1
|
COLMENA: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. DIVERSITY 2021. [DOI: 10.3390/d13080337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COLMENA is a microbial culture collection dedicated to the characterization, classification, preservation, and transferal of native microorganisms isolated from various agro-systems and other ecosystems in Mexico. This collection aims to protect microbial diversity, reducing soil degradation, but also exploiting its agro-biotechnological potential. So far, COLMENA has isolated and cryopreserved soil microorganisms from different crops in two major agricultural regions in Mexico, the Yaqui Valley, Sonora, and the Fuerte Valley, Sinaloa. COLMENA has specialized in the identification and characterization of microbial strains with metabolic capacities related to the promotion of plant growth and the biocontrol of phytopathogens. Thus, COLMENA has identified several promising plant growth-promoting microbial (PGPM) strains due to their metabolic and genetic potentials and their beneficial effects in vivo and field trials. These findings demonstrate the biotechnological potential of these strains for their future use in profitable agricultural alternatives focused on enhancing global food security. To share the knowledge and results of the COLMENA team’s scientific research, a virtual platform was created, where the database of the studied and preserved microorganisms is available to professionals, researchers, agricultural workers, and anyone who is interested.
Collapse
|
2
|
Díaz-Rodríguez AM, Salcedo Gastelum LA, Félix Pablos CM, Parra-Cota FI, Santoyo G, Puente ML, Bhattacharya D, Mukherjee J, de los Santos-Villalobos S. The Current and Future Role of Microbial Culture Collections in Food Security Worldwide. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.614739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Food security is the pillar of nutritional wellbeing for food availability, and is necessary to satisfy all physiological needs to thus maintain the general wellbeing of populations. However, global agricultural deficiencies occur due to rapid population growth, causing an increase in competition for resources; such as water, land, and energy, leading to the overexploitation of agro-ecosystems, and the inability to produce a suitable quantity of efficient food. Therefore, the development of sustainable agro-biotechnologies is vital to increase crop yield and quality, reducing the negative impacts caused by intensive non-sustainable agricultural practices. In this way, the genetic and metabolic diversity of soil and plant microbiota in agro-ecosystems are a current and promising alternative to ensure global food security. Microbial communities play an important role in the improvement of soil fertility and plant development by enhancing plant growth and health through several direct and/or indirect mechanisms. Thus, the bio-augmentation of beneficial microbes into agro-ecosystems not only generates an increase in food production but also mitigates the economic, social, and environmental issues of intensive non-sustainable agriculture. In this way, the isolation, characterization, and exploitation of preserved beneficial microbes in microbial culture collections (MCC) is crucial for the ex situ maintenance of native soil microbial ecology focused on driving sustainable food production. This review aims to provide a critical analysis of the current and future role of global MCC on sustainable food security, as providers of a large number of beneficial microbial strains with multiple metabolic and genetic traits.
Collapse
|
3
|
Otlewska A, Migliore M, Dybka-Stępień K, Manfredini A, Struszczyk-Świta K, Napoli R, Białkowska A, Canfora L, Pinzari F. When Salt Meddles Between Plant, Soil, and Microorganisms. FRONTIERS IN PLANT SCIENCE 2020; 11:553087. [PMID: 33042180 PMCID: PMC7525065 DOI: 10.3389/fpls.2020.553087] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/31/2020] [Indexed: 05/27/2023]
Abstract
In extreme environments, the relationships between species are often exclusive and based on complex mechanisms. This review aims to give an overview of the microbial ecology of saline soils, but in particular of what is known about the interaction between plants and their soil microbiome, and the mechanisms linked to higher resistance of some plants to harsh saline soil conditions. Agricultural soils affected by salinity is a matter of concern in many countries. Soil salinization is caused by readily soluble salts containing anions like chloride, sulphate and nitrate, as well as sodium and potassium cations. Salinity harms plants because it affects their photosynthesis, respiration, distribution of assimilates and causes wilting, drying, and death of entire organs. Despite these life-unfavorable conditions, saline soils are unique ecological niches inhabited by extremophilic microorganisms that have specific adaptation strategies. Important traits related to the resistance to salinity are also associated with the rhizosphere-microbiota and the endophytic compartments of plants. For some years now, there have been studies dedicated to the isolation and characterization of species of plants' endophytes living in extreme environments. The metabolic and biotechnological potential of some of these microorganisms is promising. However, the selection of microorganisms capable of living in association with host plants and promoting their survival under stressful conditions is only just beginning. Understanding the mechanisms of these processes and the specificity of such interactions will allow us to focus our efforts on species that can potentially be used as beneficial bioinoculants for crops.
Collapse
Affiliation(s)
- Anna Otlewska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Melania Migliore
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Rome, Italy
| | - Katarzyna Dybka-Stępień
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Andrea Manfredini
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Rome, Italy
| | - Katarzyna Struszczyk-Świta
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Rosario Napoli
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Rome, Italy
| | - Aneta Białkowska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Loredana Canfora
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Rome, Italy
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy (CNR), Rome, Italy
| |
Collapse
|
4
|
de la Torre-Hernández ME, Salinas-Virgen LI, Aguirre-Garrido JF, Fernández-González AJ, Martínez-Abarca F, Montiel-Lugo D, Ramírez-Saad HC. Composition, Structure, and PGPR Traits of the Rhizospheric Bacterial Communities Associated With Wild and Cultivated Echinocactus platyacanthus and Neobuxbaumia polylopha. Front Microbiol 2020; 11:1424. [PMID: 32676064 PMCID: PMC7333311 DOI: 10.3389/fmicb.2020.01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/02/2020] [Indexed: 02/01/2023] Open
Abstract
The Queretaro semi-desert in central Mexico is the most southern extension of the Chihuahua desert. This semi-arid zone shelters a vast cactus diversity with many endemic species. Currently, two cacti species from this semi-desert namely, Echinocactus platyacanthus and Neobuxbaumia polylopha are under a threat to their survival. So far, there are no reports on the bacterial communities associated with these plants. In this study, we assessed the structure and diversity of the rhizospheric bacterial communities associated with Echinocactus platyacanthus and Neobuxbaumia polylopha growing in wild and cultivated conditions. Samples of E. platyacanthus were also approached with culture-based methods in search of isolates with plant growth promoting abilities. Metagenomic DNA was extracted from rhizospheric samples and used for Illumina sequencing of the 16S rRNA gene. α-diversity and amplicon sequence variant (ASV) richness were higher in both groups of E. platyacanthus samples. All samples accounted for 14 phyla, and the major 6 were common to all treatments. The dominant phyla in all four sample groups were Actinobacteria and Proteobacteria. Analysis at family and genus levels showed association patterns with the cultivated samples from both species grouping together, while the wild samples of each cactus species were grouping apart. High abundance values of Rubrobacteraceae (15.9-18.4%) were a characteristic feature of wild E. platyacanthus samples. In total, 2,227 ASVs were scored in all 12 rhizospheric samples where E. platyacanthus samples showed higher richness with 1,536 ASVs. Regarding the growing conditions, both groups of cultivated samples were also richer accounting for 743 and 615 ASVs for E. platyacanthus and N. polylopha, respectively. The isolates from E. platyacanthus rhizosphere were mainly assigned to Bacilli and Gammaproteobacteria. In total 35 strains were assayed for PGPR traits (IAA and siderophore production, phosphate solubilization, and fungal growth inhibition). Strains obtained from plants growing in the wild displayed better PGPR characteristics, stressing that naturally occurring wild plants are a source of bacteria with diverse metabolic activities, which can be very important players in the adaptation of cacti to their natural environments.
Collapse
Affiliation(s)
| | - Leilani I. Salinas-Virgen
- Maestría en Ciencias Agropecuarias, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - J. Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México Mexico
| | - Antonio J. Fernández-González
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Daniel Montiel-Lugo
- Maestría en Ciencias Agropecuarias, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Hugo C. Ramírez-Saad
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|
5
|
de la Torre-Hernández ME, Salinas-Virgen LI, Aguirre-Garrido JF, Fernández-González AJ, Martínez-Abarca F, Montiel-Lugo D, Ramírez-Saad HC. Composition, Structure, and PGPR Traits of the Rhizospheric Bacterial Communities Associated With Wild and Cultivated Echinocactus platyacanthus and Neobuxbaumia polylopha. Front Microbiol 2020. [PMID: 32676064 DOI: 10.3389/fmicb.2020.01424/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The Queretaro semi-desert in central Mexico is the most southern extension of the Chihuahua desert. This semi-arid zone shelters a vast cactus diversity with many endemic species. Currently, two cacti species from this semi-desert namely, Echinocactus platyacanthus and Neobuxbaumia polylopha are under a threat to their survival. So far, there are no reports on the bacterial communities associated with these plants. In this study, we assessed the structure and diversity of the rhizospheric bacterial communities associated with Echinocactus platyacanthus and Neobuxbaumia polylopha growing in wild and cultivated conditions. Samples of E. platyacanthus were also approached with culture-based methods in search of isolates with plant growth promoting abilities. Metagenomic DNA was extracted from rhizospheric samples and used for Illumina sequencing of the 16S rRNA gene. α-diversity and amplicon sequence variant (ASV) richness were higher in both groups of E. platyacanthus samples. All samples accounted for 14 phyla, and the major 6 were common to all treatments. The dominant phyla in all four sample groups were Actinobacteria and Proteobacteria. Analysis at family and genus levels showed association patterns with the cultivated samples from both species grouping together, while the wild samples of each cactus species were grouping apart. High abundance values of Rubrobacteraceae (15.9-18.4%) were a characteristic feature of wild E. platyacanthus samples. In total, 2,227 ASVs were scored in all 12 rhizospheric samples where E. platyacanthus samples showed higher richness with 1,536 ASVs. Regarding the growing conditions, both groups of cultivated samples were also richer accounting for 743 and 615 ASVs for E. platyacanthus and N. polylopha, respectively. The isolates from E. platyacanthus rhizosphere were mainly assigned to Bacilli and Gammaproteobacteria. In total 35 strains were assayed for PGPR traits (IAA and siderophore production, phosphate solubilization, and fungal growth inhibition). Strains obtained from plants growing in the wild displayed better PGPR characteristics, stressing that naturally occurring wild plants are a source of bacteria with diverse metabolic activities, which can be very important players in the adaptation of cacti to their natural environments.
Collapse
Affiliation(s)
| | - Leilani I Salinas-Virgen
- Maestría en Ciencias Agropecuarias, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - J Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México Mexico
| | - Antonio J Fernández-González
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Daniel Montiel-Lugo
- Maestría en Ciencias Agropecuarias, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Hugo C Ramírez-Saad
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|