1
|
Zhao X, Liu X, Liu L, Chen R. Serum metabolome alterations in hyperhomocysteinemia based on targeted and non-targeted MS-platforms. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124336. [PMID: 39374563 DOI: 10.1016/j.jchromb.2024.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND AND AIMS Hyperhomocysteinemia (Hhcy) is a pathological condition marked by increased level of homocysteine and serves as an independent risk factor for a range of diseases including cardiovascular diseases and Alzheimer's disease. This study aims to examine alterations in Hhcy-related metabolites using serum metabolomics and unravel the distinct metabolic pathways involved, thereby offering a theoretical foundation for the early prevention and treatment of Hhcy. METHODS Serum samples were collected from 56 individuals with Hhcy and 44 healthy controls. Metabolic alterations in Hhcy were assessed through multi-platform serum metabolomics analyses. Through multivariate statistical analysis and regression modeling, distinct metabolites in the serum were identified, and various metabolic pathways associated with Hhcy were investigated. RESULTS Our findings revealed 21 significant different metabolites that distinguished Hhcy from healthy controls. These varied metabolites primarily comprised 10 organic acids, 4 amino acids, 2 fatty acids, and 5 other metabolites. The key differential metabolic pathways identified were the TCA cycle, pyruvate metabolism, arginine biosynthesis, as well as alanine, aspartate, and glutamate metabolism. CONCLUSIONS This study elucidated the variances in metabolic profiles between Hhcy and healthy control groups, highlighting distinct metabolic pathways that may help explain the etiology of Hhcy. These findings offer valuable insights to address the knowledge gaps related to the metabolic alterations associated with Hhcy.
Collapse
Affiliation(s)
- Xinshu Zhao
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi 150040, China; Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaowei Liu
- Department of Sanitary Inspection, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Liyan Liu
- Department of Sanitary Inspection, School of Public Health, Harbin Medical University, Heilongjiang, China.
| | - Rui Chen
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi 150040, China.
| |
Collapse
|
2
|
Martínez-Burguete T, Peña-Marín ES, Llera-Herrera RA, Jiménez-Martínez LD, Martínez-García R, Alvarez-Villagomez CS, Alvarez-González CA. Identification and expression analysis of transcripts involved in taurine biosynthesis during early ontogeny of tropical gar Atractosteus tropicus. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111501. [PMID: 37562582 DOI: 10.1016/j.cbpa.2023.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
In fishes, the availability of taurine is regulated during ontogenetic development, where its endogenous synthesis capacity is species dependent. Thus, different pathways and involved enzymes have been described: pathway I (cysteine sulfinate-dependent pathway), cysteine dioxygenase type 1 (cdo1) and cysteine sulfinic acid decarboxylase (csad); pathway II (cysteic acid pathway), cdo1 and glutamic acid decarboxylase (gad); and pathway III (cysteamine pathway), 2-aminoethanethiol dioxygenase (ado); whereas taurine transporter (taut) is responsible for taurine entry into cells on the cell membrane and the mitochondria. This study determined if the tropical gar (Atractosteus tropicus), an ancient holostean fish model, has the molecular mechanism to synthesize taurine through the identification and analysis expression of transcripts coding for proteins involved in its biosynthesis and transportation, at different embryo-larvae stages and in different organs of juveniles (31 dah). We observed a fluctuating expression of all transcripts involved in the three pathways at all analyzed stages. All transcripts are expressed during the beginning of larval development; however, ado and taut show a peak expression at 9 dah, and all transcripts but csad decreased at 23 dah, when the organism ended the larval period. Furthermore, at 31 dah, we observed taut expression in all examined organs. The transcripts involved in pathways I and III are expressed differently across all organs, whereas pathway II was only observed in the brain, eye, and skin. The results suggested that taurine biosynthesis in tropical gar is regulated during its early development before first feeding, and the pathway might also be organ-type dependent.
Collapse
Affiliation(s)
- Talhia Martínez-Burguete
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Emyr Saúl Peña-Marín
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Ensenada 21100, Baja California, Mexico.
| | - Raúl Antonio Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Joel Montes Camarena S/N, PO Box 811, Mazatlán, Sinaloa, Mexico.
| | - Luis Daniel Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R7a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico.
| | - Rafael Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Carina Shianya Alvarez-Villagomez
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
3
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
4
|
Chen J, Wang Y, Tang Z, Guo X, Yuan J. Impact of Dietary Supplementation of Cysteamine on Egg Taurine Deposition, Egg Quality, Production Performance and Ovary Development in Laying Hens. Animals (Basel) 2023; 13:3013. [PMID: 37835618 PMCID: PMC10571572 DOI: 10.3390/ani13193013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to examine the effect of dietary cysteamine on yolk taurine content in hens during different egg production periods. In Exp. 1, China Agricultural University-3 (CAU-3) hens at the peak stage of egg production (aged 31 wks) were used to explore the effect of diets supplemented with 0.1% cysteamine on yolk taurine content, egg quality and production performance. In Exp.2, two breeds of hens (half Hy-Line Brown and half CAU-3 hens) at the late stage of egg production (68 wks) were used to investigate the influence of diets supplemented with 0, 0.02%, 0.04%, 0.08% or 0.10% cysteamine on yolk taurine content, egg quality, production performance and ovary development. In Exp.1, diets supplemented with 0.1% cysteamine significantly increased yolk taurine content (p < 0.05) without negative influence on production performance or egg quality. In Exp.2, the highest yolk taurine content was observed when cysteamine was supplemented at 0.08% (p < 0.001). However, supplemental cysteamine linearly or quadratically decreased production performance over the first few weeks of feeding, and the effects disappeared with continued feeding (p < 0.05). In conclusion, this study indicated that cysteamine supplementation benefits yolk taurine deposition in hens at both peak and late stage of egg production, but hens at the late stage of egg production show depressed production performance and egg quality.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu 610041, China;
- Key Laboratory of Sichuan Prpvince for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Sichuan New Hope Liuhe Technology Innovation Co., Ltd., Chengdu 610100, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu 610041, China;
- Key Laboratory of Sichuan Prpvince for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.); (X.G.); (J.Y.)
| | - Xiaorui Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.); (X.G.); (J.Y.)
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.); (X.G.); (J.Y.)
| |
Collapse
|
5
|
Linnan B, Yanzhe W, Ling Z, Yuyuan L, Sijia C, Xinmiao X, Fengqin L, Xiaoxia W. In situ Metabolomics of Metabolic Reprogramming Involved in a Mouse Model of Type 2 Diabetic Kidney Disease. Front Physiol 2021; 12:779683. [PMID: 34916961 PMCID: PMC8670437 DOI: 10.3389/fphys.2021.779683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
The in situ metabolic profiling of the kidney is crucial to investigate the complex metabolic reprogramming underlying diabetic kidney disease (DKD) and to allow exploration of potential metabolic targets to improve kidney function. However, as the kidney is a highly heterogeneous organ, traditional metabolomic methods based on bulk analysis that produce an averaged measurement are inadequate. Herein, we employed an in situ metabolomics approach to discover alternations of DKD-associated metabolites and metabolic pathways. A series of histology-specific metabolic disturbances were discovered in situ using airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI). In combination with integrated metabolomics analysis, five dysfunctional metabolic pathways were identified and located in the kidneys of type-2 DKD mice simultaneously for the first time, including taurine metabolism, arginine and proline metabolism, histidine metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways. As crucial nodes of metabolic pathways, five dysregulated rate-limiting enzymes related to altered metabolic pathways were further identified. These findings reveal alternations from metabolites to enzymes at the molecular level in the progression of DKD and provide insights into DKD-associated metabolic reprogramming.
Collapse
Affiliation(s)
- Bai Linnan
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Yanzhe
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhang Ling
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yuyuan
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Sijia
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xie Xinmiao
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fengqin
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Xiaoxia
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Aglan HS, Safar MM, Ain-Shoka AAM, Kandil AM, Gebremedhn S, Salilew-Wondim D, Schellander K, Tesfaye D. Developmental toxicity of lead in rats after gestational exposure and the protective role of taurine. J Biochem Mol Toxicol 2021; 35:e22816. [PMID: 34043862 DOI: 10.1002/jbt.22816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 01/24/2023]
Abstract
The present study was conducted to investigate the potential adverse effect of Pb on pregnant Sprague-Dawley rats and their fetuses after maternal exposure, on gestational days (GD) 7-16. The possible protective role of taurine (TA), administered throughout the gestation period (GD 1-20) against Pb toxicity, was also evaluated. Pregnant rats were divided into four groups: Group 1 (control) was given distilled water; Group 2 was exposed to Pb (250 ppm) in drinking water (GD 7-16), whereas Group 3 received TA (50 mg/kg/day) by oral gavage (GD 1-20); Group 4 was exposed to Pb (GD 7-16), whereas pretreated with TA from GD 1 till the end of the gestation period. After termination on GD 20, maternal and embryo-fetal outcomes were evaluated. Blood samples were collected for hematological and biochemical parameters assessment. The results showed that, Pb induced a significant reduction in the maternal body weight, weight gain, uterine and placental weight, in addition to a high incidence of abortion and fetal resorption. Meanwhile, fetuses demonstrated decreased body weight and length, with a high rate of mortality as well as external and skeletal abnormalities. Additionally, Pb induced severe hematological and biochemical alterations in both dams and fetuses. The toxicity of Pb was further emphasized by placental histopathological examination and hepatic DNA fragmentation. Pretreatment with TA greatly attenuated the impact of Pb on both maternal and fetal parameters. Moreover, TA alleviated the incidence of placental damage and hepatic DNA fragmentation. The results highlight the potential prophylaxis role of TA against maternal and developmental Pb toxicity.
Collapse
Affiliation(s)
- Hoda Samir Aglan
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Asmaa Munir Kandil
- Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Samuel Gebremedhn
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Dessie Salilew-Wondim
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Mekawy N, Bendaoud M, Yachou Y, El Idrissi A. Hyperreflexia and enhanced ripple oscillations in the taurine-deficient mice. Amino Acids 2021; 53:701-712. [PMID: 33877450 DOI: 10.1007/s00726-021-02977-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/03/2021] [Indexed: 11/25/2022]
Abstract
In this study, we examined neuronal excitability and skeletal muscle physiology and histology in homozygous knockout mice lacking cysteine sulfonic acid decarboxylase (CSAD-KO). Neuronal excitability was measured by intracerebral recording from the prefrontal cortex. Skeletal muscle response was measured through stretch reflex in the ankle muscles. Specifically, we measured the muscle tension, amplitude of electromyogram and velocity of muscle response. Stretch reflex responses were evoked using a specialized stretching device designed for mice. The triceps surae muscle was stretched at various speeds ranging from 18 to 18,000° s-1. A transducer recorded the muscle resistance at each velocity and the corresponding EMG. We also measured the same parameter in anesthetized mice. We found that at each velocity, the CSAD-KO mice generated more tension and exhibited higher EMG responses. To evaluate if the enhanced response was due to neuronal excitability or changes in the passive properties of muscles, we anesthetize mice to eliminate the central component of the reflex. Under these conditions, CSAD-KO mice still exhibited an enhanced stretch reflex response, indicating ultrastructural alterations in muscle histology. Consistent with this, we found that sarcomeres from CSAD-KO muscles were shorter and thinner when compared to control sarcomeres. Neuronal excitability was further investigated using intracerebral recordings of brain waves from the prefrontal cortex. We found that extracellular field potentials in CSAD-KO mice were characterized by reduced amplitude of low-frequency brain waves (delta, theta, alpha, beta and gamma) and increased in the high low-frequency brain waves (slow and fast ripples). Increased slow and fast ripple rates serve as a biomarker of epileptogenic brain. We have previously shown that taurine interacts with GABAA receptors and induces biochemical changes in the GABAergic system. We suggest that taurine deficiency leads to alterations in the GABAergic system that contribute to the enhanced stretch reflex in CSAD-KO mice through biochemical mechanisms that involve alterations not only at the spinal level but also at the cortical level.
Collapse
Affiliation(s)
- Narmin Mekawy
- Center for Developmental Neuroscience, College of Staten Island, 2800 Victory Blvd., Staten Island, NY, 10314, USA
| | - Meriem Bendaoud
- Department of Biology, New Jersey City University, 2039 John F. Kennedy Blvd, Jersey, NJ, 07305, USA
| | - Yassine Yachou
- Neurology Department, Astrakhan State Medical University, Astrakhan, Russia
| | - Abdeslem El Idrissi
- Center for Developmental Neuroscience, College of Staten Island, 2800 Victory Blvd., Staten Island, NY, 10314, USA.
- Department of Biology, College of Staten Island, 2800 Victory Blvd., Staten Island, NY, 10314, USA.
- The Graduate Center, Program in Biology-Neurosciences, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Coleman DN, Lopreiato V, Alharthi A, Loor JJ. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J Anim Sci 2020; 98:S175-S193. [PMID: 32810243 PMCID: PMC7433927 DOI: 10.1093/jas/skaa138] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Vincenzo Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
10
|
Miyata M, Funaki A, Fukuhara C, Sumiya Y, Sugiura Y. Taurine attenuates hepatic steatosis in a genetic model of fatty liver disease. J Toxicol Sci 2020; 45:87-94. [DOI: 10.2131/jts.45.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Akihiro Funaki
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Chiaki Fukuhara
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Yukino Sumiya
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| |
Collapse
|
11
|
Zhang Z, Yang L, Huang X, Gao Y. Metabolomics profiling of Polygoni Multiflori Radix and Polygoni Multiflori Radix Preparata extracts using UPLC-Q/TOF-MS. Chin Med 2019; 14:46. [PMID: 31673279 PMCID: PMC6814990 DOI: 10.1186/s13020-019-0268-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022] Open
Abstract
Background The side effects caused by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have often appeared globally. There is no research on the changes of endogenous metabolites among PMR- and PMRP-treated rats. The aim of this study was to evaluate the varying metabolomic effects between PMR- and PMRP-treated rats. We tried to discover relevant differences in biomarkers and endogenous metabolic pathways. Methods Hematoxylin and eosin staining and immunohistochemistry staining were performed to find pathological changes. Biochemical indicators were also measured, one-way analysis of variance with Dunnett’s multiple comparison test was used for biochemical indicators comparison among various groups. Metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS) was performed to find the changes in metabolic biomarkers. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to reveal group clustering trend, evaluate and maximize the discrimination between the two groups. MetaboAnalyst 4.0 was performed to find and confirm the pathways. Results PMR extracts exhibited slight hepatotoxic effects on the liver by increasing aspartate and alanine aminotransferase levels. Twenty-nine metabolites were identified as biomarkers, belonging to five pathways, including alpha-linolenic acid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, arginine and proline metabolism, and primary bile acid biosynthesis. Conclusion This study provided a comprehensive description of metabolomic changes between PMR- and PMRP-treated rats. The underlying mechanisms require further research.
Collapse
Affiliation(s)
- Zhaoyan Zhang
- 1College of Life Science and Bioengineering, Beijing University of Technology, No. 100, Ping Le Yuan Road, Chaoyang District, Bejing, 100124 China.,2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China
| | - Liang Yang
- 2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China
| | - Xiaoyan Huang
- 2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China.,3Second Clinical College of Guangzhou University of Chinese Medicine, No. 111, Da De Road, Yue Xiu District, Guangzhou, 510120 China
| | - Yue Gao
- 1College of Life Science and Bioengineering, Beijing University of Technology, No. 100, Ping Le Yuan Road, Chaoyang District, Bejing, 100124 China.,2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China
| |
Collapse
|
12
|
Park E, Elidrissi A, Schuller-Levis G, Chadman KK. Taurine Partially Improves Abnormal Anxiety in Taurine-Deficient Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:905-921. [PMID: 31468456 DOI: 10.1007/978-981-13-8023-5_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Taurine is abundant in various tissues including the brain, muscle, heart, spleen, liver and kidney with various physiological functions. Since taurine is produced by cysteine sulfinic acid decarboxylase (CSAD) in the liver and kidney, taurine-deficient mice without CSAD have been investigated for abnormal physiological functions such as retinal development, immune, pancreatic and liver function. In this study, the behavioral effects and abnormal brain development caused by low taurine in the developing brain were examined. In neonatal brains of homozygous CSAD knockout mice (HO), taurine was reduced by 85%, compared to wild-type mice (WT). Taurine was reduced by 35% in the brains of 2 month-old HO, compared to WT. Anxiety, motor coordination and autistic-like behaviors were evaluated at 2 months of age using five behavioral tests: elevated plus maze, open field, social approach, marble burying and accelerating rotarod. Mice were tested from 3 groups including WT, HO and HO with oral treatment of 0.2% taurine in the drinking water (HOT). HOT were born from HO dams treated with taurine from before pregnancy and were continuously treated with taurine in the drinking water after weaning. The taurine levels in the brain and plasma of HOT were restored to WT at 2 months of age. Taurine-deficiency did not lead to changes in autistic-like behaviors as the HO were not significantly different from WT in marble burying and social approach. However, taurine-deficiency increased anxiety-like behavior in HO in the elevated plus maze and open field, compared to WT. Taurine treatment significantly restored the HOT to WT levels of anxiety-like behavior in the elevated plus maze. However, changes in exploratory activity in the open field were not improved with taurine treatment. There was a slight difference in motor ability as the WT mice stayed on the accelerating rotarod longer that the HO and HOT, but the difference was significant in the HOT during the first trial only, compared to WT.These data support hypothesis that taurine is essential for the emotional development of the brain. First, taurine is remarkably low in the neonatal brain of HO, compared to the adult brain of HO. Second, taurine treatment in HO partially improves anxiety-like behavior to WT.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Abdeslem Elidrissi
- Department of Biological Science, College of Staten Island, Staten Island, NY, USA
| | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
13
|
Holm MB, Kristiansen O, Holme AM, Bastani NE, Horne H, Blomhoff R, Haugen G, Henriksen T, Michelsen TM. Placental release of taurine to both the maternal and fetal circulations in human term pregnancies. Amino Acids 2018; 50:1205-1214. [PMID: 29858686 DOI: 10.1007/s00726-018-2576-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 10/14/2022]
Abstract
Taurine is regarded as an essential amino acid in utero, and fetal taurine supply is believed to rely solely on placental transfer from maternal plasma. Despite its potential role in intrauterine growth restriction and other developmental disturbances, human in vivo studies of taurine transfer between the maternal, placental, and fetal compartments are scarce. We studied placental transfer of taurine in uncomplicated human term pregnancies in vivo in a cross-sectional study of 179 mother-fetus pairs. During cesarean section, we obtained placental tissue and plasma from incoming and outgoing vessels on the maternal and fetal sides of the placenta. Taurine was measured by liquid chromatography-tandem mass spectrometry. We calculated paired arteriovenous differences, and measured placental expression of the taurine biosynthetic enzyme cysteine sulfinic acid decarboxylase (CSAD) with quantitative real-time polymerase chain reaction and western blot. We observed a fetal uptake (p < 0.001), an uteroplacental release (p < 0.001), and a negative placental consumption of taurine (p = 0.001), demonstrating a bilateral placental release to the maternal and fetal compartments. Increasing umbilical vein concentrations and fetal uptake was associated with the uteroplacental release to the maternal circulation (rs = - 0.19, p = 0.01/rs = - 0.24, p = 0.003), but not with taurine concentrations in placental tissue. CSAD-mRNA was expressed in placental tissue, suggesting a potential for placental taurine synthesis. Our observations show that the placenta has the capacity to a bilateral taurine release, indicating a fundamental role of taurine in the human placental homeostasis beyond the supply to the fetus.
Collapse
Affiliation(s)
- Maia Blomhoff Holm
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway.
| | - Oddrun Kristiansen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Ane Moe Holme
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Nasser Ezzatkhah Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO BOKS 1046, Blindern, 0316, Oslo, Norway
| | - Hildegunn Horne
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO BOKS 1046, Blindern, 0316, Oslo, Norway.,Division of Cancer Medicine, Department of Clinical Service, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| | - Guttorm Haugen
- Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway.,Division of Obstetrics and Gynecology, Department of Fetal Medicine, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| | - Tore Henriksen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Trond Melbye Michelsen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| |
Collapse
|