1
|
Hughes SM, Aykanat A, Pierini NG, Paiva WA, Weeks AA, Edwards AS, Durant OC, Oldenhuis NJ. DNA-Intercalating Supramolecular Hydrogels for Tunable Thermal and Viscoelastic Properties. Angew Chem Int Ed Engl 2024; 63:e202411115. [PMID: 39102520 DOI: 10.1002/anie.202411115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Polymeric supramolecular hydrogels (PSHs) leverage the thermodynamic and kinetic properties of non-covalent interactions between polymer chains to govern their structural characteristics. As these materials are formed via endothermic or exothermic equilibria, their thermal response is challenging to control without drastically changing the nature of the chemistry used to join them. In this study, we introduce a novel class of PSHs utilizing the intercalation of double-stranded DNA (dsDNA) as the primary dynamic non-covalent interaction. The resulting dsDNA intercalating supramolecular hydrogels (DISHs) can be tuned to exhibit both endothermically or exothermically driven binding through strategic selection of intercalators. Bifunctional polyethylene glycol (MW~2000 Da) capped with intercalators of varying hydrophobicity, charge, and size (acridine, psoralen, thiazole orange, and phenanthridine) produced DISHs with comparable moduli (500-1000 Pa), but unique thermal viscoelastic responses. Notably, acridine-based cross-linkers displayed invariant and even increasing relaxation times with temperature, suggesting an endothermic binding mechanism. This methodology expands the set of structure-properties available to biomass-derived DNA biomaterials and promises a new material system where a broad set of thermal and viscoelastic responses can be obtained due to the sheer number and variety of intercalating molecules.
Collapse
Affiliation(s)
- Shaina M Hughes
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - Aylin Aykanat
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - Nicholas G Pierini
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - Wynter A Paiva
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - April A Weeks
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - Austin S Edwards
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - Owen C Durant
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| | - Nathan J Oldenhuis
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America
| |
Collapse
|
2
|
Ravarino P, Panja S, Adams DJ. Spatiotemporal Control Over Base-Catalysed Hydrogelation Using a Bilayer System. Macromol Rapid Commun 2022; 43:e2200606. [PMID: 35995598 DOI: 10.1002/marc.202200606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Controlling the formation and directional growth of hydrogels is a challenge. In this paper, we propose a new methodology to program the gel formation both over space and time, using the diffusion and subsequent hydrolysis of 1,1'-carbonyldiimidazole (CDI) from an immiscible organic solution to the aqueous gel media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paolo Ravarino
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, Bologna, 40126, Italy
| | - Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| |
Collapse
|
3
|
Bordignon D, Lonetti B, Coudret C, Roblin P, Joseph P, Malaquin L, Chalard A, Fitremann J. Wet spinning of a library of carbohydrate low molecular weight gels. J Colloid Interface Sci 2021; 603:333-343. [PMID: 34197983 DOI: 10.1016/j.jcis.2021.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Recently, a low molecular weight hydrogel based on a carbohydrate alkyl amide has been successfully used as biomaterial for neuron cell culture and for 3D printing. Varying the molecular structure should make it possible to extend the library of carbohydrate low molecular weight hydrogels available for these applications and to improve their performances. EXPERIMENTS Thirteen molecules easy to synthetize and designed to be potentially biocompatible were prepared. They are based on gluconamide, glucoheptonamide, galactonamide, glucamide, aliphatic chains and glycine. Their gelation in water was investigated in thermal conditions and wet spinning conditions, namely by dimethylsulfoxide-water exchange under injection. FINDINGS Nine molecules give hydrogels in thermal conditions. By wet spinning, six molecules self-assemble fast enough, within few seconds, to form continous hydrogel filaments. Therefore, the method enables to shape by injection these mechanically fragile hydrogels, notably in the perspective of 3D printing. Depending on the molecular structure, persistent or soluble gel filaments are obtained. The microstructures are varied, featuring entangled ribbons, platelets or particles. In thermal gelation, molecules with a symmetrical polar head (galacto, glucoheptono) give flat ribbons and molecules with an asymmetrical polar head (gluco) give helical ribbons. The introduction of an extra glycine linker disturbs this trend.
Collapse
Affiliation(s)
- Delphine Bordignon
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Christophe Coudret
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique (LGC), Université de Toulouse, CNRS UMR 5503, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | | - Anaïs Chalard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Juliette Fitremann
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| |
Collapse
|
4
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
Chirality, Gelation Ability and Crystal Structure: Together or Apart? Alkyl Phenyl Ethers of Glycerol as Simple LMWGs. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chiral recognition plays an important role in the self-assembly of soft materials, in particular supramolecular organogels formed by low molecular weight gelators (LMWGs). Out of 14 pairs of the studied racemic and enantiopure samples of alkyl-substituted phenyl ethers of glycerol, only eight enantiopure diols form the stable gels in nonane. The formation of gels from solutions was studied by polarimetry, and their degradation with the formation of xerogels was studied by the PXRD method. The revealed crystalline characteristics of all studied xerogels corresponded to those for crystalline samples of the parent gelators. In addition to those previously investigated, crystalline samples of enantiopure para-n-alkylphenyl glycerol ethers [alkyl = pentyl (5), hexyl (6), heptyl (7), octyl (8), nonyl (9)] and racemic 3-(3,5-dimethylphenoxy)propane-1,2-diol (rac-14) have been examined by single crystal X-ray diffraction analysis. Among 22 samples of compounds 1–14 studied by SC-XRD, seven different types of supramolecular motifs are identified, of which only two are realized in crystals of supramolecular gelators. An attempt was made to relate the ability to gel formation with the characteristics of the supramolecular motif of a potential gelling agent, and the frequency of formation of the motif, required for gelation, with the chiral characteristics of the sample.
Collapse
|