1
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
2
|
Mei Y, Shen Y. Cation-π Interactions Greatly Influence Ion Transportability of the Light-Driven Sodium Pump KR2: A Molecular Dynamics Study. J Chem Inf Model 2024; 64:974-982. [PMID: 38237560 DOI: 10.1021/acs.jcim.3c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a typical light-driven sodium pump. Although wild-type KR2 exhibits high Na+ selectivity, mutagenesis performed on the residues constituting the entrance enables permeation of K+ and Cs+, while the underlying mechanism remains elusive. This study presents a comprehensive molecular dynamics investigation, including force field optimization, metadynamics, and alchemical free energy methods, to explore the N61L/G263F mutant of KR2, which exhibits transportability for K+ and Cs+. The introduced Phe263 residue can directly promote ion binding at the entrance through cation-π interactions, while the N61L mutation can enhance ion binding at Phe46 by relieving steric hindrance. These results suggest that cation-π interactions may significantly influence the ion transportability and selectivity of KR2, which can provide important insights for protein engineering and the design of artificial ion transporters.
Collapse
Affiliation(s)
- Yunhao Mei
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Shen
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Petrovskaya LE, Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Kirpichnikov MP. Features of the Mechanism of Proton Transport in ESR, Retinal Protein from Exiguobacterium sibiricum. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1544-1554. [PMID: 38105023 DOI: 10.1134/s0006297923100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Rokitskaya TI, Alekseev AA, Tsybrov FM, Bukhalovich SM, Antonenko YN, Gordeliy VI. Retinal-Based Anion Pump from the Cyanobacterium Tolypothrix campylonemoides. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1571-1579. [PMID: 38105025 DOI: 10.1134/s0006297923100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
In this work, TcaR rhodopsin from the cyanobacterium Tolypothrix campylonemoides was characterized. Analysis of the amino acid sequence of TcaR revealed that this protein possesses a TSD motif that differs by only one amino acid from the TSA motif of the known halorhodopsin chloride pump. The TcaR protein was expressed in E. coli, purified, and incorporated into proteoliposomes and nanodiscs. Functional activity was measured by electric current generation through the planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one side of the membrane surface, as well as by fluorescence using the voltage-dependent dye oxonol VI. We have shown that TcaR rhodopsin functions as a powerful anion pump. Our results show that the novel microbial anion transporter, TcaR, deserves deeper investigation and may be of interest both for fundamental studies of membrane proteins and as a tool for optogenetics.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Aleksey A Alekseev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Fedor M Tsybrov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Sergej M Bukhalovich
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
5
|
Gorriti MF, Bamann C, Alonso-Reyes DG, Wood P, Bamberg E, Farías ME, Gärtner W, Albarracín VH. Functional characterization of xanthorhodopsin in Salinivibrio socompensis, a novel halophile isolated from modern stromatolites. Photochem Photobiol Sci 2023; 22:1809-1823. [PMID: 37036621 DOI: 10.1007/s43630-023-00412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.
Collapse
Affiliation(s)
- Marta F Gorriti
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT) CCT, CONICET, Facultad de Agronomía, Zootecnia y Veterinaria, Finca El Manantial, UNT, Camino de Sirga s/n (4107), Yerba Buena, Tucumán, Argentina
- Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Phillip Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT) CCT, CONICET, Facultad de Agronomía, Zootecnia y Veterinaria, Finca El Manantial, UNT, Camino de Sirga s/n (4107), Yerba Buena, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina.
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Centro Universitario Ing. R. Herrera (Ex Quinta Agronómica), Avda. Pte. N. Kirchner 1900., San Miguel de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
6
|
Kovalev K, Tsybrov F, Alekseev A, Shevchenko V, Soloviov D, Siletsky S, Bourenkov G, Agthe M, Nikolova M, von Stetten D, Astashkin R, Bukhdruker S, Chizhov I, Royant A, Kuzmin A, Gushchin I, Rosselli R, Rodriguez-Valera F, Ilyinskiy N, Rogachev A, Borshchevskiy V, Schneider TR, Bamberg E, Gordeliy V. Mechanisms of inward transmembrane proton translocation. Nat Struct Mol Biol 2023:10.1038/s41594-023-01020-9. [PMID: 37386213 DOI: 10.1038/s41594-023-01020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Proton transport is indispensable for cell life. It is believed that molecular mechanisms of proton movement through different types of proton-conducting molecules have general universal features. However, elucidation of such mechanisms is a challenge. It requires true-atomic-resolution structures of all key proton-conducting states. Here we present a comprehensive function-structure study of a light-driven bacterial inward proton pump, xenorhodopsin, from Bacillus coahuilensis in all major proton-conducting states. The structures reveal that proton translocation is based on proton wires regulated by internal gates. The wires serve as both selectivity filters and translocation pathways for protons. The cumulative results suggest a general concept of proton translocation. We demonstrate the use of serial time-resolved crystallography at a synchrotron source with sub-millisecond resolution for rhodopsin studies, opening the door for principally new applications. The results might also be of interest for optogenetics since xenorhodopsins are the only alternative tools to fire neurons.
Collapse
Affiliation(s)
- Kirill Kovalev
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Vitaly Shevchenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmytro Soloviov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Sergey Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Michael Agthe
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Marina Nikolova
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Roman Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Antoine Royant
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Riccardo Rosselli
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Produccion Vegetal y Microbiologıa, Universidad Miguel Hernandez, San Juan de Alicante, Alicante, Spain
| | - Nikolay Ilyinskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, Dubna, Russian Federation
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, Dubna, Russian Federation
| | - Thomas R Schneider
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
7
|
Okhrimenko IS, Kovalev K, Petrovskaya LE, Ilyinsky NS, Alekseev AA, Marin E, Rokitskaya TI, Antonenko YN, Siletsky SA, Popov PA, Zagryadskaya YA, Soloviov DV, Chizhov IV, Zabelskii DV, Ryzhykau YL, Vlasov AV, Kuklin AI, Bogorodskiy AO, Mikhailov AE, Sidorov DV, Bukhalovich S, Tsybrov F, Bukhdruker S, Vlasova AD, Borshchevskiy VI, Dolgikh DA, Kirpichnikov MP, Bamberg E, Gordeliy VI. Mirror proteorhodopsins. Commun Chem 2023; 6:88. [PMID: 37130895 PMCID: PMC10154332 DOI: 10.1038/s42004-023-00884-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.
Collapse
Affiliation(s)
- Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Lada E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr A Popov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Igor V Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil V Sidorov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
8
|
Belikov NE, Petrovskaya LE, Kryukova EA, Dolgikh DA, Lukashev EP, Lukin AY, Demina OV, Varfolomeev SD, Chupin VV, Khodonov AA. Interaction of the Fluorophenyl Analog of Retinal with Proteorhodopsin from Exiguobacterium sibiricum. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract—
We have developed an alternative method for the synthesis of an analog of natural retinal, which contains the p-fluorophenyl fragment instead of the trimethylcyclohexene ring. The proposed scheme for the synthesis of the target all-E-isomer of the target retinoid consists of using C5-phosphonate that contains the terminal nitrile group under Horner–Emmons reaction conditions. It has been shown that this scheme is more efficient and provides a higher total yield of the target product than the previously described variant. The procedure has been developed for the preparation of an analog of microbial proteorhodopsin ESRh from Exiguobacterium sibiricum, which contains a modified chromophore. It has been found that, as in the case of bacterioopsin from Halobacterium salinarum, the replacement of the trimethylcyclohexene ring in the natural chromophore by the p-fluorophenyl fragment does not prevent the formation of the artificial pigment F-Phe-ESRh from proteorhodopsin ESRh, which preserves the cycle of photochemical reactions. Certain differences have been found between the properties of native recombinant ESRh and its analog F-Phe-ESRh including a shift in the absorption maximum to the short-wavelength region, the formation of M intermediate at lower pH values, the presence of “long-lived M,” and a general slowdown in the photocycle. The reduced stability of the resulting proteorhodopsin analog F-Phe-ESRh to prolonged exposure to visible light has been also demonstrated.
Collapse
|
9
|
Abstract
Rhodopsins are widely distributed across all domains of life where they perform a plethora of functions through the conversion of electromagnetic radiation into physicochemical signals. As a result of an extensive survey of available genomic and metagenomic sequencing data, we reported the existence of novel clades and exotic sequence motifs scattered throughout the evolutionary radiations of both Type-1 and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded the typical rhodopsin blueprint by showing that a highly conserved and functionally important arginine residue (i.e., Arg82) was substituted multiple times during evolution by an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins (AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncovered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer examination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins. Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation before their subsequent diversification into the extant Type-3 rhodopsins. IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling light availability to energy production and other light-dependent cellular responses with minor alterations to critical residues. We described an unprecedented spectrum of substitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodopsins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs before their diversification in prokaryotes.
Collapse
|
10
|
Alonso-Reyes DG, Galván FS, Irazoqui JM, Amadio A, Tschoeke D, Thompson F, Albarracín VH, Farias ME. Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02112-7. [PMID: 36161499 DOI: 10.1007/s00248-022-02112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin-Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood-Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.
Collapse
Affiliation(s)
- Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | - Fátima Silvina Galván
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina
| | - José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Rafaela, Argentina
| | - Ariel Amadio
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Rafaela, Argentina
| | - Diogo Tschoeke
- Institute of Biology and Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology and Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina.
| | - María Eugenia Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
11
|
Application of direct electrometry in studies of microbial rhodopsins reconstituted in proteoliposomes. Biophys Rev 2022; 14:771-778. [PMID: 36124261 PMCID: PMC9481854 DOI: 10.1007/s12551-022-00986-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial rhodopsins are the family of retinal-containing proteins that perform primarily the light-driven transmembrane ion transport and sensory functions. They are widely distributed in nature and can be used for optogenetic control of the cellular activities by light. Functioning of microbial rhodopsins results in generation of the transmembrane electric potential in response to a flash that can be measured by direct time-resolved electrometry. This method was developed by L. Drachev and his colleagues at the Belozersky Institute and successfully applied in the functional studies of microbial rhodopsins. First measurements were performed using bacteriorhodopsin from Halobacterium salinarum-the prototype member of the microbial retinal protein family. Later, direct electrometric studies were conducted with proteorhodopsin from Exiguobacterium sibiricum (ESR), the sodium pump from Dokdonia, and other proteins. They allowed detailed characterization of the charge transfer steps during the photocycle of microbial rhodopsins and provided new insights for profound understanding of their mechanism of action.
Collapse
|
12
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
13
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
14
|
Santra M, Seal A, Bhattacharjee K, Chakrabarty S. Structural and dynamical heterogeneity of water trapped inside Na +-pumping KR2 rhodopsin in the dark state. J Chem Phys 2021; 154:215101. [PMID: 34240976 DOI: 10.1063/5.0044904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Photoisomerization in the retinal leads to a channel opening in rhodopsins that triggers translocation or pumping of ions/protons. Crystal structures of rhodopsins contain several structurally conserved water molecules. It has been suggested that water plays an active role in facilitating the ion pumping/translocation process by acting as a lubricant in these systems. In this paper, we systematically investigate the localization, structure, dynamics, and energetics of the water molecules along the channel for the resting/dark state of KR2 rhodopsin. By employing several microseconds long atomistic molecular dynamics simulation of this trans-membrane protein system, we demonstrate the presence of five distinct water containing pockets/cavities separated by gateways controlled by protein side-chains. There exists a strong hydrogen bonded network involving these buried water molecules and functionally important key residues. We present evidence of significant structural and dynamical heterogeneity in the water molecules present in these cavities, with very rare exchange between them. The exchange time scale of such buried water with the bulk has an extremely wide range, from tens of nanoseconds to >1.5 µs. The translational and rotational dynamics of buried water are found to be strongly dependent on the protein cavity size and local interactions with a classic signature of trapped diffusion and rotational anisotropy.
Collapse
Affiliation(s)
- Mantu Santra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Aniruddha Seal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India
| | - Kankana Bhattacharjee
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| |
Collapse
|
15
|
Rokitskaya TI, Maliar N, Kovalev KV, Volkov O, Gordeliy VI, Antonenko YN. Rhodopsin Channel Activity Can Be Evaluated by Measuring the Photocurrent Voltage Dependence in Planar Bilayer Lipid Membranes. BIOCHEMISTRY (MOSCOW) 2021; 86:409-419. [PMID: 33941063 DOI: 10.1134/s0006297921040039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The studies of the functional properties of retinal-containing proteins often include experiments in model membrane systems, e.g., measurements of electric current through planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one of the membrane surfaces. However, the possibilities of this method have not been fully explored yet. We demonstrated that the voltage dependence of stationary photocurrents for two light-sensitive proteins, bacteriorhodopsin (bR) and channelrhodopsin 2 (ChR2), in the presence of protonophore had very different characteristics. In the case of the bR (proton pump), the photocurrent through the BLM did not change direction when the polarity of the applied voltage was switched. In the case of the photosensitive channel protein ChR2, the photocurrent increased with the increase in voltage and the current polarity changed with the change in the voltage polarity. The protonophore 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole (TTFB) was more efficient in the maximizing stationary photocurrents. In the presence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP), the amplitude of the measured photocurrents for bR significantly decreased, while in the case of ChR2, the photocurrents virtually disappeared. The difference between the effects of TTFB and CCCP was apparently due to the fact that, in contrast to TTFB, CCCP transfers protons across the liposome membranes with a higher rate than through the decane-containing BLM used as a surface for the proteoliposome adsorption.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Nina Maliar
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Kirill V Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, 38044, France
| | - Oleksandr Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Juelich, 52425, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Juelich, 52425, Germany
| | - Valentin I Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, 38044, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Juelich, 52425, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Juelich, 52425, Germany
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins 2021; 89:1005-1016. [PMID: 33774867 DOI: 10.1002/prot.26078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
17
|
Smitienko OA, Feldman TB, Petrovskaya LE, Nekrasova OV, Yakovleva MA, Shelaev IV, Gostev FE, Cherepanov DA, Kolchugina IB, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J Phys Chem B 2021; 125:995-1008. [PMID: 33475375 DOI: 10.1021/acs.jpcb.0c07763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.
Collapse
Affiliation(s)
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Oksana V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Ivan V Shelaev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | | | - Irina B Kolchugina
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Dolgikh
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
18
|
Maliar N, Okhrimenko IS, Petrovskaya LE, Alekseev AA, Kovalev KV, Soloviov DV, Popov PA, Rokitskaya TI, Antonenko YN, Zabelskii DV, Dolgikh DA, Kirpichnikov MP, Gordeliy VI. Novel pH-Sensitive Microbial Rhodopsin from Sphingomonas paucimobilis. DOKL BIOCHEM BIOPHYS 2020; 495:342-346. [PMID: 33368048 DOI: 10.1134/s1607672920060162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
This work provides the first characteristics of the rhodopsin SpaR from Sphingomonas paucimobilis, aerobic bacteria associated with opportunistic infections. The sequence analysis of SpaR has shown that this protein has unusual DTS motif which has never reported in rhodopsins from Proteobacteria. We report that SpaR operates as an outward proton pump at low pH; however, proton pumping is almost absent at neutral and alkaline pH. The photocycle of this rhodopsin in detergent micelles slows down with an increase in pH because of longer Schiff base reprotonation. Our results show that the novel microbial ion transporter SpaR of interest both as an object for basic research of membrane proteins and as a promising optogenetic tool.
Collapse
Affiliation(s)
- N Maliar
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
| | - I S Okhrimenko
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
| | - L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A A Alekseev
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - K V Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - D V Soloviov
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Kyiv, Ukraine.,Joint Institute for Nuclear Research, Dubna, Russia
| | - P A Popov
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - T I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - D V Zabelskii
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - D A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Biological Faculty, Moscow State University, Moscow, Russia
| | - M P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Biological Faculty, Moscow State University, Moscow, Russia
| | - V I Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia. .,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France. .,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany. .,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
19
|
Zabelskii D, Alekseev A, Kovalev K, Rankovic V, Balandin T, Soloviov D, Bratanov D, Savelyeva E, Podolyak E, Volkov D, Vaganova S, Astashkin R, Chizhov I, Yutin N, Rulev M, Popov A, Eria-Oliveira AS, Rokitskaya T, Mager T, Antonenko Y, Rosselli R, Armeev G, Shaitan K, Vivaudou M, Büldt G, Rogachev A, Rodriguez-Valera F, Kirpichnikov M, Moser T, Offenhäusser A, Willbold D, Koonin E, Bamberg E, Gordeliy V. Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat Commun 2020; 11:5707. [PMID: 33177509 PMCID: PMC7659345 DOI: 10.1038/s41467-020-19457-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Phytoplankton is the base of the marine food chain as well as oxygen and carbon cycles and thus plays a global role in climate and ecology. Nucleocytoplasmic Large DNA Viruses that infect phytoplankton organisms and regulate the phytoplankton dynamics encompass genes of rhodopsins of two distinct families. Here, we present a functional and structural characterization of two proteins of viral rhodopsin group 1, OLPVR1 and VirChR1. Functional analysis of VirChR1 shows that it is a highly selective, Na+/K+-conducting channel and, in contrast to known cation channelrhodopsins, it is impermeable to Ca2+ ions. We show that, upon illumination, VirChR1 is able to drive neural firing. The 1.4 Å resolution structure of OLPVR1 reveals remarkable differences from the known channelrhodopsins and a unique ion-conducting pathway. Thus, viral rhodopsins 1 represent a unique, large group of light-gated channels (viral channelrhodopsins, VirChR1s). In nature, VirChR1s likely mediate phototaxis of algae enhancing the host anabolic processes to support virus reproduction, and therefore, might play a major role in global phytoplankton dynamics. Moreover, VirChR1s have unique potential for optogenetics as they lack possibly noxious Ca2+ permeability. Nucleocytoplasmic Large DNA Viruses (NCLDV) that infect algae encode two distinct families of microbial rhodopsins. Here, the authors characterise two proteins form the viral rhodopsin group 1 OLPVR1 and VirChR1, present the 1.4 Å crystal structure of OLPVR1 and show that viral rhodopsins 1 are light-gated cation channels.
Collapse
Affiliation(s)
- Dmitrii Zabelskii
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Alekseev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Kirill Kovalev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dmytro Soloviov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Joint Institute for Nuclear Research, Dubna, Russia.,Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine, Kyiv, 03680, Ukraine
| | - Dmitry Bratanov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ekaterina Savelyeva
- Institute of Biological Information Processing (IBI-3: Bioelectronics), Forschungszentrum Jülich GmbH, Jülich, Germany.,Laboratory of Functional Materials and Devices for Nanoelectronics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Center of Shared Research Facilities, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Podolyak
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmytro Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Svetlana Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Maksim Rulev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,European Synchrotron Radiation Facility, Grenoble, France
| | | | - Ana-Sofia Eria-Oliveira
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Tatiana Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thomas Mager
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Yuri Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain.,Department of Marine Microbiology and Biogeochemistry, Royal Netherland Institute for Sea Research (NIOZ), and Utrecht University, Den Burg, The Netherlands
| | - Grigoriy Armeev
- Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin Shaitan
- Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Michel Vivaudou
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Georg Büldt
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Joint Institute for Nuclear Research, Dubna, Russia
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mikhail Kirpichnikov
- Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.,M. M. Shemyakin-Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3: Bioelectronics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eugene Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Ernst Bamberg
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany. .,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany. .,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany. .,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
20
|
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, Ernst OP. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 2020; 295:14793-14804. [PMID: 32703899 DOI: 10.1074/jbc.ra120.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Juan D Sanchez Vasquez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica H Y Chu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
22
|
Kovalev K, Astashkin R, Gushchin I, Orekhov P, Volkov D, Zinovev E, Marin E, Rulev M, Alekseev A, Royant A, Carpentier P, Vaganova S, Zabelskii D, Baeken C, Sergeev I, Balandin T, Bourenkov G, Carpena X, Boer R, Maliar N, Borshchevskiy V, Büldt G, Bamberg E, Gordeliy V. Molecular mechanism of light-driven sodium pumping. Nat Commun 2020; 11:2137. [PMID: 32358514 PMCID: PMC7195465 DOI: 10.1038/s41467-020-16032-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
The light-driven sodium-pumping rhodopsin KR2 from Krokinobacter eikastus is the only non-proton cation active transporter with demonstrated potential for optogenetics. However, the existing structural data on KR2 correspond exclusively to its ground state, and show no sodium inside the protein, which hampers the understanding of sodium-pumping mechanism. Here we present crystal structure of the O-intermediate of the physiologically relevant pentameric form of KR2 at the resolution of 2.1 Å, revealing a sodium ion near the retinal Schiff base, coordinated by N112 and D116 of the characteristic NDQ triad. We also obtained crystal structures of D116N and H30A variants, conducted metadynamics simulations and measured pumping activities of putative pathway mutants to demonstrate that sodium release likely proceeds alongside Q78 towards the structural sodium ion bound between KR2 protomers. Our findings highlight the importance of pentameric assembly for sodium pump function, and may be used for rational engineering of enhanced optogenetic tools.
Collapse
Affiliation(s)
- Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmytro Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Egor Zinovev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Maksim Rulev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - Alexey Alekseev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Antoine Royant
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - Philippe Carpentier
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
- Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Svetlana Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Christian Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ilya Sergeev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Xavier Carpena
- XALOC beamline, ALBA synchrotron (CELLS), Cerdanyola del Valles, Catalunya, Spain
| | - Roeland Boer
- XALOC beamline, ALBA synchrotron (CELLS), Cerdanyola del Valles, Catalunya, Spain
| | - Nina Maliar
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Georg Büldt
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
23
|
Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. CRYSTALS 2020. [DOI: 10.3390/cryst10040256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light-oxygen-voltage (LOV) domains are ubiquitous photosensory modules found in proteins from bacteria, archaea and eukaryotes. Engineered versions of LOV domains have found widespread use in fluorescence microscopy and optogenetics, with improved versions being continuously developed. Many of the engineering efforts focused on the thermal stabilization of LOV domains. Recently, we described a naturally thermostable LOV domain from Chloroflexus aggregans. Here we show that the discovered protein can be further stabilized using proline substitution. We tested the effects of three mutations, and found that the melting temperature of the A95P mutant is raised by approximately 2 °C, whereas mutations A56P and A58P are neutral. To further evaluate the effects of mutations, we crystallized the variants A56P and A95P, while the variant A58P did not crystallize. The obtained crystal structures do not reveal any alterations in the proteins other than the introduced mutations. Molecular dynamics simulations showed that mutation A58P alters the structure of the respective loop (Aβ-Bβ), but does not change the general structure of the protein. We conclude that proline substitution is a viable strategy for the stabilization of the Chloroflexus aggregans LOV domain. Since the sequences and structures of the LOV domains are overall well-conserved, the effects of the reported mutations may be transferable to other proteins belonging to this family.
Collapse
|
24
|
Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I, Haro-Moreno JM, Chizhov I, Siletsky S, Mamedov M, Rogachev A, Balandin T, Borshchevskiy V, Popov A, Bourenkov G, Bamberg E, Rodriguez-Valera F, Büldt G, Gordeliy V. High-resolution structural insights into the heliorhodopsin family. Proc Natl Acad Sci U S A 2020; 117:4131-4141. [PMID: 32034096 PMCID: PMC7049168 DOI: 10.1073/pnas.1915888117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodopsins are the most abundant light-harvesting proteins. A new family of rhodopsins, heliorhodopsins (HeRs), has recently been discovered. Unlike in the known rhodopsins, in HeRs the N termini face the cytoplasm. The function of HeRs remains unknown. We present the structures of the bacterial HeR-48C12 in two states at the resolution of 1.5 Å, which highlight its remarkable difference from all known rhodopsins. The interior of HeR's extracellular part is completely hydrophobic, while the cytoplasmic part comprises a cavity (Schiff base cavity [SBC]) surrounded by charged amino acids and containing a cluster of water molecules, presumably being a primary proton acceptor from the Schiff base. At acidic pH, a planar triangular molecule (acetate) is present in the SBC. Structure-based bioinformatic analysis identified 10 subfamilies of HeRs, suggesting their diverse biological functions. The structures and available data suggest an enzymatic activity of HeR-48C12 subfamily and their possible involvement in fundamental redox biological processes.
Collapse
Affiliation(s)
- K Kovalev
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Institute of Crystallography, University of Aachen (Rheinisch-Westfälische Technische Hochschule Aachen [RWTH]), 52062 Aachen, Germany
| | - D Volkov
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - A Alekseev
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Institute of Crystallography, University of Aachen (Rheinisch-Westfälische Technische Hochschule Aachen [RWTH]), 52062 Aachen, Germany
| | - I Gushchin
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - J M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03202 San Juan de Alicante, Spain
| | - I Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - S Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A Rogachev
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - T Balandin
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - V Borshchevskiy
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - A Popov
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - G Bourenkov
- Hamburg Unit care of Deutsches Elektronen-Synchrotron (DESY), European Molecular Biology Laboratory, 22607 Hamburg, Germany
| | - E Bamberg
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Biophysical Chemistry, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - F Rodriguez-Valera
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03202 San Juan de Alicante, Spain
| | - G Büldt
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - V Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France;
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| |
Collapse
|
25
|
Rhiel E, Nguyen T, Wöhlbrand L, Rabus R. A simple protocol for the isolation of proteorhodopsins of the dinoflagellate Oxyrrhis marina. J Basic Microbiol 2020; 60:351-361. [PMID: 31960981 DOI: 10.1002/jobm.201900594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 11/05/2022]
Abstract
For the first time, native proteorhodopsins of the marine dinoflagellate Oxyrrhis marina were isolated. Total cell membrane fractions were minced in a bead beater and solubilized with the detergent Triton X-100. Subsequent sucrose density gradient centrifugation resulted in three or four red-colored bands. Nonsolubilized, but still red colored, membranes sedimented at the bottom. For each of these bands, absorbance maxima were registered at approximately 514-516 nm with shoulders toward shorter wavelengths (470-490 nm). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the uppermost band represented free retinal chromophore, as it contained no protein. The other bands were almost pure proteorhodopsin fractions as the banding patterns showed one major protein of 25 kDa. Tryptic, in-gel digestion of the 25 kDa proteins and of faint protein bands above and below 25 kDa was followed by mass spectrometry, confirming these protein bands to consist, nearly exclusively, proteorhodopsins. Only single peptides of few other proteins were detected. In total, at least seven predicted proteorhodopsin protein sequences were experimentally verified.
Collapse
Affiliation(s)
- Erhard Rhiel
- Planktology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Tien Nguyen
- Planktology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
26
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
27
|
Lu Y, Zhou XE, Gao X, Wang N, Xia R, Xu Z, Leng Y, Shi Y, Wang G, Melcher K, Xu HE, He Y. Crystal structure of heliorhodopsin 48C12. Cell Res 2019; 30:88-90. [PMID: 31879417 PMCID: PMC6951262 DOI: 10.1038/s41422-019-0266-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yang Lu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - X Edward Zhou
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Xiang Gao
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yu Leng
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yuying Shi
- Laboratory of Neuroscience, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Guangfu Wang
- Laboratory of Neuroscience, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Karsten Melcher
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - H Eric Xu
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.,Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
28
|
Novitskaia O, Buslaev P, Gushchin I. Assembly of Spinach Chloroplast ATP Synthase Rotor Ring Protein-Lipid Complex. Front Mol Biosci 2019; 6:135. [PMID: 31850368 PMCID: PMC6896225 DOI: 10.3389/fmolb.2019.00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022] Open
Abstract
Rotor ATPases are large multisubunit membrane protein complexes found in all kingdoms of life. The membrane parts of these ATPases include a ring-like assembly, so-called c-ring, consisting of several subunits c, plugged by a patch of phospholipids. In this report, we use a nature-inspired approach to model the assembly of the spinach (Spinacia oleracea) c14 ring protein-lipid complex, where partially assembled oligomers are pulled toward each other using a biasing potential. The resulting assemblies contain 23 to 26 encapsulated plug lipids, general position of which corresponds well to experimental maps. However, best fit to experimental data is achieved with 15 to 17 lipids inside the c-ring. In all of the simulations, the lipids from one leaflet (loop side of the c subunit) are ordered and static, whereas the lipids from the other leaflet are disordered and dynamic. Spontaneous permeation of water molecules toward Glu61 at the active site is also observed. The presented assembly approach is expected to be generalizable to other protein complexes with encapsulated lipid patches.
Collapse
Affiliation(s)
- Olga Novitskaia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Pavel Buslaev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
29
|
Abstract
Recently, two groups of rhodopsin genes were identified in large double-stranded DNA viruses. The structure and function of viral rhodopsins are unknown. We present functional characterization and high-resolution structure of an Organic Lake Phycodnavirus rhodopsin II (OLPVRII) of group 2. It forms a pentamer, with a symmetrical, bottle-like central channel with the narrow vestibule in the cytoplasmic part covered by a ring of 5 arginines, whereas 5 phenylalanines form a hydrophobic barrier in its exit. The proton donor E42 is placed in the helix B. The structure is unique among the known rhodopsins. Structural and functional data and molecular dynamics suggest that OLPVRII might be a light-gated pentameric ion channel analogous to pentameric ligand-gated ion channels, however, future patch clamp experiments should prove this directly. The data shed light on a fundamentally distinct branch of rhodopsins and may contribute to the understanding of virus-host interactions in ecologically important marine protists.
Collapse
|
30
|
Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V, Astashkin R, Balandin T, Bratanov D, Vaganova S, Popov A, Chupin V, Büldt G, Bamberg E, Gordeliy V. Structure and mechanisms of sodium-pumping KR2 rhodopsin. SCIENCE ADVANCES 2019; 5:eaav2671. [PMID: 30989112 PMCID: PMC6457933 DOI: 10.1126/sciadv.aav2671] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Rhodopsins are the most universal biological light-energy transducers and abundant phototrophic mechanisms that evolved on Earth and have a remarkable diversity and potential for biotechnological applications. Recently, the first sodium-pumping rhodopsin KR2 from Krokinobacter eikastus was discovered and characterized. However, the existing structures of KR2 are contradictory, and the mechanism of Na+ pumping is not yet understood. Here, we present a structure of the cationic (non H+) light-driven pump at physiological pH in its pentameric form. We also present 13 atomic structures and functional data on the KR2 and its mutants, including potassium pumps, which show that oligomerization of the microbial rhodopsin is obligatory for its biological function. The studies reveal the structure of KR2 at nonphysiological low pH where it acts as a proton pump. The structure provides new insights into the mechanisms of microbial rhodopsins and opens the way to a rational design of novel cation pumps for optogenetics.
Collapse
Affiliation(s)
- Kirill Kovalev
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Vitaly Polovinkin
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Alexey Alekseev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Vitaly Shevchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | | | - Roman Astashkin
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Dmitry Bratanov
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Svetlana Vaganova
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Vladimir Chupin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Georg Büldt
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Ernst Bamberg
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Corresponding author. (V.G.); (E.B.)
| | - Valentin Gordeliy
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Corresponding author. (V.G.); (E.B.)
| |
Collapse
|