1
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168335. [PMID: 37939965 DOI: 10.1016/j.scitotenv.2023.168335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear β-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear β-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
2
|
Hao W, Zhu X, Liu Z, Song Y, Wu S, Lu X, Yang J, Jin C. Aluminum exposure induces central nervous system impairment via activating NLRP3-medicated pyroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115401. [PMID: 37634479 DOI: 10.1016/j.ecoenv.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Aluminum is an environmental toxicant whose long-term exposure is closely associated with nervous system impairment. This study mainly investigated neurological impairment induced by subchronic aluminum exposure via activating NLRP3-medicated pyroptosis pathway. METHODS In vivo, Kunming mice were exposed to AlCl3 (30.3 mg/kg, 101 mg/kg and 303 mg/kg) via drinking water for 3 months, and administered with Rsv (100 mg/kg) by gavage for 1 month. Cognitive impairment was assessed by Morris water maze test, and pathological injury was detected via H&E staining. BBB integrity, pyroptosis and neuroinflammation were evaluated through western blotting and immunofluorescence methods. In vitro, BV2 microglia was treated with AlCl3 (0.5 mM, 1 mM and 2 mM) to sensitize pyroptosis pathway. The protein interaction was verified by co-immunoprecipitation, and neuronal damage was estimated via a conditioned medium co-culture system with BV2 and TH22 cells. RESULTS Our results showed that AlCl3 induced mice memory disorder, BBB destruction, and pathological injury. Besides, aluminum caused glial activation, sensitized DDX3X-NLRP3 pyroptosis pathway, released cytokines IL-1β and IL-18, initiating neuroinflammation. BV2 microglia treated with AlCl3 emerged hyperactivation and pyroptotic death, and Ddx3x knockdown inhibited pyroptosis signaling pathway. DDX3X acted as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome and G3BP1 stress granules. Furthermore, aluminum-activated microglia had an adverse effect on co-cultured neurons and destroyed nervous system homeostasis. CONCLUSION Aluminum exposure could induce pyroptosis and neurotoxicity. DDX3X determined live or die via selectively regulating pro-survival stress granules or pro-death NLRP3 inflammasome. Excessive activation of microglia might damage neurons and aggravate nerve injury.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Yu J, Wu D, Zhao Y, Guo L, Liu P. Study on multi-target effects of PIMPC on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2023; 1802:148226. [PMID: 36586663 DOI: 10.1016/j.brainres.2022.148226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3), a key role in the pathogenesis of Alzheimer's disease (AD), has been linked with the formation of β-amyloid (Aβ), tubulin-associated unit (tau) protein phosphorylation and apoptosis. Moreover, the excessive presence of elements such as copper (Cu) can promote Aβ aggregation and increase the risk of AD. Combined with the role of GSK-3 and metal elements in AD, a metal-chelating imine GSK-3 inhibitor N-(4-{[(2-amino-5-phenylpyridin-3-ylidene)imino]methyl}pyridin-2-yl)cyclopropanecarboxamide (PIMPC) was designed and synthesized. In our study, Aβ/Cu2+-induced AD rat model was established and treated with PIMPC. The results indicated that PIMPC can not only down-regulate the high expression levels of Aβ, tau and p-tau proteins of the AD rats, but also chelate Cu and aluminum (Al) elements in the brain. In addition, PIMPC may play an anti-apoptotic effect by down-regulating the high expression of cleaved Caspase-3 protein, and it can modulate ATPase and nitric oxide synthase (NOS) levels, oxidative stress and neurotransmitter disturbance. In summary, PIMPC acts on multiple targets to relieve the learning and memory impairment of AD rats induced by Aβ/Cu2+.
Collapse
Affiliation(s)
- Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Zhang J, Liu Q, Xu M, Cai J, Wei Y, Lin Y, Mo X, Huang S, Liu S, Mo C, Mai T, Tan D, Lu H, Pang W, Qin J, Zhang Z. Associations Between Plasma Metals and Cognitive Function in People Aged 60 and Above. Biol Trace Elem Res 2022; 200:3126-3137. [PMID: 34647240 DOI: 10.1007/s12011-021-02941-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023]
Abstract
The objective of the study was to explore the relationship between the plasma levels of 22 metals and cognition status in older adults aged 60 years and above. A cross-sectional survey was conducted between 2018 and 2019. Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the concentrations of metals, and a mini-mental state examination (MMSE) questionnaire was used to estimate the cognition status of the elderly. Based on the years of education and MMSE scores, the participants were separated into the normal and impaired cognition groups. Lasso regression, logistic regression, and restricted cubic spline models were used to explore the relationship between the metals and cognitive status. A total of 1667 subjects were included in the study, and 333 (19.97%) of the participants had impaired cognition. Then, 12 metals, including Al, Fe, Ni, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, and Sb were selected by lasso regression. Before the multivariate adjustment, Al and Cu were associated with the risk of increasing cognitive impairment (OR = 1.756, 95% CI: 1.166-2.646, P = 0.007; OR = 1.519, 95% CI: 1.050-2.197, P = 0.026, respectively). By contrast, Rb was associated with a decrease in the risk of cognitive impairment (OR = 0.626, 95% CI: 0.427-0.918, P = 0.017), but Cd was significantly associated with an increase in this risk (OR = 1.456, 95% CI: 1.003-2.114, P = 0.048). After multivariate adjustment, only Al (OR = 1.533, 95% CI: 1.000-2.350, P = 0.050) maintained a borderline difference with the risk of cognitive impairment. A significant positive correlation was found between the risk of cognitive impairment and Al, Cu, and Cd, contrary to the negative correlation found with Rb.
Collapse
Affiliation(s)
- Junling Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiumei Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Min Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiansheng Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanfei Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yinxia Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Mo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shenxiang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuzhen Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunbao Mo
- Department of Occupational Health and Environmental Health, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Tingyu Mai
- Department of Occupational Health and Environmental Health, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Dechan Tan
- Department of Occupational Health and Environmental Health, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Huaxiang Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Weiyi Pang
- Department of Occupational Health and Environmental Health, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| | - Zhiyong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Necrostatin-1 Relieves Learning and Memory Deficits in a Zebrafish Model of Alzheimer's Disease Induced by Aluminum. Neurotox Res 2022; 40:198-214. [PMID: 34982355 DOI: 10.1007/s12640-021-00463-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022]
Abstract
Aluminum (Al) is considered one of the environmental risk factors for Alzheimer's disease (AD). The present study aims to establish a zebrafish AD model induced by Al and explore if necrostation-1 (Nec-1), a specific inhibitor of necroptosis, is effective in relieving learning and memory deficits in the zebrafish AD models. We treated adult zebrafish with aluminum trichloride at various doses for 1 month, followed by a T-maze test to evaluate learning and memory performance. Al concentration, levels of acetylcholine (Ach), and AD-related protein and gene expression in the brain tissue were evaluated in the zebrafish AD models. Our results demonstrated that in the brain tissue of Al-treated zebrafish, Al accumulated, Ach levels decreased, and AD-related genes and proteins increased. As a result, the learning and memory performance of Al-treated zebrafish was impaired. This suggested that a zebrafish AD model was established. To test the effect of Nec-1 on the zebrafish AD model, we added Nec-1 into the culture medium of the Al-treated adult zebrafish. The results demonstrated that Nec-1 could relive the learning and memory deficits, enhance Ach levels and the numbers of neural cells, and impact necroptosis-related gene expression. We concluded that Nec-1 could reverse Al-induced learning and memory impairment and had potential theoretical value in the zebrafish AD model.
Collapse
|
6
|
Ma R, Yang K, Chen C, Mao X, Shen X, Jiang L, Ouyang F, Tian Y, Zhang J, Kahe K. Early-life exposure to aluminum and fine motor performance in infants: a longitudinal study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:248-256. [PMID: 33597723 DOI: 10.1038/s41370-021-00294-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aluminum (Al) is a well-established neurotoxicant. However, little is known about its effects on the neurodevelopment of infants. OBJECTIVES To examine early-life exposure to Al in relation to neurodevelopment in healthy infants. METHODS Nail Al concentrations were measured among 747 newborn babies within 6 months of delivery in the Shanghai Birth Cohort. Neurodevelopment was assessed using Ages and stages questionnaire (third edition, ASQ-3) at ages 6 and 12 months. General linear regression models were performed to estimate the associations between Al concentrations and ASQ-3 scores. RESULTS After adjustment for potential confounders, early-life exposure to Al was not associated with any neurodevelopmental performance at age 6 months. However, Al level was associated with an increased risk of having a low fine motor score (quartile 4 vs. quartile 1, mean difference (MD): -1.63; 95% confidence interval (CI): -3.22, -0.05; P-trend < 0.01) at 12 months. No association was found for communication, gross motor, problem-solving, or personal-social score at 12 months. SIGNIFICANCE Early-life exposure to Al may be associated with poor fine motor skills in a dose-response manner among apparently healthy infants at age 12 months.
Collapse
Affiliation(s)
- Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kefeng Yang
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xuanxia Mao
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xiuhua Shen
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linlei Jiang
- Instrumental Analysis Center, Shanghai Jiao Tong Univeristy School of Agriculture and Biology, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Mohammed RS, Ibrahim W, Sabry D, El-Jaafary SI. Occupational metals exposure and cognitive performance among foundry workers using tau protein as a biomarker. Neurotoxicology 2019; 76:10-16. [PMID: 31593711 DOI: 10.1016/j.neuro.2019.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/14/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Human exposure to heavy metals is a potential risk for developing cognitive impairment. Aluminum (Al) foundry is one of industries that involve occupational exposure to different metals. AIM OF THE WORK to evaluate the cognitive performance of Aluminum foundry workers in relation to different metals exposure. MATERIALS AND METHODS a cross sectional study conducted on 75 Al foundry workers and 75 non-occupationally exposed subjects as controls. Personal interview with specially designed questionnaire, Assessment of cognitive functions done using Montreal cognitive assessment (MocA), Stress, depression and sleep were also assessed. Serum levels of Aluminum (AL), Lead (Pb), manganese (Mn), Zinc (Zn) and tau protein were measured. RESULTS Exposed group showed significant increase in serum levels of Aluminum, lead, Manganese and tau protein, p value < 0.005 (mean ± SD 0.56 ± 0.18, 22.3 ± 5.01, 42.04 ± 7.4, 1.53 ± 0.58 Vs 0.36 ± 0.11, 13.4 ± 1.29, 39.4 ± 4.4, 1.03 ± 0.44 respectively) with significant decrease of zinc level compared to control (mean ± SD 46.4 ± 5.2 Vs 88.8 ± 6.04, p value 0.005). There was a significant decrease MocA scores among exposed population, (mean ± SD 24.4 ± 3.4 compared to 28.4 ± 1.3 in non exposed, p value < 0.005). which was affected by serum levels of lead, aluminum, manganese and tau protein (β -0.165, -8.958, -.286, -2.341 respectively and p < 0.005).Stress scores was higher in exposed workers than control but not affecting cognitive performance. CONCLUSION occupational exposure to metals can cause cognitive dysfunction which may be subtle, so there is a need for formal cognitive testing at baseline, and on regular intervals during working period. Serum tau protein could be used as a prognostic biomarker for the hazardous effect of occupational exposure to these metals on the neuronal cells.
Collapse
Affiliation(s)
- Rateba S Mohammed
- Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University Hospitals, Kasralainy street, Cairo, Egypt.
| | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University Hospitals, Kasralainy street, Cairo, Egypt.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University Hospitals, Kasralainy street, Cairo, Egypt.
| | | |
Collapse
|
8
|
Mehpara Farhat S, Mahboob A, Ahmed T. Oral exposure to aluminum leads to reduced nicotinic acetylcholine receptor gene expression, severe neurodegeneration and impaired hippocampus dependent learning in mice. Drug Chem Toxicol 2019; 44:310-318. [PMID: 30889993 DOI: 10.1080/01480545.2019.1587452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aluminum (Al) is known for its neurotoxicity for over a century and is reported to have specifically high toxicity for cholinergic system. The effect of Al on muscarinic acetylcholine receptors is widely reported, but its effect on nicotinic acetylcholine receptors (nAChRs) is less well known. The aim of this study was to determine the effects of Al on hippocampus dependent learning and memory, function and expression of nAChRs in the hippocampus. Al concentration and neurodegeneration were also measured in the hippocampus following Al treatment. The mice were treated with 250 mg/kg AlCl3.6H2O in drinking water for a period of 42 days. Results show that Al treated animals have significantly reduced spatial reference memory as compared to control animals in Morris water maze test. Similarly, Al treated animals showed reduced contextual memory for Pavlovian fear compared to control animals. Al treated animals show higher anxiety in elevated plus maze as compared to control animals. The analysis of nAChR expression via RT-PCR showed reduced expression of α7, α4 and β2 nAChR gene expression in the hippocampus of Al treated animals. High Al accumulation was observed in Al-treated animals (688.14 ± 242.82 μg/g) compared to the control group (115.14 ± 18.18 μg/g) that resulted in severe neurodegeneration in the hippocampus. These results demonstrated that Al exposure caused neurotoxicity in mice hippocampus which is manifested by reduced memory and elevated anxiety. The results were further validated by high Al accumulation in the hippocampus, severe neurodegeneration and reduced expression of nAChRs.
Collapse
Affiliation(s)
- Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|