1
|
Stefanyshyn V, Sheiko M, Pyantkovska N, Stetsyuk R, Pokhylko V, Fishchuk L, Rossokha Z. Combination of 15q24 Microdeletion Syndrome and Metabolic Imbalance in a Patient with Atypical Autism. J Mol Neurosci 2024; 74:1. [PMID: 38180598 DOI: 10.1007/s12031-023-02183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024]
Abstract
Autistic spectrum disorders (ASD) in children are becoming increasingly common, reaching epidemic proportions. Among the various causes contributing to the development of ASD, the leading place belongs to both chromosomal pathologies and genetic syndromes and their consequence - metabolic imbalance or severe metabolic disorders. Depending on the degree of metabolic pathway damage, certain phenotypes of ASD are formed. A deletion of ~3.1 Mb of chromosome 15q24 was detected in the examined 2-year-old boy with a "mild phenotype" of autism without an obvious delay in mental development. A wide range of additional studies included genetic testing of folate metabolism genes and analysis of metabolites of the methylation cycle and detection of antibodies to folic acid alpha receptors. A heterozygous variant of the MTHFR gene (rs1801133), moderate hyperhomocysteinemia, hypermethylation, and an increased titer of antibodies to alpha receptors of folic acid were revealed in the patient. This clinical case indicates the need for a multifaceted clinical and laboratory examination in children with ASD to identify the metabolic phenotype and prescribe personalized treatment. A personalized treatment strategy will improve the cognitive functions, psycho-emotional state, and social adaptation of individuals with ASD in the long term."
Collapse
Affiliation(s)
| | | | | | | | | | - Liliia Fishchuk
- State Institution "Reference-Centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine.
| | - Zoia Rossokha
- State Institution "Reference-Centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| |
Collapse
|
2
|
Xiaoyan H, Zhaoxi Y, Lingli Z, Jinyuan C, Wen Q. Taurine Improved Autism-Like Behaviours and Defective Neurogenesis of the Hippocampus in BTBR Mice through the PTEN/mTOR/AKT Signalling Pathway. Folia Biol (Praha) 2024; 70:45-52. [PMID: 38830122 DOI: 10.14712/fb2024070010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Effective treatment of patients with autism spectrum disorder (ASD) is still absent so far. Taurine exhibits therapeutic effects towards the autism-like behaviour in ASD model animals. Here, we determined the mechanism of taurine effect on hippocampal neurogenesis in genetically inbred BTBR T+ tf/J (BTBR) mice, a proposed model of ASD. In this ASD mouse model, we explored the effect of oral taurine supplementation on ASD-like behaviours in an open field test, elevated plus maze, marble burying test, self-grooming test, and three-chamber test. The mice were divided into four groups of normal controls (WT) and models (BTBR), who did or did not receive 6-week taurine supplementation in water (WT, WT+ Taurine, BTBR, and BTBR+Taurine). Neurogenesis-related effects were determined by Ki67 immunofluorescence staining. Western blot analysis was performed to detect the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN)/mTOR/AKT pathway-associated proteins. Our results showed that taurine improved the autism-like behaviour, increased the proliferation of hippocampal cells, promoted PTEN expression, and reduced phosphorylation of mTOR and AKT in hippocampal tissue of the BTBR mice. In conclusion, taurine reduced the autism-like behaviour in partially inherited autism model mice, which may be associa-ted with improving the defective neural precursor cell proliferation and enhancing the PTEN-associated pathway in hippocampal tissue.
Collapse
Affiliation(s)
- Huang Xiaoyan
- Department of Child Health, Shenzhen Guangming Women and Child Healthcare Hospital, Shenzhen, China.
| | - Yang Zhaoxi
- Department of Child Health, Shenzhen Guangming Women and Child Healthcare Hospital, Shenzhen, China
| | - Zhang Lingli
- Department of Child Health, Shenzhen Guangming Women and Child Healthcare Hospital, Shenzhen, China
| | - Chen Jinyuan
- Department of Child Health, Shenzhen Guangming Women and Child Healthcare Hospital, Shenzhen, China
| | - Qin Wen
- Department of Child Health, Shenzhen Guangming Women and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
3
|
Anastasescu CM, Gheorman V, Popescu F, Stoicănescu EC, Gheorman V, Riza AL, Badea O, Streață I, Militaru F, Udriștoiu I. Serum Amino Acid Profiling in Children with Autistic Spectrum Disorder: Insights from a Single-Center Study in Southern Romania. Healthcare (Basel) 2023; 11:2487. [PMID: 37761684 PMCID: PMC10530373 DOI: 10.3390/healthcare11182487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to analyze the serum amino acid profile in children diagnosed with autistic spectrum disorder (ASD) in southern Romania. The analysis aimed to provide insights into the underlying metabolic dysregulations associated with ASD. ASD is a neurodevelopmental disorder characterized by impaired social interaction, communication deficits, and restricted repetitive behaviors. Although the exact cause of ASD is largely unknown, recent evidence suggests that abnormalities in amino acid metabolism may contribute to its pathogenesis. Therefore, studying the amino acid profile in children with ASD could offer valuable information for understanding the metabolic disturbances associated with this complex disorder. This single-center study examined serum samples from children diagnosed with ASD, utilizing advanced analytical techniques to quantify the levels of different amino acids, amino acid derivatives, and amino acid-like substances. The results showed a lower level of taurine and a higher level of asparagine and leucine in the ASD group versus the control group. In the ASD group, we observed significant differences in tryptophan and alpha-aminobutyric acid levels based on age, with higher tryptophan levels in children older than 7 years when compared to children younger than 7 years; however, no significant correlations were found with the ASD group older than 7 years old. Additionally, younger children with ASD exhibited higher levels of alpha-aminobutyric acid than older children with ASD. The findings from this study contribute to the growing body of knowledge on the metabolic aspects of ASD, highlighting potential biomarkers and therapeutic targets for improving the management and treatment of ASD in children.
Collapse
Affiliation(s)
- Cătălina Mihaela Anastasescu
- Hospital of Neuropsychiatry Craiova, Children Mental Health Center, Pharmacology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronica Gheorman
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florica Popescu
- Pharmacology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Eugen-Cristi Stoicănescu
- Pediatry Department, Emergency Clinical Hospital Râmnicu Vâlcea, 200300 Râmnicu Vâlcea, Romania;
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (F.M.); (I.U.)
| | - Anca-Lelia Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy, 050474 Craiova, Romania; (A.-L.R.); (I.S.)
| | - Oana Badea
- Department of Modern Languages, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ioana Streață
- Human Genomics Laboratory, University of Medicine and Pharmacy, 050474 Craiova, Romania; (A.-L.R.); (I.S.)
| | - Felicia Militaru
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (F.M.); (I.U.)
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (F.M.); (I.U.)
| |
Collapse
|
4
|
Bruce MR, Couch ACM, Grant S, McLellan J, Ku K, Chang C, Bachman A, Matson M, Berman RF, Maddock RJ, Rowland D, Kim E, Ponzini MD, Harvey D, Taylor SL, Vernon AC, Bauman MD, Van de Water J. Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure. Mol Psychiatry 2023; 28:2136-2147. [PMID: 36973347 PMCID: PMC10575787 DOI: 10.1038/s41380-023-02020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Maternal immune dysregulation is a prenatal risk factor for autism spectrum disorder (ASD). Importantly, a clinically relevant connection exists between inflammation and metabolic stress that can result in aberrant cytokine signaling and autoimmunity. In this study we examined the potential for maternal autoantibodies (aAbs) to disrupt metabolic signaling and induce neuroanatomical changes in the brains of exposed offspring. To accomplish this, we developed a model of maternal aAb exposure in rats based on the clinical phenomenon of maternal autoantibody-related ASD (MAR-ASD). Following confirmation of aAb production in rat dams and antigen-specific immunoglobulin G (IgG) transfer to offspring, we assessed offspring behavior and brain structure longitudinally. MAR-ASD rat offspring displayed a reduction in pup ultrasonic vocalizations and a pronounced deficit in social play behavior when allowed to freely interact with a novel partner. Additionally, longitudinal in vivo structural magnetic resonance imaging (sMRI) at postnatal day 30 (PND30) and PND70, conducted in a separate cohort of animals, revealed sex-specific differences in total and regional brain volume. Treatment-specific effects by region appeared to converge on midbrain and cerebellar structures in MAR-ASD offspring. Simultaneously, in vivo 1H magnetic resonance spectroscopy (1H-MRS) data were collected to examine brain metabolite levels in the medial prefrontal cortex. Results showed that MAR-ASD offspring displayed decreased levels of choline-containing compounds and glutathione, accompanied by increased taurine compared to control animals. Overall, we found that rats exposed to MAR-ASD aAbs present with alterations in behavior, brain structure, and neurometabolites; reminiscent of findings observed in clinical ASD.
Collapse
Affiliation(s)
- Matthew R Bruce
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Janna McLellan
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Katherine Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Christina Chang
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Angelica Bachman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Matthew Matson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Robert F Berman
- Department of Neurological Surgery, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Douglas Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, CA, USA
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew D Ponzini
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Sandra L Taylor
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
McColl ER, Croyle MA, Zamboni WC, Honer WG, Heise M, Piquette-Miller M, Goralski KB. COVID-19 Vaccines and the Virus: Impact on Drug Metabolism and Pharmacokinetics. Drug Metab Dispos 2023; 51:130-141. [PMID: 36273826 PMCID: PMC11022893 DOI: 10.1124/dmd.122.000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023] Open
Abstract
This article reports on an American Society of Pharmacology and Therapeutics, Division of Drug Metabolism and Disposition symposium held at Experimental Biology on April 2, 2022, in Philadelphia. As of July 2022, over 500 million people have been infected with SARS-CoV-2 (the virus causing COVID-19) and over 12 billion vaccine doses have been administered. Clinically significant interactions between viral infections and hepatic drug metabolism were first recognized over 40 years ago during a cluster of pediatric theophylline toxicity cases attributed to reduced hepatic drug metabolism amid an influenza B outbreak. Today, a substantive body of research supports that the activated innate immune response generally decreases hepatic cytochrome P450 activity. The interactions extend to drug transporters and other organs and have the potential to impact drug absorption, distribution, metabolism, and excretion (ADME). Based on this knowledge, altered ADME is predicted with SARS-CoV-2 infection or vaccination. The report begins with a clinical case exploring the possibility of SARS-CoV-2 vaccination increasing clozapine levels. This is followed by discussions of how SARS-CoV-2 infection or vaccines alter the metabolism and disposition of complex drugs, such as nanoparticles and biologics and small molecule therapies. The review concludes with a discussion of the effects of viral infections on placental amino acid transport and their potential to impact fetal development. The session improved our understanding of the impact of emerging viral infections and vaccine technologies on drug metabolism and disposition, which will help mitigate drug toxicity and improve drug and vaccine safety and effectiveness. SIGNIFICANCE STATEMENT: Altered pharmacokinetics of small molecule and complex molecule drugs and fetal brain distribution of amino acids following SARS-CoV-2 infection or immunization are possible. The proposed mechanisms involve decreased liver cytochrome P450 metabolism of small molecules, enhanced innate immune system metabolism of complex molecules, and altered placental and fetal blood-brain barrier amino acid transport, respectively. Future research is needed to understand the effects of these interactions on adverse drug responses, drug and vaccine safety, and effectiveness and fetal neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Maria A Croyle
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William C Zamboni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William G Honer
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Mark Heise
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Indika NLR, Deutz NEP, Engelen MPKJ, Peiris H, Wijetunge S, Perera R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie 2021; 184:143-157. [PMID: 33675854 DOI: 10.1016/j.biochi.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.
Collapse
Affiliation(s)
- Neluwa-Liyanage R Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Hemantha Peiris
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Swarna Wijetunge
- Child and Adolescent Mental Health Service, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
8
|
Xu XJ, Cai XE, Meng FC, Song TJ, Wang XX, Wei YZ, Zhai FJ, Long B, Wang J, You X, Zhang R. Comparison of the Metabolic Profiles in the Plasma and Urine Samples Between Autistic and Typically Developing Boys: A Preliminary Study. Front Psychiatry 2021; 12:657105. [PMID: 34149478 PMCID: PMC8211775 DOI: 10.3389/fpsyt.2021.657105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is defined as a pervasive developmental disorder which is caused by genetic and environmental risk factors. Besides the core behavioral symptoms, accumulated results indicate children with ASD also share some metabolic abnormalities. Objectives: To analyze the comprehensive metabolic profiles in both of the first-morning urine and plasma samples collected from the same cohort of autistic boys. Methods: In this study, 30 autistic boys and 30 tightly matched healthy control (HC) boys (age range: 2.4~6.7 years) were recruited. First-morning urine and plasma samples were collected and the liquid chromatography-mass spectrometry (LC-MS) was applied to obtain the untargeted metabolic profiles. The acquired data were processed by multivariate analysis and the screened metabolites were grouped by metabolic pathway. Results: Different discriminating metabolites were found in plasma and urine samples. Notably, taurine and catechol levels were decreased in urine but increased in plasma in the same cohort of ASD children. Enriched pathway analysis revealed that perturbations in taurine and hypotaurine metabolism, phenylalanine metabolism, and arginine and proline metabolism could be found in both of the plasma and urine samples. Conclusion: These preliminary results suggest that a series of common metabolic perturbations exist in children with ASD, and confirmed the importance to have a comprehensive analysis of the metabolites in different biological samples to reveal the full picture of the complex metabolic patterns associated with ASD. Further targeted analyses are needed to validate these results in a larger cohort.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-E Cai
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Fan-Chao Meng
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Jia Song
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Beijing, China.,Peking University McGovern Institute, Peking University, Beijing, China
| | - Xiao-Xi Wang
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi-Zhen Wei
- Department of Education, Peking Union Medical College Hospital, Beijing, China
| | - Fu-Jun Zhai
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Long
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zhang
- Key Laboratory for Neuroscience, Ministry of Education of China, Neuroscience Research Institute, Beijing, China.,Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Ma Y, Zhou H, Li C, Zou X, Luo X, Wu L, Li T, Chen X, Mao M, Huang Y, Li E, An Y, Zhang L, Wang T, Xu X, Yan W, Jiang Y, Wang Y. Differential Metabolites in Chinese Autistic Children: A Multi-Center Study Based on Urinary 1H-NMR Metabolomics Analysis. Front Psychiatry 2021; 12:624767. [PMID: 34045978 PMCID: PMC8144639 DOI: 10.3389/fpsyt.2021.624767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a group of early-onset neurodevelopmental disorders. However, there is no valuable biomarker for the early diagnosis of ASD. Our large-scale and multi-center study aims to identify metabolic variations between ASD and healthy children and to investigate differential metabolites and associated pathogenic mechanisms. Methods: One hundred and seventeen autistic children and 119 healthy children were recruited from research centers of 7 cities. Urine samples were assayed by 1H-NMR metabolomics analysis to detect metabolic variations. Multivariate statistical analysis, including principal component analysis (PCA), and orthogonal projection to latent structure discriminant analysis (OPLS-DA), as well as univariate analysis were used to assess differential metabolites between the ASD and control groups. The differential metabolites were further analyzed by receiver operating characteristics (ROC) curve analysis and metabolic pathways analysis. Results: Compared with the control group, the ASD group showed higher levels of glycine, guanidinoacetic acid, creatine, hydroxyphenylacetylglycine, phenylacetylglycine, and formate and lower levels of 3-aminoisobutanoic acid, alanine, taurine, creatinine, hypoxanthine, and N-methylnicotinamide. ROC curve showed relatively significant diagnostic values for hypoxanthine [area under the curve (AUC) = 0.657, 95% CI 0.588 to 0.726], creatinine (AUC = 0.639, 95% CI 0.569 to 0.709), creatine (AUC = 0.623, 95% CI 0.552 to 0.694), N-methylnicotinamide (AUC = 0.595, 95% CI 0.523 to 0.668), and guanidinoacetic acid (AUC = 0.574, 95% CI 0.501 to 0.647) in the ASD group. Combining the metabolites creatine, creatinine and hypoxanthine, the AUC of the ROC curve reached 0.720 (95% CI 0.659 to 0.777). Significantly altered metabolite pathways associated with differential metabolites were glycine, serine and threonine metabolism, arginine and proline metabolism, and taurine and hypotaurine metabolism. Conclusions: Urinary amino acid metabolites were significantly altered in children with ASD. Amino acid metabolic pathways might play important roles in the pathogenic mechanisms of ASD.
Collapse
Affiliation(s)
- Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chunpei Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaobing Zou
- Child Development Behaviour Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuerong Luo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lijie Wu
- Department of Children and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Tingyu Li
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng Mao
- Department of Child Health Care, Chengdu Women and Children's Hospital, Chengdu, China
| | - Yi Huang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Erzhen Li
- Department of Neurology, Capital Institute of Paediatrics, Beijing, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Lili Zhang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, China
| | - Yonghui Jiang
- Department of Genetics and Paediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Liang Y, Xiao Z, Ke X, Yao P, Chen Y, Lin L, Lu J. Urinary Metabonomic Profiling Discriminates Between Children with Autism and Their Healthy Siblings. Med Sci Monit 2020; 26:e926634. [PMID: 33237888 PMCID: PMC7702663 DOI: 10.12659/msm.926634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a complicated neuropsychiatric disease that displays significant heterogeneity. The diagnosis of ASD is currently primarily dependent upon descriptions of clinical symptoms, and it remains urgent to find biological markers for the detection and diagnosis of autism. The current study applied the urinary metabolic profiling approach to characterize metabolic phenotypes in ASD. Material/Methods Urine was obtained from children with ASD and their matched healthy siblings. Samples were analyzed using 1H NMR-based methods designed to measure a broad range of metabolites. Partial least-square-discriminant analysis (PLS-DA) was used to develop models to identify metabonomic variations that can be used to distinguish between individuals with ASD and their unaffected siblings. Results A significant difference was observed between the metabolomic profiles of children with ASD and that of their healthy siblings. An increase in the levels of tryptophan, hippurate, glycine, and creatine, and a decrease in trigonelline, melatonin, pantothenate, serotonin, and taurine were observed compared to the control group. We conclude that several metabolic pathways are affected by autism, which suggests that a gut-brain link may be important in the pathophysiology of ASD. Conclusions 1H NMR-based metabonomic analysis of the urine can determine perturbations of specific metabolic pathways related to ASD and help identify a characteristic metabolic fingerprint to better understand the disease and its causes.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland).,Faculty of Mental health, Shenzhen University, Shenzhen, Guangdong, China (mainland)
| | - Zhou Xiao
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland)
| | - Xiaoyin Ke
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland)
| | - Paul Yao
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland)
| | - Yangxia Chen
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland)
| | - Ling Lin
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland).,Faculty of Mental health, Shenzhen University, Shenzhen, Guangdong, China (mainland)
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Shenzhen, Guangdong, China (mainland).,Faculty of Mental health, Shenzhen University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
11
|
Seo M, Anderson G. Gut-Amygdala Interactions in Autism Spectrum Disorders: Developmental Roles via regulating Mitochondria, Exosomes, Immunity and microRNAs. Curr Pharm Des 2020; 25:4344-4356. [PMID: 31692435 DOI: 10.2174/1381612825666191105102545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) have long been conceived as developmental disorder. A growing body of data highlights a role for alterations in the gut in the pathoetiology and/or pathophysiology of ASD. Recent work shows alterations in the gut microbiome to have a significant impact on amygdala development in infancy, suggesting that the alterations in the gut microbiome may act to modulate not only amygdala development but how the amygdala modulates the development of the frontal cortex and other brain regions. METHODS This article reviews wide bodies of data pertaining to the developmental roles of the maternal and foetal gut and immune systems in the regulation of offspring brain development. RESULTS A number of processes seem to be important in mediating how genetic, epigenetic and environmental factors interact in early development to regulate such gut-mediated changes in the amygdala, wider brain functioning and inter-area connectivity, including via regulation of microRNA (miR)-451, 14-3-3 proteins, cytochrome P450 (CYP)1B1 and the melatonergic pathways. As well as a decrease in the activity of monoamine oxidase, heightened levels of in miR-451 and CYP1B1, coupled to decreased 14-3-3 act to inhibit the synthesis of N-acetylserotonin and melatonin, contributing to the hyperserotonemia that is often evident in ASD, with consequences for mitochondria functioning and the content of released exosomes. These same factors are likely to play a role in regulating placental changes that underpin the association of ASD with preeclampsia and other perinatal risk factors, including exposure to heavy metals and air pollutants. Such alterations in placental and gut processes act to change the amygdala-driven biological underpinnings of affect-cognitive and affect-sensory interactions in the brain. CONCLUSION Such a perspective readily incorporates previously disparate bodies of data in ASD, including the role of the mu-opioid receptor, dopamine signaling and dopamine receptors, as well as the changes occurring to oxytocin and taurine levels. This has a number of treatment implications, the most readily applicable being the utilization of sodium butyrate and melatonin.
Collapse
Affiliation(s)
- Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| |
Collapse
|
12
|
Park E, Elidrissi A, Schuller-Levis G, Chadman KK. Taurine Partially Improves Abnormal Anxiety in Taurine-Deficient Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:905-921. [PMID: 31468456 DOI: 10.1007/978-981-13-8023-5_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Taurine is abundant in various tissues including the brain, muscle, heart, spleen, liver and kidney with various physiological functions. Since taurine is produced by cysteine sulfinic acid decarboxylase (CSAD) in the liver and kidney, taurine-deficient mice without CSAD have been investigated for abnormal physiological functions such as retinal development, immune, pancreatic and liver function. In this study, the behavioral effects and abnormal brain development caused by low taurine in the developing brain were examined. In neonatal brains of homozygous CSAD knockout mice (HO), taurine was reduced by 85%, compared to wild-type mice (WT). Taurine was reduced by 35% in the brains of 2 month-old HO, compared to WT. Anxiety, motor coordination and autistic-like behaviors were evaluated at 2 months of age using five behavioral tests: elevated plus maze, open field, social approach, marble burying and accelerating rotarod. Mice were tested from 3 groups including WT, HO and HO with oral treatment of 0.2% taurine in the drinking water (HOT). HOT were born from HO dams treated with taurine from before pregnancy and were continuously treated with taurine in the drinking water after weaning. The taurine levels in the brain and plasma of HOT were restored to WT at 2 months of age. Taurine-deficiency did not lead to changes in autistic-like behaviors as the HO were not significantly different from WT in marble burying and social approach. However, taurine-deficiency increased anxiety-like behavior in HO in the elevated plus maze and open field, compared to WT. Taurine treatment significantly restored the HOT to WT levels of anxiety-like behavior in the elevated plus maze. However, changes in exploratory activity in the open field were not improved with taurine treatment. There was a slight difference in motor ability as the WT mice stayed on the accelerating rotarod longer that the HO and HOT, but the difference was significant in the HOT during the first trial only, compared to WT.These data support hypothesis that taurine is essential for the emotional development of the brain. First, taurine is remarkably low in the neonatal brain of HO, compared to the adult brain of HO. Second, taurine treatment in HO partially improves anxiety-like behavior to WT.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Abdeslem Elidrissi
- Department of Biological Science, College of Staten Island, Staten Island, NY, USA
| | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
13
|
Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM, Casey CP, Taylor BC, Lane CJ, Bramer LM, Isern NG, Hoyt DW, Noecker C, Sweredoski MJ, Moradian A, Borenstein E, Jansson JK, Knight R, Metz TO, Lois C, Geschwind DH, Krajmalnik-Brown R, Mazmanian SK. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell 2019; 177:1600-1618.e17. [PMID: 31150625 PMCID: PMC6993574 DOI: 10.1016/j.cell.2019.05.004] [Citation(s) in RCA: 640] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.
Collapse
Affiliation(s)
- Gil Sharon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Nikki Jamie Cruz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dae-Wook Kang
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Michael J Gandal
- Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, Semel Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erika M Zink
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Cameron P Casey
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryn C Taylor
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christianne J Lane
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lisa M Bramer
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Nancy G Isern
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David W Hoyt
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Cecilia Noecker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J Sweredoski
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biongineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, Semel Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
14
|
McColl ER, Piquette-Miller M. Poly(I:C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation. Am J Reprod Immunol 2019; 81:e13115. [PMID: 30924965 DOI: 10.1111/aji.13115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Maternal immune activation (MIA) during pregnancy is associated with increased chances of neurodevelopmental disorders including schizophrenia and autism spectrum disorder (ASD). However, the exact mechanism through which MIA contributes to altered neurodevelopment is unknown. Due to the important role that amino acids play in neurodevelopment, altered amino acid transport could play a role in neurodevelopmental disorders. Indeed, altered plasma concentrations of multiple amino acids have been reported in individuals with ASD or schizophrenia. Therefore, our objective was to determine whether virally mediated MIA induces changes in amino acid transporters in the placenta and fetal brain. METHOD OF STUDY Pregnant rats were administered poly(I:C) on gestational day 14, and placental and fetal tissues were collected 6, 24, and 48 hours later. Amino acid transporter expression was measured in the placenta and fetal brain using qPCR, Western blotting, and Simple Western. Free amino acid concentrations in the fetal brain were quantified using HPLC. RESULTS Poly(I:C) increased mRNA expression of several amino acid transporters in the placenta and fetal brain over these timepoints. Conversely, poly(I:C) imposed significant decreases in the protein expression of ASCT1 and EAAT2 in placenta and expression of SNAT5, EAAT1, and GLYT1 in fetal brain. Functional consequences of altered transporter expression were demonstrated through widespread changes in the concentrations of free amino acids in the fetal brains. CONCLUSION Together, these results represent novel findings with the poly(I:C) MIA model and contribute to the understanding of how MIA during pregnancy potentially leads to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther 2018; 22:571-593. [PMID: 30039193 PMCID: PMC6132446 DOI: 10.1007/s40291-018-0352-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environmental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systematically review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Dmitriy M Niyazov
- Section of Medical Genetics, Ochsner Health System, New Orleans, LA, USA
| | | | - Michael Goldenthal
- Department of Pediatrics, Neurology Section, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stephen G Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, USA.
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|