1
|
Raut S, Azheruddin M, Kumar R, Singh S, Giram PS, Datta D. Lecithin Organogel: A Promising Carrier for the Treatment of Skin Diseases. ACS OMEGA 2024; 9:9865-9885. [PMID: 38463343 PMCID: PMC10918684 DOI: 10.1021/acsomega.3c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Skin is the largest organ of the human body, as it protects the body from the external environment. Nowadays, skin diseases and skin problems are more common, and millions of people are affected daily. Skin diseases are due to numerous infectious pathogens or inflammatory conditions. The increasing demand for theoretical research and practical applications has led to the rising prominence of gel as a semisolid material. To this end, organogels has been widely explored due to their unique composition, which includes organic solvents and mineral or vegetable oils, among others. Organogels can be described as semisolid systems wherein an organic liquid phase is confined within a three-dimensional framework consisting of self-assembled, cross-linked, or entangled gelator fibers. These gels have the ability to undergo significant expansion and retain substantial amounts of the liquid phase, reaching up to 99% swelling capacity. Furthermore, they respond to a range of physical and chemical stimuli, including temperature, light, pH, and mechanical deformation. Notably, due to their distinctive properties, they have aroused significant interest in a variety of practical applications. Organogels favor the significant encapsulation and enhanced permeation of hydrophobic molecules when compared with hydrogels. Accordingly, organogels are characterized into lecithin organogels, pluronic lecithin organogels, sorbitan monostearate-based organogels, and eudragit organogels, among others, based on the nature of their network and the solvent system. Lecithin organogels contain lecithin (natural and safe as a living cell component) as an organogelator. It acts as a good penetration enhancer. In this review, first we have summarized the fundamental concepts related to the elemental structure of organogels, including their various forms, distinctive features, methods of manufacture, and diverse applications. Nonetheless, this review also sheds light on the delivery of therapeutic molecules entrapped in the lecithin organogel system into deep tissue for the management of skin diseases and provides a synopsis of their clinical applications.
Collapse
Affiliation(s)
- Sushil Raut
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Mohammed Azheruddin
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Rajeev Kumar
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Shivani Singh
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Prabhanjan S. Giram
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
2
|
Development and Evaluation of PLGA Nanoparticle-Loaded Organogel for the Transdermal Delivery of Risperidone. Gels 2022; 8:gels8110709. [PMID: 36354616 PMCID: PMC9689791 DOI: 10.3390/gels8110709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A transdermal delivery approach may circumvent the limitations associated with the oral use of risperidone (RIS), an atypical antipsychotic drug. The current study focuses on the utilization of poloxamer (pluronic) lecithin organogel (PLO), a suitable transdermal vehicle, and a biodegradable nanoparticulate system of PLGA with the potential to deliver RIS in an efficient way. PLGA nanoparticles were fabricated using different ratios of the polymer and surfactant. The optimization was performed principally on the basis of particle size and entrapment efficiency (EE). The developed PLGA nanoparticles were spherical, sized around 109 nm with negative charge (−9.3 mv) and enhanced drug entrapment efficiency (58%). The in vitro drug release study of lyophilized nanoparticles showed a sustained pattern. Statistical analysis confirmed that there was a significant difference (p < 0.05) between the nanoparticle-loaded PLO gel and conventional drug formulations in terms of drug release and ex vivo permeation across rat skin (three-fold). The results confirm enhanced drug release and permeation through the skin at 72 h. Hence, the investigated formulation could be a better alternative to the conventional route for improving patient compliance.
Collapse
|
3
|
Zhang Z, Wang L, Yu H, Zhang F, Tang L, Feng Y, Feng W. Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15657-15666. [PMID: 32141727 DOI: 10.1021/acsami.9b22707] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of intelligent adaptable materials with unprecedented sensitivity that can mimic the tactile sensing functions of natural skin is a major driving force in the realization of artificial intelligence. Herein, we judiciously designed and synthesized a series of lauryl acrylate-based polymeric organogels with high transparency, mechanical adaptability, self-healing properties, and adhesive capability. Moreover, a robust capacitive sensor with high sensitivity (0.293 kPa-1) was developed by sandwiching the prepared soft, adaptable organogels between two tough conductive hydrogels and then used to monitor various human motions such as finger stretching, wrist bending, and throat movement during chewing. Interestingly, the resulting capacitive sensor could also function as prosthetic skin on a pneumatic soft artificial hand, enabling intelligent haptic perception. The research disclosed herein is expected to provide insights into the rational design of artificial human-like skins with unprecedented functionalities.
Collapse
Affiliation(s)
- Zhixing Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Huitao Yu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Fei Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Lin Tang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Yiyu Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300350, P. R. China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Zhang X, Li Z, Che X, Yu L, Jia W, Shen R, Chen J, Ma Y, Chen GQ. Synthesis and Characterization of Polyhydroxyalkanoate Organo/Hydrogels. Biomacromolecules 2019; 20:3303-3312. [PMID: 31094501 DOI: 10.1021/acs.biomac.9b00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic organogels/hydrogels are attracting growing interests due to their potential applications in biomedical fields, organic electronics, and photovoltaics. Photogelation methods for synthesis of organogels/hydrogels have been shown particularly promising because of the high efficiency and simple synthetic procedures. This study synthesized new biodegradable polyhydroxyalkanoates (PHA)-based organogels/hydrogels via UV photo-cross-linking using unsaturated PHA copolymer poly[(R)-3-hydroxyundecanoate-co-(R)-3-hydroxy-10-undecenoate] (PHU10U) with polyethylene glycol dithiol (PDT) as a photo-cross-linker. The PHU10U was synthesized by an engineered Pseudomonas entomophila and characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. With decreasing the molar ratio of PHU10U to PDT, both the swelling ratio and pore size were decreased. Meanwhile, increasing densities of the gel networks resulted in a higher compressive modulus. Cell cytotoxicity studies based on the CCK-8 assay on both the PHU10U precursor and PHU10U/PDT hydrogels showed that the novel PHA-based biodegradables acting as hydrogels possess good biocompatibility.
Collapse
Affiliation(s)
- Xu Zhang
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Zihua Li
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Xuemei Che
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China
| | - Linping Yu
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Wangyue Jia
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Rui Shen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jinchun Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Yiming Ma
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China.,MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|