1
|
Manna S, Chowdhury T, M. Mandal S, Choudhury SM. Short Amphiphiles or Micelle Peptides May Help to Fight Against
COVID-19. Curr Protein Pept Sci 2022; 23:33-43. [DOI: 10.2174/1389203723666220127154159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
COVID-19 is a worldwide threat because of the incessant spread of SARS-CoV-2 which urges the development of suitable antiviral drug to secure our society. Already, a group of peptides have been recommended for SARS-CoV-2, but not yet established. SARS-CoV-2 is an enveloped virus with hydrophobic fusion protein and spike glycoproteins.
Methods:
Here, we have summarized several reported amphiphilic peptides and their in-silico docking analysis with spike glycoprotein of SARS-CoV-2.
Result:
The result revealed the complex formation of spike protein and amphiphilic peptides with higher binding affinity. It was also observed that PalL1 (ARLPRTMVHPKPAQP), 10AN1 (FWFTLIKTQAKQPARYRRFC), THETA defensin (RCICGRGICRLL) and mucroporin M1 (LFRLIKSLIKRLVSAFK) showed the binding free energy more than -1000 kcal/mol. Molecular pI and hydrophobicity are also important factors of peptides to enhance the binding affinity with spike protein of SARS-CoV-2
Conclusion:
In the light of these findings, it is necessary to check the real efficacy of amphiphilic peptides in-vitro to in-vivo experimental set up to develop an effective anti-SARS-CoV-2 peptide drug, which might help to control the current pandemic situation.
Collapse
Affiliation(s)
- Sounik Manna
- Department of Human Physiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
- Department of Microbiology, Midnapore College (Autonomous), Paschim Medinipur 721101, India
| | - Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujata Maiti Choudhury
- Department of Human Physiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| |
Collapse
|
2
|
Townsend JA, Sanders HM, Rolland AD, Park CK, Horton NC, Prell JS, Wang J, Marty MT. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Anal Chem 2021; 93:16273-16281. [PMID: 34813702 DOI: 10.1021/acs.analchem.1c04660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viroporins are small viral ion channels that play important roles in the viral infection cycle and are proven antiviral drug targets. Matrix protein 2 from influenza A (AM2) is the best-characterized viroporin, and the current paradigm is that AM2 forms monodisperse tetramers. Here, we used native mass spectrometry and other techniques to characterize the oligomeric state of both the full-length and transmembrane (TM) domain of AM2 in a variety of different pH and detergent conditions. Unexpectedly, we discovered that AM2 formed a range of different oligomeric complexes that were strongly influenced by the local chemical environment. Native mass spectrometry of AM2 in nanodiscs with different lipids showed that lipids also affected the oligomeric states of AM2. Finally, nanodiscs uniquely enabled the measurement of amantadine binding stoichiometries to AM2 in the intact lipid bilayer. These unexpected results reveal that AM2 can form a wider range of oligomeric states than previously thought possible, which may provide new potential mechanisms of influenza pathology and pharmacology.
Collapse
Affiliation(s)
- Julia A Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Henry M Sanders
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Chad K Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.,Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Insight into the mechanism of urea inhibit ovalbumin-glucose glycation by conventional spectrometry and liquid chromatography-high resolution mass spectrometry. Food Chem 2020; 342:128340. [PMID: 33069536 DOI: 10.1016/j.foodchem.2020.128340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
The inhibition effect of urea on ovalbumin (OVA) glycation was investigated, and the mechanism was evaluated through the changes in protein structure as well as glycation sites and average degree of substitution per peptide molecule (DSP) by conventional spectrometry and liquid chromatography-high resolution mass spectrometry (LC-HRMS). A urea concentration of 3 M was chosen as the optimum condition. Ultraviolet and fluorescence spectra suggested that both glycation and urea treatment could unfold the OVA, but urea inhibited the glycation-induced protein unfolding. Circular dichroism spectra showed that urea treatment could increase the β-sheet content and reduce the α-helix content of OVA. LC-HRMS indicated that the number of glycation sites was reduced from 15 to 3, and DSP values decreased with urea treatment. In conclusion, urea could significantly inhibit the OVA-glucose glycation, and the sites competition as well as structure unfolding inhibition resulted from urea could be the main factors.
Collapse
|
4
|
Yu NT, Zhang QY. A transmembrane domain of Andrias davidianus ranavirus 13R is crucial for co-localization to endoplasmic reticulum and viromatrix. 3 Biotech 2019; 9:433. [PMID: 31696038 DOI: 10.1007/s13205-019-1961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
13R, a core gene of Andrias davidianus ranavirus (ADRV), encoded a protein containing a transmembrane domain (TMD) and a restriction endonuclease-like domain. However, the characterization and function of 13R and the protein it encodes remain unclear. In this study, Chinese giant salamander thymus cell (GSTC) was used to investigate the function of 13R. The results showed that the 13R transcripts were detected first at 8 h post-infection (hpi) by RT-PCR and the protein was detected first at 24 hpi by western blot, but the transcription was inhibited by cycloheximide and cytosine arabinofuranoside, indicating that 13R is a viral late gene. Subcellular localization showed that the 13R was co-localized with endoplasmic reticulum (ER) in the cytoplasm, while 13R deleting TMD (13RΔTM) was distributed in cytoplasm and nucleus. During ADRV infection, 13R was observed first in the cytoplasm and nucleus, and later aggregated into the viromatrix, whereas 13RΔTM remain dispersed in cytoplasm and nucleus. Western blot analysis suggested that 13R was a viral non-structural protein and its overexpression did not affect the viral titer in GSTC. All these indicated that the TMD of 13R is crucial for the co-localization into the ER and the viromatrix.
Collapse
Affiliation(s)
- Nai-Tong Yu
- 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- 2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi-Ya Zhang
- 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- 2University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|