-independent manner (non-genomic action), which are often implicated in human pathological conditions, suggesting that targeting to the non-genomic signaling of NRs is an alternative method for drug discovery. We recently reported that acacetin could antagonize the non-genomic action of RARγ via tipping the balance of AKT-p53 driven by RARγ from tumor promoting to tumor suppressive effect. This chapter provides methodology for identification of acacetin as a ligand and regulator of non-genomic signaling of RARγ. These laboratory protocols should be helpful for those researchers and beginners who are passionate about identifying chemical leads to probe the non-genomic roles of RARs and other NRs for developing new therapeutic technologies.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jian-Gang Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
22
|
Barbalho SM, Goulart RDA, Batista GLDSA. Vitamin A and inflammatory bowel diseases: from cellular studies and animal models to human disease. Expert Rev Gastroenterol Hepatol 2019; 13:25-35. [PMID: 30791845 DOI: 10.1080/17474124.2019.1543588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin A (VA) and metabolites such as Retinoic Acid (RA) and all-trans-RA (at-RA) are crucial in the modulation of the immune system and may be determinative in the balance of the immune responses. Inflammatory bowel diseases (IBD) consist of chronic relapsing and heterogeneous disorders with not well-known etiology. Due to its role in inflammatory processes, VA may be helpful in the treatment of IBD. Area covered: As VA plays a significant role in the inflammatory processes, this review aims to show the potential role of this vitamin in IBD, searching for cellular studies, animal models, and studies with humans. Expert commentary: Many studies have described the importance of alternative therapeutic approaches for IBD. Due to its role in the immune system, VA may also exert an indispensable role in the IBD. Nevertheless, some authors have shown that these compounds could stimulate the release of pro-inflammatory cytokines. For these reasons, more studies should be performed to establish the precise mechanisms of VA and its metabolites in systemic and intestinal inflammation.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- a School of Medicine , University of Marília (UNIMAR) , São Paulo , Brazil.,b Department of Biochemistry and Nutrition , Faculty of Food Technology of Marília (FATEC) , São Paulo , Brazil
| | | | | |
Collapse
|
23
|
GPRC5A: An Emerging Biomarker in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1823726. [PMID: 30417009 PMCID: PMC6207857 DOI: 10.1155/2018/1823726] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Aberrant expression of G protein-coupled receptors (GPCRs) is frequently associated with tumorigenesis. G Protein-coupled receptor class C group 5 member A (GPRC5A) is a member of the GPCR superfamily, is expressed preferentially in lung tissues, and is regulated by various entities at multiple levels. GPRC5A exerts a tumor suppressive role in lung cancer and GPRC5A deletion promotes lung tumor initiation and progression. Recent advances have highlighted that GPRC5A dysregulation is found in various human cancers and is related to many tumor-associated signaling pathways, including the cyclic adenosine monophosphate (cAMP), nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT) 3, and focal adhesion kinase (FAK)/Src signaling. This review aimed to summarize our updated view on the biology and regulation of GPRC5A, its expression in human cancers, and the linked signaling pathways. A better comprehension of the underlying cellular and molecular mechanisms of GPRC5A will provide novel insights into its potential diagnostic and therapeutic value.
Collapse
|
24
|
Markov GV, Girard J, Laudet V, Leblanc C. Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. Gen Comp Endocrinol 2018; 265:41-45. [PMID: 29908834 DOI: 10.1016/j.ygcen.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/30/2018] [Accepted: 06/13/2018] [Indexed: 02/09/2023]
Abstract
Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors.
Collapse
Affiliation(s)
- Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Jean Girard
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Sorbonne Université, Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|
25
|
Yamakawa S, Morino Y, Honda M, Wada H. The role of retinoic acid signaling in starfish metamorphosis. EvoDevo 2018; 9:10. [PMID: 29721256 PMCID: PMC5910596 DOI: 10.1186/s13227-018-0098-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/12/2018] [Indexed: 01/01/2023] Open
Abstract
Background Although retinoic acid (RA) signaling plays a crucial role in the body patterning of chordates, its function in non-chordate invertebrates, other than its mediation of environmental cues triggering metamorphosis in cnidarians, is largely unknown. We investigated the role of RA signaling in the metamorphosis of starfish (Echinodermata). Results We found that exogenous RA treatment induced metamorphosis in starfish larvae. In contrast, inhibitors of RA synthesis and RA receptors suppressed metamorphosis triggered by attachment to a substrate. Gene expressions of the RA signaling component were detected in competent larvae. Conclusions This study provides insight into the ancestral function of RA signaling, which is conserved in the metamorphosis of cnidarians and starfish. Electronic supplementary material The online version of this article (10.1186/s13227-018-0098-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Masanao Honda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
26
|
Kona SL, Shrestha A, Yi X, Joseph S, Barona HM, Martinez-Ceballos E. RARβ2-dependent signaling represses neuronal differentiation in mouse ES cells. Differentiation 2017; 98:55-61. [PMID: 29154149 PMCID: PMC5726922 DOI: 10.1016/j.diff.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Embryonic Stem (ES) cells are pluripotent cells that can be induced to differentiate into cells of all three lineages: mesoderm, endoderm, and ectoderm. In culture, ES cells can be differentiated into mature neurons by treatment with Retinoic Acid (RA) and this effect is mediated mainly through the activation of the RA nuclear receptors (RAR α, β, and γ), and their isoforms. However, little is known about the role played by specific RAR types on ES cell differentiation. Here, we found that treatment of ES cells with AC55649, an RARβ2 agonist, increased endodermal marker gene expression. On the other hand, we found that the inhibition of RARβ with 5μM LE135, together with RA treatment, increased the efficiency of mouse ES cell differentiation into neurons by more than 4-fold as compared to cells treated with RA only. Finally, we performed proteomic analyses on ES cells treated with RA vs RA plus AC55649 in order to identify the signaling pathways activated by the RARβ agonist. Our proteomic analyses using antibody microarrays indicated that proteins such as p38 and AKT were upregulated in cells treated with RA plus the agonist, as compared to cells treated with RA alone. Our results indicate that RARβ may function as a repressor of neuronal differentiation through the activation of major cell signaling pathways, and that the pharmacological inhibition of this nuclear receptor may constitute a novel method to increase the efficiency of ES to neuronal differentiation in culture.
Collapse
Affiliation(s)
- Sri L Kona
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Amita Shrestha
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Xiaoping Yi
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Serenthia Joseph
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Humberto Munoz Barona
- Department of Physics and Mathematics, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Eduardo Martinez-Ceballos
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA.
| |
Collapse
|
27
|
Lan L, Basourakos S, Cui D, Zuo X, Deng W, Huo L, Chen H, Zhang G, Deng L, Shi B, Luo Y. ATRA increases iodine uptake and inhibits the proliferation and invasiveness of human anaplastic thyroid carcinoma SW1736 cells: Involvement of β-catenin phosphorylation inhibition. Oncol Lett 2017; 14:7733-7738. [PMID: 29344218 PMCID: PMC5755144 DOI: 10.3892/ol.2017.7225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
All-trans-retinoic acid (ATRA) can enhance iodine uptake capability of thyroid tumors, but the mechanisms remain poorly understood. The aim of the present study was to investigate the effects of ATRA on isotope susceptibility, proliferation and invasion of anaplastic thyroid carcinoma (ATC) and potential mechanisms. SW1736 cells were treated with 1 µmol/l ATRA or 1% ethanol for 5 days. A cell line stably expressing β-catenin-shRNA was established. An iodine uptake assay was performed using 125I. Proliferation and invasiveness were tested using MTT and Transwell assays, respectively. Western blotting was used to assess the expression of β-catenin, glycogen synthase kinase-3β (GSK-3β), sodium/iodine symporter (NIS) and proteins involved in epithelial-mesenchymal transition. Cells pretreated with ATRA were injected subcutaneously into SCID mice. Mice were intraperitoneally injected with 131I once on the first day of treatment, and tumor growth was then assessed. After 35 days of 131I treatment, ATRA-pretreated tumor volume and weight were decreased compared with the 131I alone group (163.32±19.57 vs. 332.06±21.37 mm3; 0.35±0.14 vs. 0.67±0.23 g, both P<0.05). Similar results were observed in the β-catenin shRNA-pretreated tumors. ATRA also increased the uptake of iodine by SW1736 cells (P<0.01), and similar results were observed in β-catenin shRNA cells. ATRA treatment decreased the cell proliferation and invasion compared with control cells (all P<0.05), similar to β-catenin shRNA. ATRA treatment decreased the expression of phosphorylated (p-)β-catenin, p-GSK-3β, vimentin, and fibronectin, and increased the expression of NIS and E-cadherin, compared with the control. ATRA increased the iodine uptake and inhibited the proliferation and invasion of SW1736 cells, involving β-catenin phosphorylation. In conclusion, ATRA could be used to improve the isotope sensitivity of ATC.
Collapse
Affiliation(s)
- Ling Lan
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Spyros Basourakos
- Department of Genitourinary, Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Dai Cui
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xuemei Zuo
- Department of Genitourinary, Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Wei Deng
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Lili Huo
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Hailing Chen
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Guoying Zhang
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Lili Deng
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yong Luo
- Department of Genitourinary, Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA.,Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
28
|
Novotný JP, Chughtai AA, Kostrouchová M, Kostrouchová V, Kostrouch D, Kaššák F, Kaňa R, Schierwater B, Kostrouchová M, Kostrouch Z. Trichoplax adhaerens reveals a network of nuclear receptors sensitive to 9- cis-retinoic acid at the base of metazoan evolution. PeerJ 2017; 5:e3789. [PMID: 28975052 PMCID: PMC5624297 DOI: 10.7717/peerj.3789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell) includes four nuclear receptors, namely orthologue of RXR (NR2B), HNF4 (NR2A), COUP-TF (NR2F) and ERR (NR3B) that show a high degree of similarity with human orthologues. In the case of RXR, the sequence identity to human RXR alpha reaches 81% in the DNA binding domain and 70% in the ligand binding domain. We show that T. adhaerens RXR (TaRXR) binds 9-cis retinoic acid (9-cis-RA) with high affinity, as well as high specificity and that exposure of T. adhaerens to 9-cis-RA regulates the expression of the putative T. adhaerens orthologue of vertebrate L-malate-NADP+ oxidoreductase (EC 1.1.1.40) which in vertebrates is regulated by a heterodimer of RXR and thyroid hormone receptor. Treatment by 9-cis-RA alters the relative expression profile of T. adhaerens nuclear receptors, suggesting the existence of natural ligands. Keeping with this, algal food composition has a profound effect on T. adhaerens growth and appearance. We show that nanomolar concentrations of 9-cis-RA interfere with T. adhaerens growth response to specific algal food and causes growth arrest. Our results uncover an endocrine-like network of nuclear receptors sensitive to 9-cis-RA in T. adhaerens and support the existence of a ligand-sensitive network of nuclear receptors at the base of metazoan evolution.
Collapse
Affiliation(s)
- Jan Philipp Novotný
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Medicine V., University of Heidelberg, Heidelberg, Germany
| | - Ahmed Ali Chughtai
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Markéta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - David Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Filip Kaššák
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Laboratory of Photosynthesis, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Bernd Schierwater
- Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine, Hannover, Germany.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Marta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Zdenek Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
29
|
Zhu X, Wang W, Zhang X, Bai J, Chen G, Li L, Li M. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation. PLoS One 2015; 10:e0143255. [PMID: 26571119 PMCID: PMC4646487 DOI: 10.1371/journal.pone.0143255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/02/2015] [Indexed: 01/03/2023] Open
Abstract
Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients.
Collapse
Affiliation(s)
- Xinfeng Zhu
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Wenxue Wang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650091, P. R. China
| | - Xia Zhang
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Jianhua Bai
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Gang Chen
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Li Li
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650091, P. R. China
| |
Collapse
|
30
|
Liu S, Higashihori N, Yahiro K, Moriyama K. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis. Biochem Biophys Res Commun 2015; 458:525-530. [DOI: 10.1016/j.bbrc.2015.01.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/30/2015] [Indexed: 12/29/2022]
|
31
|
Gutierrez-Mazariegos J, Nadendla EK, Lima D, Pierzchalski K, Jones JW, Kane M, Nishikawa JI, Hiromori Y, Nakanishi T, Santos MM, Castro LFC, Bourguet W, Schubert M, Laudet V. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding. Endocrinology 2014; 155:4275-86. [PMID: 25116705 PMCID: PMC4197984 DOI: 10.1210/en.2014-1181] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
Abstract
Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Eswar Kumar Nadendla
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Daniela Lima
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Keely Pierzchalski
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Jace W. Jones
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Maureen Kane
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Jun-Ichi Nishikawa
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Youhei Hiromori
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Tsuyoshi Nakanishi
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Miguel M. Santos
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - L. Filipe C. Castro
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - William Bourguet
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|