1
|
Vitulano C, Forcina G, Colosimo S, Frattolillo V, Villani AV, Marzuillo P, Miraglia Del Giudice E, Di Sessa A. A miRNA-Based Approach in Autosomal Dominant Polycystic Kidney Disease: Challenges and Insights from Adult to Pediatric Evidence. Mol Diagn Ther 2025:10.1007/s40291-024-00761-7. [PMID: 39820940 DOI: 10.1007/s40291-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) represents the most common inherited kidney disorder leading to kidney failure in a significant percentage of patients over time. Although previously considered as an adult disease, robust evidence demonstrated that clinical manifestations might occur during childhood and adolescence. Therefore, early identification and treatment of the disease are of cardinal importance for pediatricians to ensure the best long-term outcomes. To date, licensed treatment options are limited but promising potential therapeutic targets are emerging. Among these, an intriguing pathophysiological role for microRNAs as small molecules with a critical role in regulating gene expression has been considered possible in ADPKD. Indeed, numerous circulating microRNAs have been found to be dysregulated in ADPKD, suggesting their potential role as biomarkers and therapeutic targets. Based on this background, further detailed insights into the mechanisms of miRNAs contributing to ADPKD development might pave the way for their effective application as a targeted treatment in young patients with ADPKD. We aimed to summarize the most recent evidence in this fascinating research area, providing a comprehensive overview of the current landscape of specific microRNAs in ADPKD as a potential innovative therapeutic strategy for these young patients.
Collapse
Affiliation(s)
- Caterina Vitulano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Gianmario Forcina
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Vittoria Frattolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Annalisa Valentina Villani
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy.
| |
Collapse
|
2
|
Trant J, Sanchez G, McDermott JP, Blanco G. The cystogenic effects of ouabain in autosomal dominant polycystic kidney disease require cell caveolae. Exp Cell Res 2025; 444:114356. [PMID: 39586486 DOI: 10.1016/j.yexcr.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
We have previously shown that the hormone ouabain is a circulating factor which can accelerate the progression of autosomal dominant polycystic kidney disease (ADPKD). At physiologic concentrations, ouabain increases cyst area and fibrosis in kidneys from ADPKD but not wildtype mice. These effects are due to an increased affinity for ouabain by its receptor, Na,K-ATPase (NKA), in the kidneys of ADPKD mice which leads to over-activation of NKA signaling function. Previous studies suggested that ouabain's stimulation of NKA signal transduction is mediated by NKA located within cell caveolae. Here, we determined whether caveolae are involved in the ouabain-induced progression of ADPKD cysts. We generated an ADPKD mouse with a global knockout of the main structural component of caveolae, caveolin-1 (CAV1), which we confirmed lacks caveolae in the kidney. When given physiological amounts of ouabain for 5 months, Pkd1RC/RCCav1-/- mice did not exhibit any changes in cyst progression, contrasting with the Pkd1RC/RC mice which showed a significant increase in cystic area and kidney fibrosis. Also, measures of ouabain-induced cell proliferation, including the number of Ki67-positive nuclei and phosphorylation of the extracellular regulated kinase (ERK) and protein kinase B (Akt), did not increase in the Pkd1RC/RCCav1-/- mice compared with the Pkd1RC/RC mice. Moreover, the abnormally increased affinity for ouabain of NKA in Pkd1RC/RC mice was restored to wildtype levels in the Pkd1RC/RCCav1-/- mice. This work highlights the role of caveolae in ouabain-induced NKA signaling and ADPKD cyst progression.
Collapse
Affiliation(s)
- Jordan Trant
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gladis Sanchez
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffery P McDermott
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Sadeghi-Alavijeh O, Chan MM, Doctor GT, Voinescu CD, Stuckey A, Kousathanas A, Ho AT, Stanescu HC, Bockenhauer D, Sandford RN, Levine AP, Gale DP. Quantifying variant contributions in cystic kidney disease using national-scale whole-genome sequencing. J Clin Invest 2024; 134:e181467. [PMID: 39190624 PMCID: PMC11444187 DOI: 10.1172/jci181467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUNDCystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases.METHODSUsing whole-genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies.RESULTSIn 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK Biobank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations, but suggested this category of variation contributes 3%-9% to the heritability of CyKD across European ancestries.CONCLUSIONBy providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counseling in the clinic.
Collapse
Affiliation(s)
- Omid Sadeghi-Alavijeh
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Melanie My Chan
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Gabriel T Doctor
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Catalin D Voinescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Alexander Stuckey
- Genomics England, Queen Mary University of London, London, United Kingdom
| | | | - Alexander T Ho
- Genomics England, Queen Mary University of London, London, United Kingdom
| | - Horia C Stanescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Detlef Bockenhauer
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- University Hospital and Katholic University Leuven, Leuven, Belgium
| | - Richard N Sandford
- Academic Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom
| | - Adam P Levine
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- Research Department of Pathology, University College London, London, United Kingdom
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| |
Collapse
|
4
|
Wang B, Yang Q, Che L, Sun L, Du N. Acyl-CoA thioesterase 13 ( ACOT13) attenuates the progression of autosomal dominant polycystic kidney disease in vitro via triggering mitochondrial-related cell apoptosis. Aging (Albany NY) 2024; 16:11877-11892. [PMID: 39172111 PMCID: PMC11386924 DOI: 10.18632/aging.206054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Autosomal dominant polycystic kidney disease (ADPKD) is the most common cause of end-stage kidney disease. It has been shown that Acyl-CoA thioesterase 13 (ACOT13) level was reduced in renal cystic tissues from ADPKD patients. However, the role of ACOT13 in ADPKD remains largely elusive. METHODS The data in the GSE7869 dataset were acquired from the GEO database to determine ACOT13 level between normal renal cortical tissues and renal cystic tissues. Next, the potential functions of ACOT13 were explored by gene set enrichment analysis (GSEA). Furthermore, ACOT13 level in ADPKD cells (WT9-12) was verified by RT-qPCR. The effects of ACOT13 on WT9-12 cell growth were evaluated using the EdU staining and flow cytometry assays. RESULTS Compared to normal group, ACOT13 mRNA level was obviously reduced in renal cystic tissues and WT9-12 cells. Meanwhile, GSEA results showed that compared to the low ACOT13 expression group, PI3K-Akt and MAPK signaling pathways were inactivated, and PPAR signaling pathway and fatty acid metabolism were activated in high ACOT13 expression group. Furthermore, overexpression of ACOT13 notably reduced WT9-12 cell proliferation and triggered cell cycle arrest. Moreover, ACOT13 overexpression remarkably triggered apoptosis, increased cleaved caspase 3 protein level, reduced ATP production and induced loss of mitochondrial membrane potential in WT9-12 cells, suggesting that ACOT13 overexpression could trigger mitochondrial-related apoptosis in WT9-12 cells. CONCLUSIONS Collectively, our results showed that overexpression of ACOT13 could suppress WT9-12 cell proliferation and trigger mitochondrial-mediated cell apoptosis, suggesting that ACOT13 may exert a protective role in ADPKD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Yang
- Department of Pathogenic Biology, School of Basic Medicine, Beihua University, Jilin 132013, China
| | - Lihe Che
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| | - Luyao Sun
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| | - Na Du
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Capelli I, Lerario S, Ciurli F, Berti GM, Aiello V, Provenzano M, La Manna G. Investigational agents for autosomal dominant polycystic kidney disease: preclinical and early phase study insights. Expert Opin Investig Drugs 2024; 33:469-484. [PMID: 38618918 DOI: 10.1080/13543784.2024.2342327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited kidney condition caused by a single-gene mutation. It leads patients to kidney failure in more than 50% of cases by the age of 60, and, given the dominant inheritance, this disease is present in the family history in more than 90% of cases. AREAS COVERED This review aims to analyze the set of preclinical and early-phase studies to provide a general view of the current progress on ADPKD therapeutic options. Articles from PubMed and the current status of the trials listed in clinicaltrials.gov were examined for the review. EXPERT OPINION Many potential therapeutic targets are currently under study for the treatment of ADPKD. A few drugs have reached the clinical phase, while many are currently still in the preclinical phase. Organoids could be a novel approach to the study of drugs in this phase. Other than pharmacological options, very important developing approaches are represented by gene therapy and the use of MiRNA inhibitors.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesca Ciurli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Marco Berti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michele Provenzano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
7
|
Satariano M, Ghose S, Raina R. The Pathophysiology of Inherited Renal Cystic Diseases. Genes (Basel) 2024; 15:91. [PMID: 38254980 PMCID: PMC10815569 DOI: 10.3390/genes15010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Renal cystic diseases (RCDs) can arise from utero to early adulthood and present with a variety of symptoms including renal, hepatic, and cardiovascular manifestations. It is well known that common RCDs such as autosomal polycystic kidney disease and autosomal recessive kidney disease are linked to genes such as PKD1 and PKHD1, respectively. However, it is important to investigate the genetic pathophysiology of how these gene mutations lead to clinical symptoms and include some of the less-studied RCDs, such as autosomal dominant tubulointerstitial kidney disease, multicystic dysplastic kidney, Zellweger syndrome, calyceal diverticula, and more. We plan to take a thorough look into the genetic involvement and clinical sequalae of a number of RCDs with the goal of helping to guide diagnosis, counseling, and treatment.
Collapse
Affiliation(s)
- Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.S.); (S.G.)
| | - Shaarav Ghose
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.S.); (S.G.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA
- Department of Nephrology, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
8
|
Trant J, Sanchez G, McDermott JP, Blanco G. Ouabain enhances renal cyst growth in a slowly progressive mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2023; 325:F857-F869. [PMID: 37823195 PMCID: PMC10874652 DOI: 10.1152/ajprenal.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.
Collapse
Affiliation(s)
- Jordan Trant
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gladis Sanchez
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Jeffrey P McDermott
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| |
Collapse
|
9
|
Zhuang J, Aierken A, Yalikun D, Zhang J, Wang X, Ren Y, Tian X, Jiang H. Case report: Genotype-phenotype characteristics of nine novel PKD1 mutations in eight Chinese patients with autosomal dominant polycystic kidney disease. Front Med (Lausanne) 2023; 10:1268307. [PMID: 37901409 PMCID: PMC10600478 DOI: 10.3389/fmed.2023.1268307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder. The PKD1 gene is responsible for the majority of ADPKD cases, and the mutations in this gene exhibit high genetic diversity. This study aimed to investigate the association between genotype and phenotype in ADPKD patients with PKD1 gene mutations through pedigree analysis. Methods Eight Chinese pedigrees affected by ADPKD were analyzed using whole-exome sequencing (WES) on peripheral blood DNA. The identified variants were validated using Sanger sequencing, and clinical data from the patients and their families were collected and analyzed. Results Nine novel mutation sites in PKD1 were discovered across the pedigrees, including c.4247T > G, c.3298_3301delGAGT, c.4798A > G, c.7567G > A, c.11717G > C, c.7703 + 5G > C, c.3296G > A, c.8515_8516insG, and c.5524C > A. These mutations were found to be associated with a range of clinical phenotypes, including chronic kidney disease, hypertension, and polycystic liver. The age of onset and disease progression displayed significant heterogeneity among the pedigrees, with some individuals exhibiting early onset and rapid disease progression, while others remained asymptomatic or had milder disease symptoms. Inheritance patterns supported autosomal dominant inheritance, as affected individuals inherited the mutations from affected parents. However, there were instances of individuals carrying the mutations who remained asymptomatic or exhibited milder disease phenotypes. Conclusion This study highlights the importance of comprehensive genotype analysis in understanding the progression and prognosis of ADPKD. The identification of novel mutation sites expands our knowledge of PKD1 gene mutations. These findings contribute to a better understanding of the disease and may have implications for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Ailima Aierken
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Dilina Yalikun
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Jun Zhang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Xiaoqin Wang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yongfang Ren
- Department of Radiology and Medical Imaging, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
10
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Drögemüller M, Klein N, Steffensen RL, Keiner M, Jagannathan V, Leeb T. PKD1 Nonsense Variant in a Lagotto Romagnolo Family with Polycystic Kidney Disease. Genes (Basel) 2023; 14:1210. [PMID: 37372390 DOI: 10.3390/genes14061210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A female Lagotto Romagnolo dog with polycystic kidney disease (PKD) and her progeny, including PKD-affected offspring, were studied. All affected dogs appeared clinically inconspicuous, while sonography revealed the presence of renal cysts. The PKD-affected index female was used for breeding and produced two litters with six affected offspring of both sexes and seven unaffected offspring. The pedigrees suggested an autosomal dominant mode of inheritance of the trait. A trio whole genome sequencing analysis of the index female and her unaffected parents identified a de novo heterozygous nonsense variant in the coding region of the PKD1 gene. This variant, NM_001006650.1:c.7195G>T, is predicted to truncate 44% of the open reading frame of the wild-type PKD1 protein, NP_001006651.1:p.(Glu2399*). The finding of a de novo variant in an excellent functional candidate gene strongly suggests that the PKD1 nonsense variant caused the observed phenotype in the affected dogs. Perfect co-segregation of the mutant allele with the PKD phenotype in two litters supports the hypothesized causality. To the best of our knowledge, this is the second description of a PKD1-related canine form of autosomal dominant PKD that may serve as an animal model for similar hepatorenal fibrocystic disorders in humans.
Collapse
Affiliation(s)
- Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Nadine Klein
- Tierärztliche Praxis für Kleintiere, Dickstrasse 57, 53773 Hennef (Sieg), Germany
| | | | - Miriam Keiner
- Small Animal Clinic, Internal Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
12
|
Pana C, Stanigut AM, Cimpineanu B, Alexandru A, Salim C, Nicoara AD, Resit P, Tuta LA. Urinary Biomarkers in Monitoring the Progression and Treatment of Autosomal Dominant Polycystic Kidney Disease-The Promised Land? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050915. [PMID: 37241147 DOI: 10.3390/medicina59050915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease, and it leads to end-stage renal disease (ESRD). The clinical manifestations of ADPKD are variable, with extreme differences observable in its progression, even among members of the same family with the same genetic mutation. In an age of new therapeutic options, it is important to identify patients with rapidly progressive evolution and the risk factors involved in the disease's poor prognosis. As the pathophysiological mechanisms of the formation and growth of renal cysts have been clarified, new treatment options have been proposed to slow the progression to end-stage renal disease. Furthermore, in addition to the conventional factors (PKD1 mutation, hypertension, proteinuria, total kidney volume), increasing numbers of studies have recently identified new serum and urinary biomarkers of the disease's progression, which are cheaper and more easily to dosing from the early stages of the disease. The present review discusses the utility of new biomarkers in the monitoring of the progress of ADPKD and their roles in new therapeutic approaches.
Collapse
Affiliation(s)
- Camelia Pana
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Alina Mihaela Stanigut
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Bogdan Cimpineanu
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Andreea Alexandru
- Nephrology Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Camer Salim
- Emergency Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Alina Doina Nicoara
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Periha Resit
- Faculty of Medicine, "Ovidius" University of Constanta, 900601 Constanta, Romania
| | - Liliana Ana Tuta
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
13
|
Krappitz M, Bhardwaj R, Dong K, Staudner T, Yilmaz DE, Pioppini C, Westergerling P, Ruemmele D, Hollmann T, Nguyen TA, Cai Y, Gallagher AR, Somlo S, Fedeles S. XBP1 Activation Reduces Severity of Polycystic Kidney Disease due to a Nontruncating Polycystin-1 Mutation in Mice. J Am Soc Nephrol 2023; 34:110-121. [PMID: 36270750 PMCID: PMC10101557 DOI: 10.1681/asn.2021091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in Pkd1 and Pkd2. They encode the polytopic integral membrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively, which are expressed on primary cilia. Formation of kidney cysts in ADPKD starts when a somatic second hit mechanism inactivates the wild-type Pkd allele. Approximately one quarter of families with ADPDK due to Pkd1 have germline nonsynonymous amino acid substitution (missense) mutations. A subset of these mutations is hypomorphic, retaining some residual PC1 function. Previous studies have shown that the highly conserved Ire1 α -XBP1 pathway of the unfolded protein response can modulate levels of functional PC1 in the presence of mutations in genes required for post-translational maturation of integral membrane proteins. We examine how activity of the endoplasmic reticulum chaperone-inducing transcription factor XBP1 affects ADPKD in a murine model with missense Pkd1 . METHODS We engineered a Pkd1 REJ domain missense murine model, Pkd1 R2216W , on the basis of the orthologous human hypomorphic allele Pkd1 R2220W , and examined the effects of transgenic activation of XBP1 on ADPKD progression. RESULTS Expression of active XBP1 in cultured cells bearing PC1 R2216W mutations increased levels and ciliary trafficking of PC1 R2216W . Mice homozygous for Pkd1 R2216W or heterozygous for Pkd1 R2216Win trans with a conditional Pkd1 fl allele exhibit severe ADPKD following inactivation in neonates or adults. Transgenic expression of spliced XBP1 in tubule segments destined to form cysts reduced cell proliferation and improved Pkd progression, according to structural and functional parameters. CONCLUSIONS Modulating ER chaperone function through XBP1 activity improved Pkd in a murine model of PC1, suggesting therapeutic targeting of hypomorphic mutations.
Collapse
Affiliation(s)
- Matteus Krappitz
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Rishi Bhardwaj
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Ke Dong
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Tobias Staudner
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Duygu Elif Yilmaz
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carlotta Pioppini
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Parisa Westergerling
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - David Ruemmele
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Till Hollmann
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Thuy Anh Nguyen
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Yiqiang Cai
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | - Sorin Fedeles
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Brewer KM, Brewer KK, Richardson NC, Berbari NF. Neuronal cilia in energy homeostasis. Front Cell Dev Biol 2022; 10:1082141. [PMID: 36568981 PMCID: PMC9773564 DOI: 10.3389/fcell.2022.1082141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
A subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.
Collapse
Affiliation(s)
- Kathryn M. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Katlyn K. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicholas C. Richardson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Murakami H, Okubo S, Kobayashi M, Akabane M, Matsumura M, Shindoh J, Hashimoto M. Gallbladder cancer concomitant with autosomal dominant polycystic kidney disease: A case report. Clin Case Rep 2022; 10:e6734. [PMID: 36540879 PMCID: PMC9755817 DOI: 10.1002/ccr3.6734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The case is a 67-year-old female with autosomal dominant polycystic kidney disease who was followed up regularly. CT scan showed a mural nodule growing over the past 4 years inside the hypodense region surrounded by hepatic cysts. Surgery was performed and the pathological diagnosis was StageI gallbladder cancer.
Collapse
Affiliation(s)
- Hisashi Murakami
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Satoshi Okubo
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | | | - Miho Akabane
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Masaru Matsumura
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Junichi Shindoh
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Masaji Hashimoto
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| |
Collapse
|
16
|
Li S, Lin J, Li C, Chen Y, Cao B, Yang T, Wei Q, Zhao B, Chen X, Shang H. Clinical and genetic study of a Chinese family affected by both amyotrophic lateral sclerosis and autosomal dominant polycystic kidney disease. Front Neurol 2022; 13:1004909. [PMID: 36341123 PMCID: PMC9630937 DOI: 10.3389/fneur.2022.1004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by loss of the upper and lower motor neurons from the motor cortex, brainstem, and spinal cord. Most ALS cases are sporadic, with 5–10% having a positive family history. Autosomal dominant polycystic kidney disease (ADPKD) is a heritable renal disease that eventually results in end-stage kidney disease. PKD1 is the most prevalent causative gene for ADPKD, accounting for ~85% of cases. Both diseases are currently considered untreatable. In this study, we report a large family that includes 10 patients with ALS phenotype, 3 asymptomatic SOD1-H47R carriers, and 6 with the ADPKD phenotype. Using whole exome sequencing, we found a novel likely pathogenic variant (p.R2787P) in PKD1 among patients with ADPKD, and a pathogenic variant (p.H47R) in SOD1 among patients with ALS. This study highlights the possibility that two different autosomal dominantly inherited diseases can co-exist independently within the same family. Phenotype—genotype correlations among these patients are also described. This research contributes novel phenotype and genotype characteristics of ALS with SOD1 mutations and ADPKD with PKD1 mutations.
Collapse
Affiliation(s)
- Shirong Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huifang Shang
| |
Collapse
|
17
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
18
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
19
|
Wang JY, Wang J, Lu XG, Song W, Luo S, Zou DF, Hua LD, Peng Q, Tian Y, Gao LD, Liao WP, He N. Recessive PKD1 Mutations Are Associated With Febrile Seizures and Epilepsy With Antecedent Febrile Seizures and the Genotype-Phenotype Correlation. Front Mol Neurosci 2022; 15:861159. [PMID: 35620448 PMCID: PMC9128595 DOI: 10.3389/fnmol.2022.861159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe PKD1 encodes polycystin-1, a large transmembrane protein that plays important roles in cell proliferation, apoptosis, and cation transport. Previous studies have identified PKD1 mutations in autosomal dominant polycystic kidney disease (ADPKD). However, the expression of PKD1 in the brain is much higher than that in the kidney. This study aimed to explore the association between PKD1 and epilepsy.MethodsTrios-based whole-exome sequencing was performed in a cohort of 314 patients with febrile seizures or epilepsy with antecedent febrile seizures. The damaging effects of variants was predicted by protein modeling and multiple in silico tools. The genotype-phenotype association of PKD1 mutations was systematically reviewed and analyzed.ResultsEight pairs of compound heterozygous missense variants in PKD1 were identified in eight unrelated patients. All patients suffered from febrile seizures or epilepsy with antecedent febrile seizures with favorable prognosis. All of the 16 heterozygous variants presented no or low allele frequencies in the gnomAD database, and presented statistically higher frequency in the case-cohort than that in controls. These missense variants were predicted to be damaging and/or affect hydrogen bonding or free energy stability of amino acids. Five patients showed generalized tonic-clonic seizures (GTCS), who all had one of the paired missense mutations located in the PKD repeat domain, suggesting that mutations in the PKD domains were possibly associated with GTCS. Further analysis demonstrated that monoallelic mutations with haploinsufficiency of PKD1 potentially caused kidney disease, compound heterozygotes with superimposed effects of two missense mutations were associated with epilepsy, whereas the homozygotes with complete loss of PKD1 would be embryonically lethal.ConclusionPKD1 gene was potentially a novel causative gene of epilepsy. The genotype-phenotype relationship of PKD1 mutations suggested a quantitative correlation between genetic impairment and phenotypic variation, which will facilitate the genetic diagnosis and management in patients with PKD1 mutations.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Dong-Fang Zou
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li-Dong Hua
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan City Maternal and Child Health Hospital, Southern Medical University, Dongguan, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Na He,
| |
Collapse
|
20
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:ijms23052736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
|
21
|
Du N, Dong D, Sun L, Che L, Li X, Liu Y, Wang B. Identification of ACOT13 and PTGER2 as novel candidate genes of autosomal dominant polycystic kidney disease through whole exome sequencing. Eur J Med Res 2021; 26:142. [PMID: 34886911 PMCID: PMC8656035 DOI: 10.1186/s40001-021-00613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder. Half of the patients would slowly progress to end-stage renal disease. However, the potential target for ADPKD treatment is still lacking. Methods Four ADPKD patients and two healthy family members were included in this study. The peripheral blood samples were obtained and tested by the whole exome sequencing (WES). The autosomal mutations in ADPKD patients were retained as candidate sites. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein–protein interaction network (PPI) analyses were performed by clusterProfiler R package. A dataset containing 18 ADPKD patients and three normal samples were downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma R package. Results A total of six mutant genes were identified based on the dominant genetic pattern and most of them had not been reported to be associated with ADPKD. Furthermore, 19 harmful genes were selected according to the harmfulness of mutation. GO and KEGG enrichment analyses showed that the processes of single-organism cellular process, response to stimulus, plasma membrane, cell periphery, and anion binding as well as cyclic adenosine monophosphate (cAMP) signaling pathway and pathways in cancer were significantly enriched. Through integrating PPI and gene expression analyses, acyl-CoA thioesterase 13 (ACOT13), which has not been reported to be related to ADPKD, and prostaglandin E receptor 2 (PTGER2) were identified as potential genes associated with ADPKD. Conclusions Through combination of WES, gene expression, and PPI network analyses, we identified ACOT13 and PTGER2 as potential ADPKD-related genes. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-021-00613-8.
Collapse
Affiliation(s)
- Na Du
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Luyao Sun
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Lihe Che
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiaohua Li
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yong Liu
- Genetic Diagnosis Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Bin Wang
- Infectious Diseases Department, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
22
|
Chen S, Huang L, Zhou S, Zhang Q, Ruan M, Fu L, Yang B, Xu D, Mei C, Mao Z. NS398 as a potential drug for autosomal-dominant polycystic kidney disease: Analysis using bioinformatics, and zebrafish and mouse models. J Cell Mol Med 2021; 25:9597-9608. [PMID: 34551202 PMCID: PMC8505825 DOI: 10.1111/jcmm.16903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal‐dominant polycystic kidney disease (ADPKD) is characterized by uncontrolled renal cyst formation, and few treatment options are available. There are many parallels between ADPKD and clear‐cell renal cell carcinoma (ccRCC); however, few studies have addressed the mechanisms linking them. In this study, we aimed to investigate their convergences and divergences based on bioinformatics and explore the potential of compounds commonly used in cancer research to be repurposed for ADPKD. We analysed gene expression datasets of ADPKD and ccRCC to identify the common and disease‐specific differentially expressed genes (DEGs). We then mapped them to the Connectivity Map database to identify small molecular compounds with therapeutic potential. A total of 117 significant DEGs were identified, and enrichment analyses results revealed that they are mainly enriched in arachidonic acid metabolism, p53 signalling pathway and metabolic pathways. In addition, 127 ccRCC‐specific up‐regulated genes were identified as related to the survival of patients with cancer. We focused on the compound NS398 as it targeted DEGs and found that it inhibited the proliferation of Pkd1−/− and 786‐0 cells. Furthermore, its administration curbed cystogenesis in Pkd2 zebrafish and early‐onset Pkd1‐deficient mouse models. In conclusion, NS398 is a potential therapeutic agent for ADPKD.
Collapse
Affiliation(s)
- Sixiu Chen
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Linxi Huang
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China.,Graduate School of Clinical Medicine, Second Military Medical University, Shanghai, China
| | - Shoulian Zhou
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China.,Graduate School of Clinical Medicine, Second Military Medical University, Shanghai, China
| | - Qingzhou Zhang
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mengna Ruan
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lili Fu
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Yang
- Internal Medicine Ⅲ (Nephrology and Endocrinology), Naval Medical Center of PLA, Second Military Medical University, Shanghai, China
| | - Dechao Xu
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Changlin Mei
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Yan MT, Chao CT, Lin SH. Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci 2021; 22:ijms221810084. [PMID: 34576247 PMCID: PMC8470895 DOI: 10.3390/ijms221810084] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD), defined as the presence of irreversible structural or functional kidney damages, increases the risk of poor outcomes due to its association with multiple complications, including altered mineral metabolism, anemia, metabolic acidosis, and increased cardiovascular events. The mainstay of treatments for CKD lies in the prevention of the development and progression of CKD as well as its complications. Due to the heterogeneous origins and the uncertainty in the pathogenesis of CKD, efficacious therapies for CKD remain challenging. In this review, we focus on the following four themes: first, a summary of the known factors that contribute to CKD development and progression, with an emphasis on avoiding acute kidney injury (AKI); second, an etiology-based treatment strategy for retarding CKD, including the approaches for the common and under-recognized ones; and third, the recommended approaches for ameliorating CKD complications, and the final section discusses the novel agents for counteracting CKD progression.
Collapse
Affiliation(s)
- Ming-Tso Yan
- Department of Medicine, Division of Nephrology, Cathay General Hospital, School of Medicine, Fu-Jen Catholic University, Taipei 106, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 104, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 104, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- Department of Internal Medicine, Nephrology Division, National Defense Medical Center, Taipei 104, Taiwan
- Correspondence: or
| |
Collapse
|
24
|
Leierer J, Perco P, Hofer B, Eder S, Dzien A, Kerschbaum J, Rudnicki M, Mayer G. Coregulation Analysis of Mechanistic Biomarkers in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6885. [PMID: 34206927 PMCID: PMC8269435 DOI: 10.3390/ijms22136885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder leading to deterioration of kidney function and end stage kidney disease (ESKD). A number of molecular processes are dysregulated in ADPKD but the exact mechanism of disease progression is not fully understood. We measured protein biomarkers being linked to ADPKD-associated molecular processes via ELISA in urine and serum in a cohort of ADPKD patients as well as age, gender and eGFR matched CKD patients and healthy controls. ANOVA and t-tests were used to determine differences between cohorts. Spearman correlation coefficient analysis was performed to assess coregulation patterns of individual biomarkers and renal function. Urinary epidermal growth factor (EGF) and serum apelin (APLN) levels were significantly downregulated in ADPKD patients. Serum vascular endothelial growth factor alpha (VEGFA) and urinary angiotensinogen (AGT) were significantly upregulated in ADPKD patients as compared with healthy controls. Arginine vasopressin (AVP) was significantly upregulated in ADPKD patients as compared with CKD patients. Serum VEGFA and VIM concentrations were positively correlated and urinary EGF levels were negatively correlated with urinary AGT levels. Urinary EGF and AGT levels were furthermore significantly associated with estimated glomerular filtration rate (eGFR) in ADPKD patients. In summary, altered protein concentrations in body fluids of ADPKD patients were found for the mechanistic markers EGF, APLN, VEGFA, AGT, AVP, and VIM. In particular, the connection between EGF and AGT during progression of ADPKD warrants further investigation.
Collapse
Affiliation(s)
- Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Benedikt Hofer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | | | - Julia Kerschbaum
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| |
Collapse
|
25
|
A domestic cat whole exome sequencing resource for trait discovery. Sci Rep 2021; 11:7159. [PMID: 33785770 PMCID: PMC8009874 DOI: 10.1038/s41598-021-86200-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Over 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.
Collapse
|
26
|
The Role of Notch3 Signaling in Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1809408. [PMID: 33149805 PMCID: PMC7603621 DOI: 10.1155/2020/1809408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Notch receptors are transmembrane proteins that are members of the epidermal growth factor-like family. These receptors are widely expressed on the cell surface and are highly conserved. Binding to ligands on adjacent cells results in cleavage of these receptors, and their intracellular domains translocate into the nucleus, where target gene transcription is initiated. In the mammalian kidney, Notch receptors are activated during nephrogenesis and become silenced in the normal kidney after birth. Reactivation of Notch signaling in the adult kidney could be due to the genetic activation of Notch signaling or kidney injury. Notch3 is a mammalian heterodimeric transmembrane receptor in the Notch gene family. Notch3 activation is significantly increased in various glomerular diseases, renal tubulointerstitial diseases, glomerular sclerosis, and renal fibrosis and mediates disease occurrence and development. Here, we discuss numerous recently published papers describing the role of Notch3 signaling in kidney disease.
Collapse
|
27
|
Dong K, Liu X, Jia X, Miao H, Ji W, Wu J, Huang Y, Xu L, Zhang X, Su H, Ji G, Liu P, Guan R, Bai J, Fu S, Zhou X, Sun W. Disease causing property analyzation of variants in 12 Chinese families with polycystic kidney disease. Mol Genet Genomic Med 2020; 8:e1467. [PMID: 32970388 PMCID: PMC7667323 DOI: 10.1002/mgg3.1467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background Polycystic kidney disease (PKD) is an inherited disease that is life‐threatening. Multiple cysts are present in the bilateral kidneys of PKD patients. The progressively enlarged cysts cause structural damage and loss of kidney function. Methods This study examined and analyzed 12 families with polycystic kidney disease. Whole exome sequencing (WES) or whole genome sequencing (WGS) of the probands was performed to detect the pathogenic genes. The candidate gene segments for lineal consanguinity in the family were amplified by the nest PCR followed by Sanger sequencing. The variants were assessed by pathogenic and conservational property prediction analysis and interpreted according to the American College of Medical Genetics and Genomics. Results Nine of the 12 pedigrees were identified the disease causing variants. Among them, four novel variants in PKD1, c.6930delG:p.C2311Vfs*3, c.1216T>C:p.C406R, c.8548T>C:p.S2850P, and c.3865G>A:p.V1289M (NM_001009944.2) were detected. After assessment, the four novel variants were considered to be pathogenic variants and cause autosomal dominant polycystic kidney disease in family. The detected variants were interpreted. Conclusion The four novel variants in PKD1, c.6930delG:p.C2311Vfs*3, c.1216T>C:p.C406R, c.8548T>C:p.S2850P, and c.3865G>A:p.V1289M (NM_001009944.2) are pathogenic variants and cause autosomal dominant polycystic kidney disease in family.
Collapse
Affiliation(s)
- Kexian Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xiaogang Liu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Huanhuan Miao
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hui Su
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xianli Zhou
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Sun L, Wang C, Yuan Y, Guo Z, He Y, Ma W, Zhang J. Downregulation of HDAC1 suppresses media degeneration by inhibiting the migration and phenotypic switch of aortic vascular smooth muscle cells in aortic dissection. J Cell Physiol 2020; 235:8747-8756. [PMID: 32324261 DOI: 10.1002/jcp.29718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 01/27/2023]
Abstract
Although much progress has been made in the diagnosis and treatment of thoracic aortic dissection (TAD), the overall morbidity and mortality rates of TAD are still high. Therefore, the molecular pathogenesis and etiology of TAD need to be elucidated. In this study, we found that histone deacetylase 1 (HDAC1) expression is dramatically higher in the aortic wall of patients with TAD (than that in a normal group) and negatively correlates with the levels of the vascular smooth muscle cell (SMC) contractile-phenotype markers. Knockdown of HDAC1 upregulated both smooth muscle 22 α (SM22α) and α-smooth muscle actin (α-SMA) in platelet-derived growth factor (PDGF)-BB-treated and -untreated SMCs. In addition, the knockdown of HDAC1 markedly decreased SMC viability and migration in contrast to the control group under the conditions of quiescence and PDGF-BB treatment. We also showed that the expression of polycystic kidney disease 1 (PKD1) is decreased in the aortic wall of patients with TAD and negatively correlates with HDAC1 expression. Overexpressed PKD1 obviously increased SM22α and α-SMA expression and reduced the viability and migration of SMCs, but these effects were attenuated by HDAC1. Furthermore, we demonstrated that HDAC1 serves as an important modulator of the migration and phenotypic switch of SMCs by suppressing the PKD1- mammalian target of the rapamycin signaling pathway. HDAC1 downregulation inhibited media degeneration and attenuated the loss of elastic-fiber integrity in a mouse model of TAD. Our results suggest that HDAC1 might be a new target for the treatment of a macrovascular disease such as TAD.
Collapse
Affiliation(s)
- Lin Sun
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunping Wang
- Department of Thoracic-cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhen Guo
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yubin He
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Cardiovascular Surgery, Huashan Hospital North Affiliated to Fudan University, Shanghai, China
| | - Wenrui Ma
- Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Bowden SA, Stockwell PA, Rodger EJ, Parry MF, Eccles MR, Stayner C, Chatterjee A. Extensive Inter-Cyst DNA Methylation Variation in Autosomal Dominant Polycystic Kidney Disease Revealed by Genome Scale Sequencing. Front Genet 2020; 11:348. [PMID: 32351541 PMCID: PMC7174623 DOI: 10.3389/fgene.2020.00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a heritable disease characterized by bilateral renal enlargement due to the growth of cysts throughout the kidneys. Inheritance of a disease-causing mutation is required to develop ADPKD, which results in end-stage kidney disease and is associated with a high morbidity. The pathology underlying cyst formation is not well understood. To address this, we have previously shown the global methylome is altered in ADPKD tissue, suggesting a role of DNA methylation in disease-state renal tissue. As cysts are believed to arise independently, we hypothesize that DNA methylation changes vary accordingly. Here we further investigate the role of DNA methylation within independent cysts to characterize key intra-individual changes. We demonstrate that fragments within CpG islands and gene bodies harbor the greatest amount of variation across the ADPKD kidney, while intergenic fragments are comparatively stable. A proportion of variably methylated genes were also differentially methylated in ADPKD tissue. Our data provide evidence that individual molecular mechanisms are operating in the development of each cyst.
Collapse
Affiliation(s)
- Sarah A Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthew F Parry
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
30
|
Nakaniwa M, Kawasaki M, Kawasaki K, Yamada A, Meguro F, Takeyasu M, Ohazama A. Primary cilia in murine palatal rugae development. Gene Expr Patterns 2019; 34:119062. [PMID: 31226309 DOI: 10.1016/j.gep.2019.119062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Periodic patterning of iterative structures is a fundamental process during embryonic development, since these structures are diverse across the animal kingdom. Therefore, elucidating the molecular mechanisms in the formation of these structures promotes understanding of the process of organogenesis. Periodically patterned ridges, palatal rugae (situated on the hard palate of mammals), are an excellent experimental model to clarify the molecular mechanisms involved in the formation of periodic patterning of iterative structures. Primary cilia are involved in many biological events, including the regulation of signaling pathways such as Shh and non-canonical Wnt signaling. However, the role of primary cilia in the development of palatal rugae remains unclear. We found that primary cilia were localized to the oral cavity side of the interplacode epithelium of the palatal rugae, whereas restricted localization of primary cilia could not be detected in other regions. Next, we generated mice with a placodal conditional deletion of the primary cilia protein Ift88, using ShhCre mice (Ift88 fl/fl;ShhCre). Highly disorganized palatal rugae were observed in Ift88 fl/fl;ShhCre mice. Furthermore, by comparative in situ hybridization analysis, many Shh and non-canonical Wnt signaling-related molecules showed spatiotemporal expression patterns during palatal rugae development, including restricted expression in the epithelium (placodes and interplacodes) and mesenchyme. Some of these expression were found to be altered in Ift88 fl/fl;ShhCre mice. Primary cilia is thus involved in development of palatal rugae.
Collapse
Affiliation(s)
- Mayuko Nakaniwa
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maeda Takeyasu
- Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
31
|
Identification of a pathogenic mutation in a Chinese pedigree with polycystic kidney disease. Mol Med Rep 2019; 19:2671-2679. [PMID: 30720121 PMCID: PMC6423614 DOI: 10.3892/mmr.2019.9921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a life-threatening inherited disease with a morbidity of 1:500–1,000 worldwide. Numerous progressively enlarging cysts are observed in the bilateral kidneys of patients with PKD, inducing structural damage and loss of kidney function. The present study analyzed one family with PKD. Whole exome sequencing of the proband was performed to detect the pathogenic gene present in the family. Candidate gene segments for lineal consanguinity in the family were amplified by nest polymerase chain reaction, followed by Sanger sequencing. One novel duplication variant (NM_001009944.2:c.9359dupA:p.Y3120_E3121delinsX) and one missense mutation (c.G9022A:p.V3008M) were detected in PKD1. Additionally, the pathogenic substitutions in PKD1 published from the dataset were analyzed. Following analysis and confirmation, the duplication variant NM_001009944.2:c.9359dupA:p.Y3120_E3121delinsX in PKD1, within the polycystin-1, lipoxygenase, α-toxin domain, was considered to be the pathogenic factor in the examined family with autosomal dominant PKD. Additionally, based on the analysis of 4,805 pathogenic substitutions in PKD1 within various regions, the presence of the missense mutation in the N-terminal domain of polycystin-1 may present high pathogenicity in ADPKD.
Collapse
|
32
|
|
33
|
Skalická K, Hrčková G, Vaská A, Baranyaiová A, Janega P, Žilinská Z, Daniš D, Kovács L. Pilot Study of the Occurrence of Somatic Mutations in Ciliary Signalling Pathways as a Contribution Factor to Autosomal Dominant Polycystic Kidney Development. Folia Biol (Praha) 2017; 63:174-181. [PMID: 29687770 DOI: 10.14712/fb2017063050174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is an inherited disease that results in multiple kidney cysts, and it is a common cause of end-stage renal disease. Recent studies have shown that disease progression can be slowed by simultaneous disruption of the primary cilium and polycystins. The exact genetic mechanism of this process is still unknown. The aim of the present study was to characterize the mutation profile of ciliary signalling pathways in the renal epithelial cells of ADPKD patients. In our study, we performed an analysis of 110 genes encoding the components of Sonic Hedgehog, Hippo, Notch, Wnt and planar cell polarity signalling (PCP) by targeted next-generation sequencing. We analysed 10 formalin-fixed, paraffinembedded (FFPE) tissue samples of patients with ADPKD. We identified a unique mutation profile in each of the analysed ADPKD samples, which was characterized by the presence of pathogenic variants in eight to 11 genes involved in different signalling pathways. Despite the significant genetic heterogeneity of ADPKD, we detected five genes whose genetic variants affected most ADPKD samples. The pathogenic variants in NCOR2 and LRP2 genes were present in all analysed samples of ADPKD. In addition, eight out of 10 samples showed a pathogenic variant in the MAML2 and FAT4 genes, and six out of 10 samples in the CELSR1 gene. In our study, we identified the signalling molecules that may contribute to the cystogenesis and may represent potential targets for the development of new ADPKD treatments.
Collapse
Affiliation(s)
- K Skalická
- Laboratory of Clinical and Molecular Genetics, Department of Paediatrics, Faculty of Medicine, Comenius University and University Children's Hospital, Bratislava, Slovakia
| | - G Hrčková
- Laboratory of Clinical and Molecular Genetics, Department of Paediatrics, Faculty of Medicine, Comenius University and University Children's Hospital, Bratislava, Slovakia
| | - A Vaská
- Laboratory of Clinical and Molecular Genetics, Department of Paediatrics, Faculty of Medicine, Comenius University and University Children's Hospital, Bratislava, Slovakia
| | - A Baranyaiová
- Laboratory of Clinical and Molecular Genetics, Department of Paediatrics, Faculty of Medicine, Comenius University and University Children's Hospital, Bratislava, Slovakia
| | - P Janega
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Z Žilinská
- Urology Clinic with the Centre for Kidney Transplantation, University Hospital Bratislava, Slovakia
| | - D Daniš
- Cytopathos laboratory, Bratislava, Slovakia
| | - L Kovács
- Laboratory of Clinical and Molecular Genetics, Department of Paediatrics, Faculty of Medicine, Comenius University and University Children's Hospital, Bratislava, Slovakia
| |
Collapse
|