1
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
2
|
Cao X, Fang H, Zhou L. CircNRIP1 promotes proliferation, migration and phenotypic switch of Ang II-induced HA-VSMCs by increasing CXCL5 mRNA stability via recruiting IGF2BP1. Autoimmunity 2024; 57:2304820. [PMID: 38269483 DOI: 10.1080/08916934.2024.2304820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
Circular RNA (circRNA) has been found to be differentially expressed and involved in regulating the processes of human diseases, including thoracic aortic dissection (TAD). However, the role and mechanism of circNRIP1 in the TAD process are still unclear. GEO database was used to screen the differentially expressed circRNA and mRNA in type A TAD patients and age-matched normal donors. Angiotensin II (Ang II)-induced human aortic vascular smooth muscle cells (HA-VSMCs) were used to construct TAD cell models. The expression levels of circNRIP1, NRIP1, CXC-motif chemokine 5 (CXCL5) and IGF2BP1 were detected by quantitative real-time PCR. Cell proliferation and migration were determined by EdU assay, transwell assay and wound healing assay. The protein levels of synthetic phenotype markers, contractile phenotype markers, CXCL5 and IGF2BP1 were tested by western blot analysis. The interaction between IGF2BP1 and circNRIP1/CXCL5 was confirmed by RIP assay, and CXCL5 mRNA stability was assessed by actinomycin D assay. CircNRIP1 was upregulated in TAD patients and Ang II-induced HA-VSMCs. Knockdown of circNRIP1 suppressed Ang II-induced proliferation, migration and phenotypic switch of HA-VSMCs. Also, high expression of CXCL5 was observed in TAD patients, and its knockdown could inhibit Ang II-induced HA-VSMCs proliferation, migration and phenotypic switch. Moreover, CXCL5 overexpression reversed the regulation of circNRIP1 knockdown on Ang II-induced HA-VSMCs functions. Mechanistically, circNRIP1 could competitively bind to IGF2BP1 and subsequently enhance CXCL5 mRNA stability. CircNRIP1 might contribute to TAD progression by promoting CXCL5 mRNA stability via recruiting IGF2BP1.
Collapse
Affiliation(s)
- Xianzhao Cao
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongyan Fang
- Department of Emergency Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Longshu Zhou
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Wang H, Wang H, Liu K, Qin X. Circ_0000595 knockdown alleviates CoCl2-mediated effects in VSMCs by regulating the miR-582-3p/ADAM10 axis. Vascular 2024; 32:920-931. [PMID: 36905137 DOI: 10.1177/17085381231156974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious vascular disease causing the death of elder people. Accumulating studies have reported that circular RNAs (circRNAs) are implicated in the regulation of aortic aneurysms. However, the role of circ_0000595 in the progression of TAA is still unclear. METHODS Quantitative real-time PCR (qRT-PCR) and western blotting were implemented to assess circ_0000595, microRNA (miR)-582-3p, guanine nucleotide-binding protein alpha subunit (ADAM10), PCNA, Bax, and Bcl-2 expression. The proliferation of vascular smooth muscle cells was determined using cell counting kit 8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU). Cell apoptosis was measured using flow cytometry, and caspase-3 activity was analyzed using a commercial kit. After bioinformatics analysis, the interaction between miR-582-3p and circ_0000595 or ADAM10 was validated using a dual-luciferase reporter and RNA immunoprecipitation. RESULTS As compared with controls, TAA tissues and CoCl2-induced VSMCs displayed high expression of circ_0000595 and ADAM10, and low expression of miR-582-3p. CoCl2 treatment evidently suppressed VSMC proliferation and promoted VSMCs apoptosis, and these impacts were reverted by circ_0000595 knockdown. Circ_0000595 acted as a molecular sponge for miR-582-3p, and circ_0000595 silencing-mediated influences in CoCl2-induced VSMCs were overturned by miR-582-3p inhibitor. ADAM10 was confirmed as a target gene of miR-582-3p, and miR-582-3p overexpression-induced influence was almost restored by overexpressed ADAM10 in CoCl2-induced VSMCs. Besides, circ_0000595 contributed to ADAM10 protein expression by sponging miR-582-3p. CONCLUSION Our data verified that circ_0000595 silencing might attenuate CoCl2-mediated impacts in VSMCs by regulating the miR-582-3p/ADAM10 axis, providing new potential roads for treating TAA.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Humans
- ADAM10 Protein/metabolism
- ADAM10 Protein/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Amyloid Precursor Protein Secretases/metabolism
- Amyloid Precursor Protein Secretases/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Signal Transduction
- Cells, Cultured
- Cobalt/pharmacology
- Gene Expression Regulation
- Male
Collapse
Affiliation(s)
- Huixiong Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, China
| | - Kai Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| |
Collapse
|
4
|
Fu C, Zuo X, An J, Zhang Y, Guo L, Li H. CircCDYL Contributes to Apoptosis, Ferroptosis, and Oxidative Stress of Ang II-Induced Vascular Smooth Muscle Cells in Thoracic Aortic Aneurysm. Angiology 2024:33197241234075. [PMID: 38394688 DOI: 10.1177/00033197241234075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Circular RNAs (circRNAs) have important regulation in thoracic aortic aneurysm (TAA). The function and mechanism of circCDYL (circ_0008285) was explored in TAA here. Angiotensin II (Ang II) was used to construct a TAA model. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed for the detection of circCDYL, miR-1270, and a disintegrin and metalloproteinase 10 (ADAM10). Cell viability was examined via cell counting kit-8 (CCK-8) assay and proliferation was analyzed using Ethynyl-2'-deoxyuridine (EdU) assay. Apoptosis rate was assessed via flow cytometry. Western blot was used for protein detection. Oxidative stress was evaluated by commercial kits. CircCDYL was upregulated in TAA tissues and Ang II-induced circCDYL upregulation in vascular smooth muscle cells (VSMCs). Knockdown of circCDYL weakened Ang II-aroused inhibition of viability, proliferation, and promotion of apoptosis, ferroptosis, and oxidative stress in VSMCs. CircCDYL served as a miR-1270 sponge. The mitigated regulation of circCDYL knockdown for Ang II-induced injury was restored after miR-1270 downregulation. CircCDYL positively regulated ADAM10 through interacting with miR-1270. Overexpression of miR-1270 abated Ang II-induced injury by downregulating ADAM10. In conclusion, circCDYL was involved in the Ang II-induced VSMC injury in TAA via the miR-1270/ADAM10 axis.
Collapse
Affiliation(s)
- Changjiang Fu
- Department of Cardiac Surgery, Xingtai Third Hospital, Xingtai City, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai City, China
| | - Jinghui An
- Department of Cardiac Surgery, Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Yanlong Zhang
- Department of Cardiology, Xingtai People's Hospital, Xingtai City, China
| | - Lixin Guo
- Department of Cardiac Surgery, Xingtai Third Hospital, Xingtai City, China
| | - Huashun Li
- Department of Cardiac Surgery, Xingtai Third Hospital, Xingtai City, China
| |
Collapse
|
5
|
Gareev I, Beylerli O, Ahmad A, Ilyasova T, Shi H, Chekhonin V. Comparative Analysis of Circular RNAs Expression and Function between Aortic and Intracranial Aneurysms. Curr Drug Targets 2024; 25:866-884. [PMID: 39219419 DOI: 10.2174/0113894501319306240819052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
An aneurysm is an abnormal enlargement or bulging of the wall of a blood vessel. Most often, aneurysms occur in large blood vessels - the aorta (Thoracic Aortic Aneurysm (TAA) and Abdominal Aortic Aneurysm (AAA)) and brain vessels (Intracranial Aneurysm (IA)). Despite the presence of significant differences in the pathogenesis of the development and progression of IA and TAA/AAA, there are also similarities. For instance, both have been shown to be strongly influenced by shear stress, inflammatory processes, and enzymatic destruction of the elastic lamellae and extracellular matrix (ECM) proteins of the vascular wall. Moreover, although IA and TAA are predominantly considered arteriopathies with different pathological mechanisms, they share risk factors with AAA, such as hypertension and smoking. However, there is a need for a more in- -depth study of the key elements that may influence the formation and progression of a particular aneurysm to find ways of therapeutic intervention or search for a diagnostic tool. Today, it is known that the disruption of gene expression is one of the main mechanisms that contribute to the development of aneurysms. At the same time, growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of aneurysms. Although much has been studied of the known protein-coding genes, circular RNAs (circRNAs), a relatively new and rapidly evolving large family of transcripts, have recently received much scientific attention. CircRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as therapeutic targets and biomarkers. Increasing evidence has implicated circRNAs in the pathogenesis of multiple cardiovascular diseases, including the development of aneurysms. However, the mechanism of dysregulation of certain circRNAs in a particular aneurysm remains to be studied. The discovery of circRNAs has recently advanced our understanding of the latest mode of miRNAs/target genes regulation in the development and progression of IA and TAA/AAA. The aim of this study is to compare the expression profiles of circRNAs to search for similar or different effects of certain circRNAs on the formation and progression of IA and TAA/AAA.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tatiana Ilyasova
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|
6
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
7
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Wu C, Duan X, Wang X, Wang L. Advances in the role of epigenetics in homocysteine-related diseases. Epigenomics 2023; 15:769-795. [PMID: 37718931 DOI: 10.2217/epi-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Homocysteine has a wide range of biological effects. However, the specific molecular mechanism of its pathogenicity is still unclear. The diseases induced by hyperhomocysteinemia (HHcy) are called homocysteine-related diseases. Clinical treatment of HHcy is mainly through folic acid and B-complex vitamins, which are not effective in reducing the associated end point events. Epigenetics is the alteration of heritable genes caused by DNA methylation, histone modification, noncoding RNAs and chromatin remodeling without altering the DNA sequence. In recent years the role of epigenetics in homocysteine-associated diseases has been gradually discovered. This article summarizes the latest evidence on the role of epigenetics in HHcy, providing new directions for its prevention and treatment.
Collapse
Affiliation(s)
- Chengyan Wu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xulei Duan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuehui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Libo Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
9
|
Leng Y, Wang MZ, Xie KL, Cai Y. Identification of Potentially Functional Circular RNA/Long Noncoding RNA-MicroRNA-mRNA Regulatory Networks Associated with Vascular Injury in Type 2 Diabetes Mellitus by Integrated Microarray Analysis. J Diabetes Res 2023; 2023:3720602. [PMID: 36937538 PMCID: PMC10023230 DOI: 10.1155/2023/3720602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 03/12/2023] Open
Abstract
This research is aimed at figuring out the potential circular RNA (circRNA)/long noncoding RNA- (lncRNA-) microRNA- (miRNA-) mRNA regulatory networks associated with a vascular injury in type 2 diabetes mellitus (T2DM). Differentially expressed genes (DEGs) screened in T2DM-related expression datasets were intersected with genes associated with vascular injury in T2DM to obtain candidate DEGs, followed by the construction of an interaction network of DEGs. The upstream miRNAs of candidate genes were predicted by mirDIP, miRWalk, and DIANA TOOLS databases, and the upstream lncRNAs/circRNAs of miRNAs by DIANA-LncBase/circBank database, followed by the construction of circRNA/lncRNA-miRNA-mRNA regulatory networks. Peripheral blood was attained from T2DM patients with macroangiopathy for clinical validation of expression and correlation of key factors. Differential analysis screened 37 candidate DEGs correlated with vascular injury in T2DM. Besides, MAPK3 was a core gene associated with vascular injury in T2DM. Among the predicted upstream miRNAs of MAPK3, miR-4270, miR-92a-2-5p, miR-423-5p, and miR-613 ranked at the top according to binding scores. The upstream lncRNAs and circRNAs of the 4 miRNAs were further predicted, obtaining 11 candidate lncRNAs and 3 candidate circRNAs. Moreover, KCNQ1OT1, circ_0020316, and MAPK3 were upregulated, but miR-92a-2-5p was downregulated in the peripheral blood of T2DM patients with macroangiopathy. Mechanistically, KCNQ1OT1 and circ_0020316 bound to miR-92a-2-5p that inversely targeted MAPK3. Collectively, KCNQ1OT1/circ_0020316-miR-92a-2-5p-MAPK3 coexpression regulatory networks might promote vascular injury in T2DM.
Collapse
Affiliation(s)
- Yi Leng
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming-zhu Wang
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kang-ling Xie
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Cai
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
10
|
Du N, Li M, Yang D. Hsa_circRNA_102541 regulates the development of atherosclerosis by targeting miR-296-5p/PLK1 pathway. Ir J Med Sci 2022; 191:1153-1159. [PMID: 34251586 DOI: 10.1007/s11845-021-02708-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiovascular disorders pose great threat to public health. As a common type of cardiovascular disease, atherosclerosis is characterized by high morbidity and mortality/recurrence rate. However, the pathogenesis of atherosclerosis is complex and not fully understood. The aim of this study was to investigate the influences of hsa_circRNA_102541 (circ_102541) on proliferation and apoptosis of HUVEC cells and to identify the underlying mechanisms. METHODS RT-PCR was used to determine the expression levels of circ_102541, miR-296-5p, and PLK1 in atherosclerosis and healthy blood samples. Following the transfection with sh-circ_102541, LV-circ_102541, miR-296-5p mimics, miR-296-5p inhibitors, and si-PLK1, cell proliferation was evaluated using CCK8 assay; cell apoptosis was determined by flow cytometry; dual luciferase assay was performed to examine the interaction between abovementioned molecules. The levels of associated markers including PCNA and caspase-3 were assessed by western blotting and RT-qPCR. RESULTS The expression of circRNA_102541 and PLK1 were significantly elevated in atherosclerosis specimens, where the level of miR-296-5p was reduced. Furthermore, circRNA_102541 could bind miR-296-5p and subsequently target PLK1. Following treatment with sh-circRNA_102541 or miR-296-5p mimics, proliferative ability and levels of PCNA were remarkably reduced in HUVEC cells, while apoptosis was significantly enhanced. Co-transfection with miR-296-5p mimics abrogated the effects induced by the overexpressed circ_102541. Additionally, treatment with si-PLK1 attenuated the biological behavior changes caused by miR-296-5p inhibitors in HUVEC cells. Moreover, transfection with LV-PLK1 reversed the effects triggered by miR-296-5p mimics. CONCLUSION Taken together, circRNA_102541 was upregulated in atherosclerosis, and knockdown of circRNA_102541 suppressed cell proliferation while promoted apoptosis of HUVEC cells via miR-296-5p/PLK1. This novel pathway may serve essential roles on the development of atherosclerosis, and circRNA_102541 could be a promising therapeutic candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Na Du
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Mingjin Li
- Liaoning Jinqiu Hospital, Shenyang, Liaoning, 110015, People's Republic of China
| | - Dan Yang
- Department of Dermatology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Chen X, Lu Z, Lai C. Circ_0093887 regulated ox-LDL induced human aortic endothelial cells viability, apoptosis, and inflammation through modulating miR-758-3p/BAMBI axis in atherosclerosis. Clin Hemorheol Microcirc 2022; 81:343-358. [PMID: 35527543 DOI: 10.3233/ch-221445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND: Compelling evidence demonstrated that circular RNAs (circRNAs) were involved in the progression of atherosclerosis (AS). However, the role of circ_0093887 in the progression of AS is unclear. The purpose of this study was to explore the role and mechanism of circ_0093887 in oxidized-low density lipoprotein (ox-LDL)-induced human aortic endothelial cells (HAECs). METHODS: HAECs were stimulated by ox-LDL to simulate AS-like injury in vitro. Circ_0093887, microRNA-758-3p (miR-758-3p), and BMP And Activin Membrane-Bound Inhibitor (BAMBI) levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PCNA, Bax, Bcl-2, and BAMBI protein levels were detected by western blot. Cell viability and apoptosis were examined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Tube formation assay was used to assess tube formation. The levels of inflammatory factors TNF-α and IL-1β were detected by corresponding ELISA kits. The relationship between miR-758-3p and circ_0093887 or BAMBI was tested via dual-luciferase reporter analysis and RNA immunoprecipitation. Oxidative stress related indexes (ROS and MDA) were detected by corresponding kits. RESULTS: The expression levels of circ_0093887 and BAMBI were prominently downregulated in ox-LDL-induced HAECs compared with control, whereas the expression of miR-758-3p was upregulated. Overexpression of circ_0093887 promoted HAECs viability and tube formation, and restrained cell apoptosis in ox-LDL-induced HAECs compared with untreated HAECs. Mechanistically, circ_0093887 regulated the expression of BAMBI through miR-758-3p. Further experiments showed that upregulation of miR-758-3p reversed changes in cell function induced by circ_0093887. In addition, reduced BAMBI salvaged miR-758-3p knockdown mediated effects on cell function. CONCLUSION: Circ_0093887 demonstrated its diagnostic and therapeutic value in AS by promoting the role of the miR-758-3p/BAMBI axis in the ox-LDL-induced endothelial injury of HAECs.
Collapse
Affiliation(s)
- Yueru Wang
- Department of Internal Medicine-Cardiovascular, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| | - Xiaoyan Chen
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Zhikai Lu
- Department of CT Room, General Hospital of Tisco (Sixth Hospital of Shanxi Medical University), Taiyuan City, Shanxi Province, China
| | - Chunlin Lai
- Department of Internal Medicine-Cardiovascular, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
12
|
He X, Li X, Han Y, Chen G, Xu T, Cai D, Sun Y, Wang S, Lai Y, Teng Z, Huang S, Liao W, Liao Y, Bin J, Xiu J. CircRNA Chordc1 protects mice from abdominal aortic aneurysm by contributing to the phenotype and growth of vascular smooth muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:81-98. [PMID: 34938608 PMCID: PMC8649900 DOI: 10.1016/j.omtn.2021.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs) have important potential in modulating vascular smooth muscle cell (VSMC) activity, but their roles in abdominal aortic aneurysm (AAA) are unknown. We performed in situ hybridization and immunohistochemistry and determined that circChordc1 (cysteine and histidine-rich domain containing 1) was markedly downregulated in aneurysm tissue compared with normal arteries. A gene gain and loss strategy was used to confirm that circChordc1 transformed VSMCs into a contracted phenotype and improved their growth, which significantly suppressed aneurysm formation and reduced the risk of rupture in mouse models of angiotensin (Ang) II- and CaCl2-induced AAA. RNA pull-down, immunoprecipitation, and immunoblotting indicated that circChordc1 facilitated the VSMC phenotype and growth determination by binding to vimentin and ANXA2 (annexin A2), which not only increased vimentin phosphorylation to promote its degradation but also promoted the interaction between ANXA2 and glycogen synthase kinase 3 beta (GSK3β) to induce the nuclear entry of β-catenin. Thus, our present study revealed that circChordc1 optimized the VSMC phenotype and improved their growth by inducing vimentin degradation and increasing the activity of the GSK3β/β-catenin pathway, thereby extenuating vascular wall remodeling and reversing pathological aneurysm progression.
Collapse
Affiliation(s)
- Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Donghua Cai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Shifei Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Guangzhou 510180, China
| | - Zhonghua Teng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| |
Collapse
|
13
|
TWIST1 transcriptionally upregulates complement 3 in glomerular mesangial cells from spontaneously hypertensive rats. Hypertens Res 2022; 45:66-74. [PMID: 34616033 DOI: 10.1038/s41440-021-00750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
We have shown that complement 3 (C3) is upregulated in cardiovascular and renal organs, which induces the synthetic phenotype and exaggerates the growth of mesenchymal cells from spontaneously hypertensive rats (SHRs). However, the mechanisms of the upregulation of C3 have remained unclear. In the present study, we investigated the role of TWIST1, a transcription factor that regulates mesodermal embryogenesis, in the upregulation of C3 in glomerular mesangial cells (GMCs) from SHRs and Wistar-Kyoto (WKY) rats. Immunocytochemical staining and western blot analysis showed that the expression of TWIST1 in GMCs from SHRs was higher than that in GMCs from WKY rats in vivo and in vitro. Real-time PCR analysis showed increases in the expression of Twist1 mRNA with attenuated expression of miR-151-3p in GMCs from SHRs compared to that in cells from WKY rats. Chromatin immunoprecipitation assays showed increases in TWIST1 binding to the C3 promoter in GMCs from SHRs compared to that in cells from WKY rats. Transfection of Twist1 cDNA by a lentiviral vector increased the expression of C3 mRNA in GMCs from WKY rats. TWIST1 siRNA significantly decreased the mRNA expression of C3 and osteopontin in GMCs from SHRs. These results indicate that the increases in TWIST1 expression, attenuation of miR-151-3p, and strong binding of TWIST1 upregulate C3 gene expression in GMCs from SHRs. The enhanced TWIST1-C3 system induces the synthetic phenotype of mesenchymal tissue that may be associated with cardiovascular and renal remodeling in hypertension.
Collapse
|
14
|
Liu L, Jia Y, Zhang X, Chen S, Wang S, Zhu J, Zheng L, Chen Z, Huang L. Identification of the function and regulatory network of circ_009773 in DNA damage induced by nanoparticles of neodymium oxide. Toxicol In Vitro 2021; 78:105271. [PMID: 34740776 DOI: 10.1016/j.tiv.2021.105271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
The health hazards of nanoparticles of neodymium oxide (NPs-Nd2O3) have aroused public concern in recent years. Exposure to NPs-Nd2O3 can change the level of reactive oxygen species (ROS) that cause DNA damage and alter whole transcriptome expression profiles for micro (mi)RNA, circular (circ)RNA, long noncoding (lnc)RNA, and mRNA. However, there have been no reports to our knowledge about the role of circRNAs in DNA damage caused by NPs-Nd2O3. In our study, we analyzed the circRNA expression profile of human bronchial epithelial cells(16HBE)exposed to 40 μg/ml NPs-Nd2O3. Our results indicated that exposure produced 1025 up-regulated and 890 down-regulated circRNAs. Real-time quantitative polymerase chain reaction (qRT-PCR) was applied to verify some of the significantly changed circRNAs and demonstrated that circ_009773 was apparently down-regulated. Through exploration of its host gene function, we found that circ_009773 may be related to DNA damage. Functional experiments found that circ_009773 regulated NPs-Nd2O3-induced DNA damage in 16HBE cells. A circ_009773-associated competing endogenous (ce)RNA network was constructed based on one differentially expressed (DE) circRNA, 74 DE miRNAs and 208 DE mRNAs. Module analysis identified hub genes related to DNA damage and repair and a protein-protein interaction (PPI) network was created.
Collapse
Affiliation(s)
- Ling Liu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yangyang Jia
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Xia Zhang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Shijie Chen
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Jialu Zhu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Liting Zheng
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Zhehao Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
15
|
Zhang Y, Li W, Li H, Zhou M, Zhang J, Fu Y, Zhang C, Sun X. Circ_USP36 Silencing Attenuates Oxidized Low-Density Lipoprotein-Induced Dysfunction in Endothelial Cells in Atherosclerosis Through Mediating miR-197-3p/ROBO1 Axis. J Cardiovasc Pharmacol 2021; 78:e761-e772. [PMID: 34369900 DOI: 10.1097/fjc.0000000000001124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Circular RNAs (circRNAs) are reported to play pivotal regulatory roles in atherosclerosis progression. In the present study, we explored the biological role of circRNA ubiquitin-specific peptidase 36 (circ_USP36; hsa_circ_0003204) in oxidized low-density lipoprotein (ox-LDL)-induced dysfunction of endothelial cells (ECs). RNA and protein levels were determined by reverse transcription-quantitative polymerase chain reaction and Western blot assay, respectively. Cell proliferation was analyzed by 5-ethynyl-2'-deoxyuridine assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was conducted to analyze cell cycle progression and cell apoptosis. The release of tumor necrosis factor α in the supernatant was measured by enzyme linked immunosorbent assay. Cell death was evaluated by lactate dehydrogenase assay. Intermolecular interaction was verified by dual-luciferase reporter assay. Circ_USP36 expression was significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-stimulated HUVECs than that in their corresponding controls. ox-LDL exposure inhibited the proliferation ability and cell cycle progression and triggered the apoptosis and inflammation of HUVECs, and these effects were largely overturned by the knockdown of circ_USP36. microRNA-197-3p (miR-197-3p) was a target of circ_USP36, and circ_USP36 knockdown-mediated protective role in ox-LDL-induced HUVECs was largely counteracted by the silence of miR-197-3p. miR-197-3p interacted with the 3' untranslated region of roundabout guidance receptor 1 (ROBO1). Circ_USP36 knockdown reduced ROBO1 expression partly by up-regulating miR-197-3p in HUVECs. ROBO1 overexpression reversed miR-197-3p accumulation-mediated effects in ox-LDL-induced HUVECs. In conclusion, circ_USP36 interference alleviated ox-LDL-induced dysfunction in HUVECs by targeting miR-197-3p/ROBO1 axis.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| | - Wenhua Li
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China
| | - Hui Li
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| | - Min Zhou
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| | - Jian Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| | - Yongli Fu
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| | - Chunhui Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| | - Xiaozhu Sun
- Department of Endocrinology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang, China; and
| |
Collapse
|
16
|
|
17
|
Li J, Ma J, Huang S, Li J, Zhou L, Sun J, Chen L. WITHDRAWN: Circ-LAMP2 regulates aortic smooth muscle cell proliferation and apoptosis in thoracic aortic aneurysm via modulation of autophagy and NF-κB pathway. Hum Pathol 2021:S0046-8177(21)00161-1. [PMID: 34592240 DOI: 10.1016/j.humpath.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| | - Junfeng Ma
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Shan Huang
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Jun Li
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Liang Zhou
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Jiahua Sun
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Lin Chen
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
18
|
Huang JG, Tang X, Wang JJ, Liu J, Chen P, Sun Y. A circular RNA, circUSP36, accelerates endothelial cell dysfunction in atherosclerosis by adsorbing miR-637 to enhance WNT4 expression. Bioengineered 2021; 12:6759-6770. [PMID: 34519627 PMCID: PMC8806706 DOI: 10.1080/21655979.2021.1964891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a fatal disorder that is fundamental to various cardiovascular diseases and severely threatens people’s health worldwide. Several studies have demonstrated the role of circular RNAs (circRNAs) in the pathogenesis of atherosclerosis. circUSP36 acts as a key modulator in the progression of atherosclerosis, but the molecular mechanism underlying this role is as yet unclear. This study aimed to elucidate the mechanism by which circUSP36 exerts its function in an in vitro cell model of endothelial cell dysfunction, which is one of pathological features of atherosclerosis. The circRNA traits of circUSP36 were confirmed, and we observed high expression of circUSP36 in endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL). Functional assays revealed that overexpression of circUSP36 suppressed proliferation and migration of ox-LDL-treated endothelial cells. In terms of its mechanism, circUSP36 adsorbed miR-637 by acting as an miRNA sponge. Moreover, enhanced expression of miR-637 abated the impact of circUSP36 on ox-LDL-treated endothelial cell dysregulation. Subsequently, the targeting relationship between miR-637 and WNT4 was predicted using bioinformatics tools and was confirmed via luciferase reporter and RNA pull-down assays. Notably, depletion of WNT4 rescued circUSP36-mediated inhibition of endothelial cell proliferation and migration. In conclusion, circUSP36 regulated WNT4 to aggravate endothelial cell injury caused by ox-LDL by competitively binding to miR-637; this finding indicates circUSP36 to be a promising biomarker for the diagnosis and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Jian-Guo Huang
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Xia Tang
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Jiang-Jie Wang
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Jia Liu
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Ping Chen
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Yan Sun
- Department of Mental Health, Yishui People's Hospital, Linyi, Shandong Province, China
| |
Collapse
|
19
|
Liu S, Wang L, Wu X, Wu J, Liu D, Yu H. Overexpression of hsa_circ_0022742 suppressed hyperglycemia-induced endothelial dysfunction by targeting the miR-503-5p/FBXW7 axis. Microvasc Res 2021; 139:104249. [PMID: 34516983 DOI: 10.1016/j.mvr.2021.104249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Type I and II diabetes adversely affect the microvasculature of several organs, although the regulatory mechanisms remain unclear. Previous studies have found that differentially expressed circRNAs associated with hyperglycemia (HG) induce endothelial dysfunction. In the present study, high-throughput sequencing was employed to assess abnormal circRNA expression in human umbilical vein endothelial cells (HUVECs) after HG treatment. Then, bioinformatics analysis, luciferase reporting analysis, angiogenic differentiation analysis, flow cytometry, and qRT-PCR analysis were performed to investigate the underlying regulatory mechanism and targets. The results demonstrate that hsa_circ_0022742 expression in HUVECs was decreased by HG treatment and overexpression of hsa_circ_0022742 suppressed HG-induced endothelial dysfunction. Luciferase analysis showed that miR-503-5p and FBXW7 were downstream targets of hsa_circ_0022742. Both overexpression of FBXW7 and inhibition of miR-503-5p reversed the protective effect of hsa_circ_0022742 against HG-induced endothelial dysfunction, including apoptosis, abnormal vascular differentiation, and secretion of inflammatory factors, indicating that hsa_circ_0022742 enhanced FBXW7 expression by sponging miR-503-5p. Taken together, these findings demonstrate that overexpression of hsa_circ_0022742 suppressed HG-induced endothelial dysfunction by targeting the miR-503-5p/FBXW7 axis.
Collapse
Affiliation(s)
- Siyang Liu
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Liyun Wang
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Xueyan Wu
- Department of Human Anatomy, Chengde Medical College, China
| | - Jianlong Wu
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Dawei Liu
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Hongbin Yu
- Chengde Central Hospital, Chengde, Hebei 067000, China.
| |
Collapse
|
20
|
Guo W, Wang Z, Wang S, Liao X, Qin T. Transcriptome sequencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome. Life Sci 2021; 278:119566. [PMID: 33957172 DOI: 10.1016/j.lfs.2021.119566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
circRNAs play important roles in regulating gene expression at both transcriptional and post transcriptional levels and involve in a variety of human diseases. But up to now, it is still unclear whether circRNAs are involved in the occurrence and development of sepsis induced acute respiratory distress syndrome (ARDS). In the present research, we collected lung tissues of sepsis induced ARDS patients (n = 3) and brain dead patients without ARDS (n = 3). From the results of genome-wide sequencing, a total of 272 significantly up-regulated and 231 significantly down-regulated circRNAs were obtained. Combining the previous sequencing results in the plasma of ARDS patients, 11 up-regulated and 3 down-regulated circRNAs simultaneously in plasma and lung tissues were identified. Pathway enrichment analysis showed that the co differentially expressed circRNAs might be involved in the regulation of ECM-receptor interaction and adherens junction etc. In conclusion, these data indicates that circRNAs may involve in the progression of sepsis induced ARDS.
Collapse
Affiliation(s)
- Weixin Guo
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| | - Zhonghua Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| | - Shouhong Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China.
| | - Xiaolong Liao
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China.
| | - Tiehe Qin
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| |
Collapse
|
21
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
22
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
23
|
Xu X, Wang J, Wang X. Silencing of circHIPK3 Inhibits Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction by Sponging miR-185-3p. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5699-5710. [PMID: 33402817 PMCID: PMC7778681 DOI: 10.2147/dddt.s245199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Background Cardiac hypertrophy is induced by diverse patho-physiological stimuli and indicates an increase in cardiomyocyte size. Circular RNAs (circRNAs) and microRNAs (miRNAs), members of noncoding RNAs, are involved in several biological processes and cardiovascular diseases (CVD). Here, we investigated the potential role of circHIPK3, which is produced by the third exon of the HIPK3 gene in cardiac hypertrophy. Methods qRT-PCR and Sanger sequencing were conducted to identify the expression and characteristics (head-to-tail structure, stability, and location) of circHIPK3 in cardiac hypertrophy; Immunostaining of α-SMA was performed to evaluate the size of the cardiomyocytes; Transverse aortic constriction (TAC) induced hypertrophy models of mice were established to investigate the effect of circHIPK3 in vivo. Bioinformatics analysis and luciferase reporter assays, RNA immunoprecipitation, and fluorescence in situ hybridization (FISH) experiments were conducted to investigate the mechanism of circHIPK3-mediated cardiac hypertrophy. Results circHIPK3 is circular, more stable, and mainly located in the cytoplasm. Silencing of circHIPK3 inhibited the TAC induced cardiac hypertrophy, and reversed the effect of TAC on the echocardiograph parameters, such as left ventricular end-diastolic pressure (LVEDPS), left ventricular fraction shortening (LVFS), left ventricular ejection fraction (LVEF), and left ventricular systolic dysfunction (LVSD), and also the heart weight to tibial length (HW/TL). Angiotensin II (Ang II) Ang II-treated cardiomyocytes showed larger size of cardiomyocyte and upregulation of fetal genes, biomarkers of cardiac hypertrophy, peptide hormones, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), and myofilament protein, β-myosin heavy chain (β-MHC). These effects were reversed by circHIPK3 knockdown. Mechanically, circHIPK3 sponges miR-185-3p. In addition, miR-185-3p targets CASR. The rescue experiments confirmed the interaction between circHIPK3 and miR-185-3p as well as miR-185-3p and CASR. Discussion Our data suggested that circHIPK3 serve as a miR-185-3p sponge to regulate cardiac hypertrophy revealing a potential new target for the prevention of TAC- and Ang-II induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Junhong Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
24
|
Yin K, Liu X. Circ_0020397 regulates the viability of vascular smooth muscle cells by up-regulating GREM1 expression via miR-502-5p in intracranial aneurysm. Life Sci 2020; 265:118800. [PMID: 33242525 DOI: 10.1016/j.lfs.2020.118800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
AIMS Circ_0020397 has been found to be down-regulated in intracranial aneurysm (IA), and deregulation of circ_0020397 involved in the regulation of vascular smooth muscle cells (VSMCs) proliferation. However, the mechanism by which circ_0020397 implicates in VSMC dysfunction in IA remains vague. MATERIALS AND METHODS The expression of circ_0020397, miR-502-5p and Gremlin 1 (GREM1) was detected using quantitative real-time polymerase chain reaction. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Protein levels of proliferating cell nuclear antigen (PCNA) and GREM1 were measured using western blot. The interaction between miR-502-5p and circ_0020397 or GREM1 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assay. KEY FINDINGS Circ_0020397 or GREM1 expression was decreased in VSMCs isolated from IA patients, and overexpression of circ_0020397 or GREM1 promoted VSMC viability and elevated PCNA expression level, while inhibition of them showed opposite effects. MiR-502-5p was confirmed to directly bind to circ_0020397 or GREM1, and miR-502-5p reversed the effects of circ_0020397 on VSMC viability and PCNA level. Besides, miR-502-5p overexpression suppressed VSMC viability and reduced PCNA level, while these effects were attenuated by GREM1 up-regulation. Importantly, circ_0020397 could regulate GREM1 expression via miR-502-5p in VSMCs. SIGNIFICANCE Circ_0020397 played an important role in phenotypic modulation in IA by promoting VSMC viability via miR-502-5p/GREM1 axis, suggesting a novel insight into IA pathogenesis and new targets for IA molecular therapy.
Collapse
Affiliation(s)
- Kai Yin
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xianzhi Liu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
25
|
Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in Bone Metabolism and Osteoporosis. Front Genet 2020; 11:584118. [PMID: 33281877 PMCID: PMC7691603 DOI: 10.3389/fgene.2020.584118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a mechanosensitive organ that provides strength and support. Many bone cells, various pathways, and signaling molecules coordinate bone metabolism and also determine the course of bone diseases, such as osteoporosis, osteonecrosis, osteopenia, etc. Osteoporosis is caused by increased bone resorption and reduced bone formation due to the changes in the level of different proteins and RNAs in osteoclast or/and osteoblasts. The available therapeutic interventions can significantly reduce bone resorption or enhance bone formation, but their prolonged use has deleterious side effects. Therefore, the use of non-coding RNAs as therapeutics has emerged as an interesting field of research. Despite advancements in the molecular field, not much is known about the role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in bone homeostasis and osteoporosis. Therefore, in this article, we summarize the role of lncRNAs and circRNAs in different bone cells and osteoporosis so that it might help in the development of osteoporotic therapeutics.
Collapse
Affiliation(s)
- Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
26
|
Kong D, Gu R, Zhang C, Yin R. Knockdown of hsa_circ_0059955 Induces Apoptosis and Cell Cycle Arrest in Nucleus Pulposus Cells via Inhibiting Itchy E3 Ubiquitin Protein Ligase. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3951-3963. [PMID: 33061300 PMCID: PMC7526870 DOI: 10.2147/dddt.s253293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Background Circular RNAs (circRNAs) play an important role in the progression of intervertebral disc (IVD) degeneration (IVDD). Using bioinformatics analysis, we have found that the expression of circRNA hsa_circ_0059955 was significantly downregulated in IVDD tissues. However, the relevant mechanism of hsa_circ_0059955 in the progression of IVDD remains unclear. Methods CCK-8 and flow cytometry assays were used to evaluate cell proliferation and apoptosis. In addition, Western blot assay was used to detect the expressions of ITCH, p73, CDK2 in nucleus pulposus (NP) cells. Moreover, a puncture-induced IVDD rat model was established to explore the role of hsa_circ_0059955 in IVDD. Results The level of hsa_circ_0059955 was significantly decreased in IVDD tissues from IVDD patients. Itchy E3 ubiquitin protein ligase (ITCH) is the host gene of hsa_circ_0059955, and downregulation of hsa_circ_0059955 significantly decreased the expression of ITCH in NP cells. In addition, downregulation of hsa_circ_0059955 markedly inhibited proliferation and induced apoptosis and cell cycle arrest in NP cells. Moreover, in vivo study illustrated that overexpression of hsa_circ_0059955 ameliorated IVDD in rats. Conclusion Downregulation of hsa_circ_0059955 could induce apoptosis and cell cycle arrest in NP cells in vitro, while overexpression of hsa_circ_0059955 attenuated the IVDD in a puncture-induced rat model in vivo. Therefore, hsa_circ_0059955 might serve as a therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Chengtao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| |
Collapse
|
27
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
28
|
Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020; 36:157-172. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.
Collapse
|
29
|
Zhang JR, Sun HJ. Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Gene 2020; 763:145066. [PMID: 32827686 DOI: 10.1016/j.gene.2020.145066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is characterized by changed homeostasis of blood glucose levels, which is associated with various complications, including cardiomyopathy, atherosclerosis, endothelial dysfunction, nephropathy, retinopathy and neuropathy. In recent years, accumulative evidence has demonstrated that circular RNAs are identified as a novel type of noncoding RNAs (ncRNAs) involving in the regulation of various physiological processes and pathologic conditions. Specifically, the emergence of complications response to diabetes is finely controlled by a complex gene regulatory network in which circular RNAs play a critical role. Recently, circular RNAs are emerging as messengers that could influence cellular functions under diabetic conditions. Dysregulation of circular RNAs has been closely linked to the pathophysiology of diabetes-related complications. In this review, we aimed to summarize the current progression and underlying mechanisms of circular RNA in the development of diabetes-related complications. We will also provide an overview of circular RNA-regulated cell communications in different types of cells that have been linked to diabetic complications. We anticipated that the completion of this review will provide potential clues for developing novel circular RNAs-based biomarkers or therapeutic targets for diabetes and its associated complications.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi 214122, PR China; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
30
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
31
|
Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 2020; 47:5535-5547. [PMID: 32567025 DOI: 10.1007/s11033-020-05601-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, People's Republic of China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
32
|
Zhang W, Sui Y. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells. Mol Cell Biochem 2020; 471:101-111. [PMID: 32524321 DOI: 10.1007/s11010-020-03770-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Endothelial dysfunction is a primary cause of diabetes-related vascular complications, such as atherosclerosis. Accumulated research indicates that circular RNAs (circRNAs) are involved in the pathogenesis of cardiovascular disease. This study intended to explore the function and mechanism of circBPTF in high glucose (HG)-induced vascular inflammatory models. Cell model of inflammatory injury was established in human umbilical vein endothelial cells (HUVECs) with HG treatment. The expression of circBPTF, miR-384 and lin-28 homolog B (LIN28B) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were assessed by cell counting kit-8 (CCK-8) and flow cytometry assay, respectively. The expression of LIN28B was also examined using western blot. The release of proinflammatory cytokines was detected by enzyme-linked immunosorbent assay (ELISA). The production of ROS, SOD and MDA was detected to assess oxidative stress. The target relationship was predicted by bioinformatics analysis and verified using dual-luciferase reporter assay and RIP assay. CircBPTF was highly regulated in HG-induced HUVECs. CircBPTF knockdown increased cell viability and suppressed cell apoptosis, the release of proinflammatory cytokines and oxidative stress in HG-induced HUVECs. MiR-384 was targeted by circBPTF, and its downregulation abolished the effects of circBPTF knockdown. Moreover, circBPTF positively regulated LIN28B expression via targeting miR-384. Overall, CircBPTF knockdown protected against HG-induced inflammatory injuries and oxidative stress by mediating the miR-384/LIN28B axis in HUVECs. Our study provides a feasible theoretical strategy for preventing vascular cell dysfunction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Internal Medicine, The Second People's Hospital of Jinan, Huaiyin District, No. 148, Jingyi Road, Jinan, 250001, Shandong, China
| | - Yunun Sui
- Department of Internal Medicine, The Second People's Hospital of Jinan, Huaiyin District, No. 148, Jingyi Road, Jinan, 250001, Shandong, China.
| |
Collapse
|
33
|
LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis 2020; 11:435. [PMID: 32513988 PMCID: PMC7280314 DOI: 10.1038/s41419-020-2645-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Many studies have shown that long-noncoding RNA (lncRNA) is associated with cardiovascular disease, but its molecular mechanism is still unclear. In this study, we explored the role of lncRNA ANRIL in ox-LDL-induced phenotypic transition of human aortic smooth muscle cells (HASMC). The results of quantitative fluorescence PCR showed that the expression of ANRIL in patients with coronary atherosclerotic heart disease (CAD) was significantly higher than that in normal subjects. RNA-FISH detection showed that the ANRIL expression increased in HASMC treated by ox-LDL. Ox-LDL could upregulate the expression of ANRIL and ROS and promote the phenotypic transition of HASMC. After downregulation of ANRIL by siRNA, ROS level decreased and HASMC phenotypic transition alleviated. ANRIL could act as a molecular scaffold to promote the binding of WDR5 and HDAC3 to form WDR5 and HDAC3 complexes, they regulated target genes such as NOX1 expression by histone modification, upregulated ROS level and promote HASMC phenotype transition. Therefore, we found a new epigenetic regulatory mechanism for phenotype transition of VSMC, ANRIL was a treatment target of occlusive vascular diseases.
Collapse
|
34
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
35
|
Zhang S, Song G, Yuan J, Qiao S, Xu S, Si Z, Yang Y, Xu X, Wang A. Circular RNA circ_0003204 inhibits proliferation, migration and tube formation of endothelial cell in atherosclerosis via miR-370-3p/TGFβR2/phosph-SMAD3 axis. J Biomed Sci 2020; 27:11. [PMID: 31900142 PMCID: PMC6941276 DOI: 10.1186/s12929-019-0595-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) represent a class of non-coding RNAs (ncRNAs) which are widely expressed in mammals and tissue-specific, of which some could act as critical regulators in the atherogenesis of cerebrovascular disease. However, the underlying mechanisms by which circRNA regulates the ectopic phenotype of endothelial cells (ECs) in atherosclerosis remain largely elusive. METHODS CCK-8, transwell, wound healing and Matrigel assays were used to assess cell viability, migration and tube formation. QRT-qPCR and Immunoblotting were used to examine targeted gene expression in different groups. The binding sites of miR-370-3p (miR-370) with TGFβR2 or hsa_circ_0003204 (circ_0003204) were predicted using a series of bioinformatic tools, and validated using dual luciferase assay and RNA immunoprecipitation (RIP) assay. The localization of circ_0003204 and miR-370 in ECs were investigated by fluorescence in situ hybridization (FISH). Gene function and pathways were enriched through Metascape and gene set enrichment analysis (GSEA). The association of circ_0003204 and miR-370 in extracellular vesicles (EVs) with clinical characteristics of patients were investigated using multiple statistical analysis. RESULTS Circ_0003204, mainly located in the cytoplasm of human aorta endothelial cells (HAECs), was upregulated in the ox-LDL-induced HAECs. Functionally, the ectopic expression of circ_0003204 inhibited proliferation, migration and tube formation of HAECs exposed to ox-LDL. Mechanically, circ_0003204 could promote protein expression of TGFβR2 and its downstream phosph-SMAD3 through sponging miR-370, and miR-370 targeted the 3' untranslated region (UTR) of TGFβR2. Furthermore, the expression of circ_0003204 in plasma EVs was upregulated in the patients with cerebral atherosclerosis, and represented a potential biomarker for diangnosis and prognosis of cerebrovascular atherogenesis. CONCLUSIONS Circ_0003204 could act as a novel stimulator for ectopic endothelial inactivation in atherosclerosis and a potential biomarker for cerebral atherosclerosis.
Collapse
Affiliation(s)
- Shanchao Zhang
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China.
| | - Guixiang Song
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Jing Yuan
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Shan Qiao
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Shan Xu
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Zhihua Si
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Yang Yang
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Xuxu Xu
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Aihua Wang
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| |
Collapse
|
36
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
37
|
Gao Y, Wu P, Ma Y, Xue Y, Liu Y, Zheng J, Liu X, He Q, Ma J, Liu L, Wang P. Circular RNA USP1 regulates the permeability of blood-tumour barrier via miR-194-5p/FLI1 axis. J Cell Mol Med 2019; 24:342-355. [PMID: 31654502 PMCID: PMC6933377 DOI: 10.1111/jcmm.14735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate circular RNAs are related to dysregulation of vascular endothelial cell function, yet the underlying mechanisms have remained elusive. Here, we characterized the functional role of circular RNA USP1 (circ‐USP1) in the regulation of the blood‐tumour barrier (BTB) permeability and the potential mechanisms. In the current study, the circ‐USP1 expressing level was up‐regulated in glioma cerebral microvascular endothelial cells (GECs) of the BTB model in vitro. Knockdown of circ‐USP1 disrupted the barrier integrity, increased its permeability as well as reduced tight junction‐related protein claudin‐5, occludin and ZO‐1 expressions in GECs. Bioinformatic prediction and luciferase assay indicated that circ‐USP1 bound to miR‐194‐5p and suppressed its activity. MiR‐194‐5p contributed to circ‐USP1 knockdown‐induced increase of BTB permeability via targeting and down‐regulating transcription factor FLI1. Furthermore, FLI1 regulated the expressions of claudin‐5, occludin and ZO‐1 in GECs through binding to their promoter regions. Single or combined treatment of circ‐USP1 and miR‐194‐5p effectively promoted anti‐tumour drug doxorubicin across BTB to induce apoptosis of glioma cells. Overall, this present study identified the crucial regulation of circ‐USP1 on BTB permeability via miR‐194‐5p/FLI1 axis‐mediated regulation of tight junction proteins, which might facilitate the development of therapeutics against human gliomas.
Collapse
Affiliation(s)
- Yang Gao
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China.,Laboratory of Digital Health, Medaxis Technology Co., Ltd., Chengdu, China
| | - Peiqi Wu
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yawen Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Qianru He
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Life Science, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
39
|
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15:367-371. [PMID: 30484407 PMCID: PMC6538488 DOI: 10.2174/1567202616666181128120003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
The world's population continues to age at a rapid pace. By the year 2050, individuals over the age of 65 will account for sixteen percent of the world's population and life expectancy will increase well over eighty years of age. Accompanied by the aging of the global population is a significant rise in Non-Communicable Diseases (NCDs). Neurodegenerative disorders will form a significant component for NCDs. Currently, dementia is the 7th leading cause of death and can be the result of multiple causes that include diabetes mellitus, vascular disease, and Alzheimer's Disease (AD). AD may represent at least sixty percent of these cases. Current treatment for these disorders is extremely limited to provide only some symptomatic relief at present. Sirtuins and in particular, the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), represent innovative strategies for the treatment of cognitive loss. New work has revealed that SIRT1 provides protection against memory loss through mechanisms that involve oxidative stress, Aβ toxicity, neurofibrillary degeneration, vascular injury, mitochondrial dysfunction, and neuronal loss. In addition, SIRT1 relies upon other avenues that can include trophic factors, such as erythropoietin, and signaling pathways, such as Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4). Yet, SIRT1 can have detrimental effects as well that involve tumorigenesis and blockade of stem cell differentiation and maturation that can limit reparative processes for cognitive loss. Further investigations with sirtuins and SIRT1 should be able to capitalize upon these novel targets for dementia and cognitive loss.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|