1
|
Wang Z, Lin M, Pan Y, Liu Y, Yang C, Wu J, Wang Y, Yan B, Zhou J, Chen R, Liu C. Periostin + myeloid cells improved long bone regeneration in a mechanosensitive manner. Bone Res 2024; 12:59. [PMID: 39406726 PMCID: PMC11480347 DOI: 10.1038/s41413-024-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chengyu Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianqun Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jingjing Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Rouxi Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Zhang S, Zhu J, Jin S, Sun W, Ji W, Chen Z. Jawbone periosteum-derived cells with high osteogenic potential controlled by R-spondin 3. FASEB J 2024; 38:e70079. [PMID: 39340242 DOI: 10.1096/fj.202400988rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Gajewska J, Chełchowska M, Szamotulska K, Klemarczyk W, Strucińska M, Ambroszkiewicz J. Differences in Bone Metabolism between Children with Prader-Willi Syndrome during Growth Hormone Treatment and Healthy Subjects: A Pilot Study. Int J Mol Sci 2024; 25:9159. [PMID: 39273107 PMCID: PMC11394978 DOI: 10.3390/ijms25179159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Despite therapy with growth hormone (GH) in children with Prader-Willi syndrome (PWS), low bone mineral density and various orthopedic deformities have been observed often. Therefore, this study aimed to analyze bone markers, with an emphasis on vitamin K-dependent proteins (VKDPs), in normal-weight children with PWS undergoing GH therapy and a low-energy dietary intervention. Twenty-four children with PWS and 30 healthy children of the same age were included. Serum concentrations of bone alkaline phosphatase (BALP), osteocalcin (OC), carboxylated-OC (Gla-OC), undercarboxylated-OC (Glu-OC), periostin, osteopontin, osteoprotegerin (OPG), sclerostin, C-terminal telopeptide of type I collagen (CTX-I), and insulin-like growth factor-I (IGF-I) were determined using immunoenzymatic methods. OC levels and the OC/CTX-I ratios were lower in children with PWS than in healthy children (p = 0.011, p = 0.006, respectively). Glu-OC concentrations were lower (p = 0.002), but Gla-OC and periostin concentrations were higher in patients with PWS compared with the controls (p = 0.005, p < 0.001, respectively). The relationships between IGF-I and OC (p = 0.013), Gla-OC (p = 0.042), and the OC/CTX-I ratio (p = 0.017) were significant after adjusting for age in children with PWS. Bone turnover disorders in children with PWS may result from impaired bone formation due to the lower concentrations of OC and the OC/CTX-I ratio. The altered profile of OC forms with elevated periostin concentrations may indicate more intensive carboxylation processes of VKDPs in these patients. The detailed relationships between the GH/IGF-I axis and bone metabolism markers, particularly VKDPs, in children with PWS requires further research.
Collapse
Affiliation(s)
- Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Witold Klemarczyk
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Małgorzata Strucińska
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| |
Collapse
|
4
|
Yan J, Wang Z, Xian L, Wang D, Chen Y, Bai J, Liu HJ. Periostin Promotes the Proliferation, Differentiation and Mineralization of Osteoblasts from Ovariectomized Rats. Horm Metab Res 2024; 56:526-535. [PMID: 38307091 DOI: 10.1055/a-2238-2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Perimenopausal period causes a significant amount of bone loss, which results in primary osteoporosis (OP). The Periostin (Postn) may play important roles in the pathogenesis of OP after ovariectomized (OVX) rats. To identify the roles of Postn in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB) in OVX rats, we investigated the expression of Wnt/β-catenin signaling pathways in BMSC-OB and the effects of Postn on bone formation by development of BMSC-OB cultures. Twenty-four female Sprague-Dawley rats at 6 months were randomized into 3 groups: sham-operated (SHAM) group, OVX group and OVX+Postn group. The rats were killed after 3 months, and their bilateral femora and tibiae were collected for BMSC-OB culture, Micro-CT Analysis, Bone Histomorphometric Measurement, Transmission Electron Microscopy and Immunohistochemistry Staining. The dose/time-dependent effects of Postn on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers were measured in in vitro experiments. We found increased Postn increased bone mass, promoted bone formation of trabeculae, Wnt signaling and the osteogenic activity in osteoblasts in sublesional femur. Postn have the function to enhance cell proliferation, differentiation and mineralization at a proper concentration and incubation time. Interestingly, in BMSC-OB from OVX rats treated with the different dose of Postn, the osteoblastic markers expression and Wnt/β-catenin signaling pathways were significantly promoted. The direct effect of Postn may lead to inhibit excessive bone resorption and increase bone formation through the Wnt/β-catenin signaling pathways after OVX. Postn may play a very important role in the pathogenesis of OP after OVX.
Collapse
Affiliation(s)
- Jun Yan
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Zidong Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Li Xian
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dawei Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Yunzhen Chen
- Department of Spine, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Bai
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng City, China
| | - Hai-Juan Liu
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng City, China
| |
Collapse
|
5
|
Hu N, Jiang R, Deng Y, Li W, Jiang W, Xu N, Wang J, Wen J, Gu S. Periapical lesion-derived decellularized extracellular matrix as a potential solution for regenerative endodontics. Regen Biomater 2024; 11:rbae050. [PMID: 38872841 PMCID: PMC11170217 DOI: 10.1093/rb/rbae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Pulp regeneration remains a crucial target in the preservation of natural dentition. Using decellularized extracellular matrix is an appropriate approach to mimic natural microenvironment and facilitate tissue regeneration. In this study, we attempted to obtain decellularized extracellular matrix from periapical lesion (PL-dECM) and evaluate its bioactive effects. The decellularization process yielded translucent and viscous PL-dECM, meeting the standard requirements for decellularization efficiency. Proteomic sequencing revealed that the PL-dECM retained essential extracellular matrix components and numerous bioactive factors. The PL-dECM conditioned medium could enhance the proliferation and migration ability of periapical lesion-derived stem cells (PLDSCs) in a dose-dependent manner. Culturing PLDSCs on PL-dECM slices improved odontogenic/angiogenic ability compared to the type I collagen group. In vivo, the PL-dECM demonstrated a sustained supportive effect on PLDSCs and promoted odontogenic/angiogenic differentiation. Both in vitro and in vivo studies illustrated that PL-dECM served as an effective scaffold for pulp tissue engineering, providing valuable insights into PLDSCs differentiation. These findings pave avenues for the clinical application of dECM's in situ transplantation for regenerative endodontics.
Collapse
Affiliation(s)
- Nan Hu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
| | - Ruixue Jiang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Yanqiao Road No.390, Shanghai, 200125, China
| | - Yuwei Deng
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Yanqiao Road No.390, Shanghai, 200125, China
| | - Weiping Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Zhizaoju Road No.639, Shanghai, 200011, China
| | - Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
| | - Ningwei Xu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
| | - Jia Wang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Yanqiao Road No.390, Shanghai, 200125, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No.639, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Yanqiao Road No.390, Shanghai, 200125, China
- National Center for Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road No.639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Yanqiao Road No.390, Shanghai, 200125, China
- Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Shanghai, 200011, China
| |
Collapse
|
6
|
Vettese J, Manon J, Chretien A, Evrard R, Fievé L, Schubert T, Lengelé BG, Behets C, Cornu O. Collagen molecular organization preservation in human fascia lata and periosteum after tissue engineering. Front Bioeng Biotechnol 2024; 12:1275709. [PMID: 38633664 PMCID: PMC11021576 DOI: 10.3389/fbioe.2024.1275709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
Large bone defect regeneration remains a major challenge for orthopedic surgeons. Tissue engineering approaches are therefore emerging in order to overcome this limitation. However, these processes can alter some of essential native tissue properties such as intermolecular crosslinks of collagen triple helices, which are known for their essential role in tissue structure and function. We assessed the persistence of extracellular matrix (ECM) properties in human fascia lata (HFL) and periosteum (HP) after tissue engineering processes such as decellularization and sterilization. Harvested from cadaveric donors (N = 3), samples from each HFL and HP were decellularized following five different chemical protocols with and without detergents (D1-D4 and D5, respectively). D1 to D4 consisted of different combinations of Triton, Sodium dodecyl sulfate and Deoxyribonuclease, while D5 is routinely used in the institutional tissue bank. Decellularized HFL tissues were further gamma-irradiated (minimum 25 kGy) in order to study the impact of sterilization on the ECM. Polarized light microscopy (PLM) was used to estimate the thickness and density of collagen fibers. Tissue hydration and content of hydroxyproline, enzymatic crosslinks, and non-enzymatic crosslinks (pentosidine) were semi-quantified with Raman spectroscopy. ELISA was also used to analyze the maintenance of the decorin (DCN), an important small leucine rich proteoglycan for fibrillogenesis. Among the decellularization protocols, detergent-free treatments tended to further disorganize HFL samples, as more thin fibers (+53.7%) and less thick ones (-32.6%) were recorded, as well as less collagen enzymatic crosslinks (-25.2%, p = 0.19) and a significant decrease of DCN (p = 0.036). GAG content was significantly reduced in both tissue types after all decellularization protocols. On the other hand, HP samples were more sensitive to the D1 detergent-based treatments, with more disrupted collagen organization and greater, though not significant loss of enzymatic crosslinks (-37.4%, p = 0.137). Irradiation of D5 HFL samples, led to a further and significant loss in the content of enzymatic crosslinks (-29.4%, p = 0.037) than what was observed with the decellularization process. Overall, the results suggest that the decellularization processes did not significantly alter the matrix. However, the addition of a gamma-irradiation is deleterious to the collagen structural integrity of the tissue.
Collapse
Affiliation(s)
- Julia Vettese
- Neuromusculoskeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
- Morphology Lab (MORF), IREC, UCLouvain, Brussels, Belgium
| | - Julie Manon
- Neuromusculoskeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
- Morphology Lab (MORF), IREC, UCLouvain, Brussels, Belgium
| | | | - Robin Evrard
- Neuromusculoskeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Lies Fievé
- Morphology Lab (MORF), IREC, UCLouvain, Brussels, Belgium
| | - Thomas Schubert
- Neuromusculoskeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
- Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Benoît G. Lengelé
- Morphology Lab (MORF), IREC, UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Olivier Cornu
- Neuromusculoskeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
- Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Feng S, Feng Q, Dong L, Lv Q, Mei S, Zhang Y. Periostin/Bone Morphogenetic Protein 1 axis axis regulates proliferation and osteogenic differentiation of sutured mesenchymal stem cells and affects coronal suture closure in the TWIST1 +/- mouse model of craniosynostosis. J Orthop Surg Res 2024; 19:146. [PMID: 38369459 PMCID: PMC10875791 DOI: 10.1186/s13018-024-04604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of coronal suture craniosynostosis is often attributed to the dysregulated cellular dynamics, particularly the excessive proliferation and abnormal osteogenic differentiation of suture cells. Despite its clinical significance, the molecular mechanims of this condition remain inadequately understood. This study is dedicated to exploring the influence of the Periostin/Bone Morphogenetic Protein 1 (BMP1) axis on the growth and osteogenic maturation of Suture Mesenchymal Stem Cells (SMSCs), which are pivotal in suture homeostasis. METHODS Neonatal TWIST Basic Helix-Loop-Helix Transcription Factor 1 heterozygous (TWIST1+/-) mice, aged one day, were subjected to adenoviral vector-mediated Periostin upregulation. To modulate Periostin/BMP1 levels in SMSCs, we employed siRNA and pcDNA 3.1 vectors. Histological and molecular characterizations, including hematoxylin and eosin staining, Western blot, and immunohistochemistry were employed to study suture closure phenotypes and protein expression patterns. Cellular assays, encompassing colony formation, 5-ethynyl-2'deoxyuridine, and wound healing tests were conducted to analyze SMSC proliferation and migration. Osteogenic differentiation was quantified using Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) staining, while protein markers of proliferation and differentiation were evaluated by Western blotting. The direct interaction between Periostin and BMP1 was validated through co-immunoprecipitation assays. RESULTS In the TWIST1+/- model, an upregulation of Periostin coupled with a downregulation of BMP1 was observed. Augmenting Periostin expression mitigated craniosynostosis. In vitro, overexpression of Periostin or BMP1 knockdown suppressed SMSC proliferation, migration, and osteogenic differentiation. Periostin knockdown manifested an inverse biological impact. Notably, the suppressive influence of Periostin overexpression on SMSCs was effectively counteracted by upregulating BMP1. There was a direct interaction between Periostin and BMP1. CONCLUSION These findings underscore the significance of the Periostin/BMP1 axis in regulating craniosynostosis and SMSC functions, providing new insights into the molecular mechanisms of craniosynostosis and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- ShuBin Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - LiuJian Dong
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Lv
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - ShiYue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China
| | - YaoDong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China.
| |
Collapse
|
8
|
Ko FC, Xie R, Willis B, Herdman ZG, Dulion BA, Lee H, Oh CD, Chen D, Sumner DR. Cells transiently expressing periostin are required for intramedullary intramembranous bone regeneration. Bone 2024; 178:116934. [PMID: 37839663 PMCID: PMC10841632 DOI: 10.1016/j.bone.2023.116934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Intramembranous bone regeneration plays an important role in fixation of intramedullary implants used in joint replacement and dental implants used in tooth replacement. Despite widespread recognition of the importance of intramembranous bone regeneration in these clinical procedures, the underlying mechanisms have not been well explored. A previous study that examined transcriptomic profiles of regenerating bone from the marrow space showed that increased periostin gene expression preceded increases in several osteogenic genes. We therefore sought to determine the role of cells transiently expressing periostin in intramedullary intramembranous bone regeneration. We used a genetic mouse model that allows tamoxifen-inducible fluorescent labeling of periostin expressing cells. These mice underwent ablation of the bone marrow cavity through surgical disruption, a well-established intramembranous bone regeneration model. We found that in intact bones, fluorescently labeled cells were largely restricted to the periosteal surface of cortical bone and were absent in bone marrow. However, following surgical disruption of the bone marrow cavity, cells transiently expressing periostin were found within the regenerating tissue of the bone marrow compartment even though the cortical bone remained intact. The source of these cells is likely heterogenous, including cells occupying the periosteal surface as well as pericytes and endothelial cells within the marrow cavity. We also found that diphtheria toxin-mediated depletion of cells transiently expressing periostin at the time of surgery impaired intramembranous bone regeneration in mice. These data suggest a critical role of periostin expressing cells in intramedullary intramembranous bone regeneration and may lead to novel therapeutic interventions to accelerate or enhance implant fixation.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Brandon Willis
- UC Davis Mouse Biology Program, University of California, Davis, Davis, CA 95616, USA
| | - Zoe G Herdman
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bryan A Dulion
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Hoomin Lee
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Clark D, Doelling J, Hu D, Miclau T, Nakamura M, Marcucio R. Age-related decrease in periostin expression may be associated with attenuated fracture healing in old mice. J Orthop Res 2023; 41:1022-1032. [PMID: 36058631 PMCID: PMC10411536 DOI: 10.1002/jor.25439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/04/2023]
Abstract
Older adults suffer more bone fractures with higher rates of healing complications and increased risk of morbidity and mortality. An improved understanding of the cellular and molecular mechanism of fracture healing and how such processes are perturbed with increasing age may allow for better treatment options to manage fractures in older adults. Macrophages are attractive therapeutics due to their role in several phases of fracture healing. After injury, bone marrow-derived macrophages are recruited to the injury and propagate the inflammatory response, contribute to resolution of inflammation, and promote bone regeneration. A tissue resident population of macrophages named osteal macrophages are present in the periosteum and are directly associated with osteoblasts and these cells contribute to bone formation. Here, we utilized bulk RNA sequencing to analyze the transcriptional activity of osteal macrophages from old and young mice present in primary calvarial cultures. Macrophages demonstrated a diverse transcriptional profile, expressing genes involved in immune function as well as wound healing and regeneration. Periostin was significantly downregulated in macrophages from old mice compared to young. Periostin is an extracellular matrix protein with important functions that promote osteoblast activity during bone regeneration. An age-related decrease of periostin expression was verified in the fracture callus of old mice compared to young. Young periostin knockout mice demonstrated attenuated fracture healing outcomes that reflected what is observed in old mice. This study supports an important role of periostin in fracture healing, and therapeutically targeting the age-related decrease in periostin may improve healing outcomes in older populations.
Collapse
Affiliation(s)
- Daniel Clark
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh. 335 Sutherland Dr. Pittsburgh, PA 15261, USA
| | - Jeffrey Doelling
- College of Medicine, California Northstate University, 9700 West Taron Dr. Elk Grove, CA 95758, USA
| | - Diane Hu
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, Zuckerberg San Francisco General Hospital, 2550 23rd St. San Francisco, CA, 94110, USA
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, Zuckerberg San Francisco General Hospital, 2550 23rd St. San Francisco, CA, 94110, USA
| | - Mary Nakamura
- Division of Rheumatology, Department of Medicine, San Francisco VA Health Care System, 4150 Clement St. San Francisco, California, 94121 USA
| | - Ralph Marcucio
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, Zuckerberg San Francisco General Hospital, 2550 23rd St. San Francisco, CA, 94110, USA
| |
Collapse
|
10
|
Ishihara S, Usumi-Fujita R, Kasahara Y, Oishi S, Shibata K, Shimizu Y, Ishida Y, Kaneko S, Sugiura-Nakazato M, Tabata MJ, Hosomichi J, Taniyama Y, Ono T. Periostin splice variants affect craniofacial growth by influencing chondrocyte hypertrophy. J Bone Miner Metab 2023; 41:171-181. [PMID: 36859617 DOI: 10.1007/s00774-023-01409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Periostin, an extracellular matrix protein, plays an important role in osteogenesis and is also known to activate several signals that contribute to chondrogenesis. The absence of periostin in periostin knockout mice leads to several disorders such as craniosynostosis and periostitis. There are several splice variants with different roles in heart disease and myocardial infarction. However, little is known about each variant's role in chondrogenesis, followed by bone formation. Therefore, the aim of this study is to investigate the role of several variants in chondrogenesis differentiation and bone formation in the craniofacial region. Periostin splice variants included a full-length variant (Control), a variant lacking exon 17 (ΔEx17), a variant lacking exon 21 (ΔEx21), and another variant lacking both exon 17 and 21 ***(ΔEx17&21). MATERIALS AND METHODS We used C56BL6/N mice (n = 6) for the wild type (Control)*** and the three variant type mice (n = 6 each) to identify the effect of each variant morphologically and histologically. Micro-computed tomography demonstrated a smaller craniofacial skeleton in ΔEx17s, ΔEx21s, and ΔEx17&21s compared to Controls, especially the mandibular bone. We, thus, focused on the mandibular condyle. RESULTS The most distinctive histological observation was that each defected mouse appeared to have more hypertrophic chondrocytes than Controls. Real-time PCR demonstrated the differences among the group. Moreover, the lack of exon 17 or exon 21 in periostin leads to inadequate chondrocyte differentiation and presents in a diminutive craniofacial skeleton. DISCUSSION Therefore, these findings suggested that each variant has a significant role in chondrocyte hypertrophy, leading to suppression of bone formation.
Collapse
Affiliation(s)
- Seiko Ishihara
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan.
| | - Yuki Kasahara
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Shuji Oishi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Kana Shibata
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro Shimizu
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Sawa Kaneko
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Makoto Sugiura-Nakazato
- Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Makoto J Tabata
- Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Yushima 1-5-45, Tokyo, Japan
| |
Collapse
|
11
|
The Current Status, Prospects, and Challenges of Shape Memory Polymers Application in Bone Tissue Engineering. Polymers (Basel) 2023; 15:polym15030556. [PMID: 36771857 PMCID: PMC9920657 DOI: 10.3390/polym15030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Bone defects can occur after severe trauma, infection, or bone tumor resection surgery, which requires grafting to repair the defect when it reaches a critical size, as the bone's self-healing ability is insufficient to complete the bone repair. Natural bone grafts or artificial bone grafts, such as bioceramics, are currently used in bone tissue engineering, but the low availability of bone and high cost limit these treatments. Therefore, shape memory polymers (SMPs), which combine biocompatibility, biodegradability, mechanical properties, shape tunability, ease of access, and minimally invasive implantation, have received attention in bone tissue engineering in recent years. Here, we reviewed the various excellent properties of SMPs and their contribution to bone formation in experiments at the cellular and animal levels, respectively, especially for the repair of defects in craniomaxillofacial (CMF) and limb bones, to provide new ideas for the application of these new SMPs in bone tissue engineering.
Collapse
|
12
|
Su Y, Zeng L, Deng R, Ye B, Tang S, Xiong Z, Sun T, Ding Q, Su W, Jing X, Gao Q, Wang X, Qiu Z, Chen K, Quan D, Guo X. Endogenous Electric Field-Coupled PD@BP Biomimetic Periosteum Promotes Bone Regeneration through Sensory Nerve via Fanconi Anemia Signaling Pathway. Adv Healthc Mater 2023; 12:e2203027. [PMID: 36652677 DOI: 10.1002/adhm.202203027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 01/20/2023]
Abstract
To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.
Collapse
Affiliation(s)
- Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rongli Deng
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuo Tang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 510127, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qing Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100000, China
| | - Zhiye Qiu
- Allgens Medical Technology Co., Ltd., Beijing, 100000, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daping Quan
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
13
|
Lee EJ, Baek SH, Song CH, Choi YH, Han KH. Agonist (P1) Antibody Converts Stem Cells into Migrating Beta-Like Cells in Pancreatic Islets. J Microbiol Biotechnol 2022; 32:1615-1621. [PMID: 36330755 PMCID: PMC9843745 DOI: 10.4014/jmb.2209.09031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Tissue regeneration is the ultimate treatment for many degenerative diseases, however, repair and regeneration of damaged organs or tissues remains a challenge. Previously, we showed that B1 Ab and H3 Ab induce stem cells to differentiate into microglia and brown adipocyte-like cells, while trafficking to the brain and heart, respectively. Here, we present data showing that another selected agonist antibody, P1 antibody, induces the migration of cells to the pancreatic islets and differentiates human stem cells into beta-like cells. Interestingly, our results suggest the purified P1 Ab induces beta-like cells from fresh, human CD34+ hematopoietic stem cells and mouse bone marrow. In addition, stem cells with P1 Ab bound to expressed periostin (POSTN), an extracellular matrix protein that regulates tissue remodeling, selectively migrate to mouse pancreatic islets. Thus, these results confirm that our in vivo selection system can be used to identify antibodies from our library which are capable of inducing stem cell differentiation and cell migration to select tissues for the purpose of regenerating and remodeling damaged organ systems.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| | - Seung-Ho Baek
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| | - Yong Hwan Choi
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea,Corresponding author Phone: +82-42-629-8770 Fax: +82-42-629-8751 E-mail:
| |
Collapse
|
14
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W, Kang X. Periostin: an emerging activator of multiple signaling pathways. J Cell Commun Signal 2022; 16:515-530. [PMID: 35412260 PMCID: PMC9733775 DOI: 10.1007/s12079-022-00674-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-β, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhaoheng Wang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jiangdong An
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China
| | - Daxue Zhu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Haiwei Chen
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Aixin Lin
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jihe Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Wenzhao Liu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Xuewen Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| |
Collapse
|
15
|
Nan J, Liu W, Zhang K, Sun Y, Hu Y, Lei P. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes. Front Bioeng Biotechnol 2022; 10:1038250. [PMID: 36507273 PMCID: PMC9730409 DOI: 10.3389/fbioe.2022.1038250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Segmental bone defects, accompanied by periosteum stripping or injury, usually lead to delayed bone union or nonunion, which have challenged orthopedic surgeons. The periosteum, which provides essential blood supply and initial stem cells for bone tissue, plays an important role in the repair of bone defects. The reconstruction of the destroyed periosteum has attracted the attention of researchers exploring more satisfactory therapies to repair bone defects. However, periosteum-like biomaterials have yet to meet the clinical requirements and resolve this challenging problem. In this study, we manufactured a nanofiber periosteum replacement based on poly-ε-caprolactone (PCL), in which tantalum nanoparticles (TaNPs) and nanoscale magnesium oxide (MgO) were introduced to enhance its osteogenic and angiogenic ability. The results of in vitro experiments indicated that the PCL/Ta/MgO periosteum replacement, with excellent cytocompatibility, promoted the proliferation of both bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs). Furthermore, the incorporation of TaNPs and nano-MgO synergistically enhanced the osteogenic differentiation of BMSCs and the angiogenic properties of EPCs. Similarly, the results of in vivo experiments from subcutaneous implantation and critical-sized calvarial defect models showed that the PCL/Ta/MgO periosteum replacement combined the osteogenesis and angiogenesis abilities, promoting vascularized bone formation to repair critical-sized calvarial defects. The results of our study suggest that the strategy of stimulating repairing bone defects can be achieved with the periosteum repaired in situ and that the proposed periosteum replacement can act as a bioactive medium to accelerate bone healing.
Collapse
Affiliation(s)
- Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yan Sun
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Pengfei Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| |
Collapse
|
16
|
Sari A, Dogan S, Nibali L, Koseoglu S. Evaluation of IL-23p19/Ebi3 (IL-39) gingival crevicular fluid levels in periodontal health, gingivitis, and periodontitis. Clin Oral Investig 2022; 26:7209-7218. [PMID: 35986791 DOI: 10.1007/s00784-022-04681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
IL-23p19/Ebi3 (IL-39) was described as a new IL-12 family member. The aim of this study is to evaluate the gingival crevicular fluid (GCF) IL-39 levels in periodontal diseases and health and to correlate them to GCF levels of IL-1β and periostin.
Materials and methods
Sixty-six adult patients were included in the study. The study design was comprised of three groups, each containing 22 individuals: the periodontally healthy (PH), gingivitis (G), and periodontitis (P) groups. The clinical periodontal parameters were recorded and GCF samples were collected from the participants. GCF interleukin (IL)-39, IL-1β, and periostin levels were examined using the enzyme-linked immunosorbent assay.
Results
GCF IL‑1β, periostin, and IL-39 levels were higher in the P and G groups than in the PH group (p < 0.001). Positive correlations were detected between all GCF biochemical parameters and clinical periodontal parameters (p < 0.05). In the multivariate generalized linear regression analysis, the P (β = 37.6, 95% CI = 22.9–52.4) and G (β = 28.4, 95% CI = 15.8–41) groups were associated with GCF IL-39 levels (p < 0.001).
Conclusion
IL-39 levels were elevated in the presence of periodontal disease paralleling the increase in IL‑1β and periostin levels. IL-39 may have a role in the periodontal inflammation process.
Statement of clinical relevance
IL-39, a new cytokine from the IL-12 family, can be a possible predictor marker of periodontal diseases.
Collapse
|
17
|
Wang QN, Yan YZ, Zhang XZ, Lv JX, Nie HP, Wu J, Wu D, Yuan SS, Tang CB. Rescuing effects of periostin in advanced glycation end-products (AGEs) caused osteogenic and oxidative damage through AGE receptor mediation and DNA methylation of the CALCA promoter. Chem Biol Interact 2022; 354:109835. [PMID: 35090876 DOI: 10.1016/j.cbi.2022.109835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
An in vitro model was established to simulate a diabetes-type environment by treating human periodontal stem cells with advanced glycation end-products (AGEs). Periostin (POSTN) plays a crucial role in maintaining the integrity of periodontal tissues. However, the role of POSTN in human periodontal stem cells stimulated by AGEs remains unknown. Diabetes mellitus is considered a metabolic disease, and DNA methylation of CpG islands is a biomarker of metabolic syndromes. Diabetes has been found to be closely related to the DNA methylation of certain genes. Here, we investigated the protective mechanism and effect of POSTN on osteogenesis and oxidative stress in the AGE environment, and further explored the CpG island methylation of specific genes potentially mediated by POSTN. The optimal concentration of AGEs was screened using CCK8. AGEs were found to contribute to oxidative stress. Conversely, reactive oxygen species production and malondialdehyde and superoxide activity indicated that the AGE + POSTN group decreased oxidative injury. According to an alkaline phosphatase assay, Alizarin Red S staining, and the expression of key genes and proteins involved in osteogenesis, POSTN mitigated the inhibitory effects of AGE on cell proliferation and osteogenic differentiation potential during osteogenic differentiation. In contrast, the growth and osteogenesis of human periodontal stem cells were notably suppressed by POSTN knockdown. Bisulfite sequencing PCR was used to evaluate the DNA methylation status. Moreover, AGE elevated the expression of DNA methyltransferas 1 (DNMT1) and inhibited the activation of CALAL promoter methylation, which was rescued by the addition of POSTN and 5-Azacytidine (5-AZA). In conclusion, POSTN attenuated the AGE-induced inhibition of osteogenesis in periodontal ligament stem cells by reducing AGE receptor levels and DNA methylation of the calcitonin-related polypeptide α (CALCA) promoter. Thus, POSTN is a promising candidate for dental bone regeneration, representing a novel therapeutic agent for diabetic patients. The mechanism underlying these processes may provide new insights into novel therapeutic targets for improving abnormal bone metabolism in patients with diabetes.
Collapse
Affiliation(s)
- Qiao-Na Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yan-Zhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Xiao-Zhen Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Jia-Xin Lv
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - He-Peng Nie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Jin Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Di Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Shan-Shan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Chun-Bo Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| |
Collapse
|
18
|
Kotsakis GA, Romanos GE. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000 2022; 88:52-63. [PMID: 35103318 DOI: 10.1111/prd.12410] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Implant site preparation is a critical stage of implant surgery that may underpin various complications related to implant surgery. This review discusses the latest available scientific information on risk factors related to implant site preparation. The role of the drilling process in relation to the density of the available alveolar bone, the effects of insertion torque on peri-implant osseous healing, and implant-related variables such as macrodesign and implant-abutment connection are all factors that can influence implant success. Novel information that links osteotomy characteristics (including methods to improve implant initial stability, the impact of drilling speed, and increase of the implant insertion torque modifying the bone-implant interface) with the appropriate instrumentation techniques will be discussed, as well as interactions at the bone-biomaterial interface that may lead to biologic complications mediated by implant dissolution products.
Collapse
Affiliation(s)
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook, New York, USA.,Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
19
|
Kawaguchi Y, Kitajima I, Yasuda T, Seki S, Suzuki K, Makino H, Ujihara Y, Ueno T, Canh Tung NT, Yahara Y. Serum Periostin Level Reflects Progression of Ossification of the Posterior Longitudinal Ligament. JB JS Open Access 2022; 7:JBJSOA-D-21-00111. [PMID: 35136852 PMCID: PMC8816374 DOI: 10.2106/jbjs.oa.21.00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Ossification of the posterior longitudinal ligament (OPLL), characterized by ectopic new bone formation in the spinal ligament, causes neurological impairment due to narrowing of the spinal canal. However, the etiology has not been fully elucidated yet. Several biomarkers may be related to the pathogenesis of OPLL. The present study focused on the serum level of periostin, which is recognized as an important bone formation regulator. Methods: This study included 92 patients with OPLL and 54 control patients without OPLL. For the case-control analysis, 54 age and sex-matched patients were randomly included in the OPLL group. The serum fibroblast growth factor-23 (FGF-23), creatinine, inorganic phosphate, calcium, alkaline phosphatase, and periostin levels were assessed. Furthermore, the calcium, creatinine, and inorganic phosphate levels in urine and the percentage of tubular reabsorption of phosphate were also analyzed. Moreover, the relationship between the biomarkers and the extent of OPLL was analyzed. The data were compared between patients with OPLL progression (the progression group) and without OPLL progression (the non-progression group). Results: The mean serum FGF-23 and periostin levels in the OPLL group were higher than that in the control group. The serum inorganic phosphate level in the OPLL group was lower than that in the control group. No correlation was found between any of the biomarkers and the extent of ossification. The serum periostin level in the progression group was higher than that in the non-progression group. No significant difference in the serum FGF-23 level was noted between the progression and non-progression groups. Moreover, no correlation was found between serum periostin and FGF-23 levels. Conclusions: The serum periostin level is related to OPLL progression. Level of Evidence: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Yoshiharu Kawaguchi
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
- Email for corresponding author:
| | - Isao Kitajima
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Taketoshi Yasuda
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Shoji Seki
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Kayo Suzuki
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Hiroto Makino
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Yasuhiro Ujihara
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Tomohiro Ueno
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | | | - Yasuhito Yahara
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Lu D, Demissie S, Horowitz NB, Gower AC, Lenburg ME, Alekseyev YO, Hussein AI, Bragdon B, Liu Y, Daukss D, Page JM, Webster MZ, Schlezinger JJ, Morgan EF, Gerstenfeld LC. Temporal and Quantitative Transcriptomic Differences Define Sexual Dimorphism in Murine Postnatal Bone Aging. JBMR Plus 2021; 6:e10579. [PMID: 35229061 PMCID: PMC8861981 DOI: 10.1002/jbm4.10579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Time is a central element of the sexual dimorphic patterns of development, pathology, and aging of the skeleton. Because the transcriptome is a representation of the phenome, we hypothesized that both sex and sex‐specific temporal, transcriptomic differences in bone tissues over an 18‐month period would be informative to the underlying molecular processes that lead to postnatal sexual dimorphism. Regardless of age, sex‐associated changes of the whole bone transcriptomes were primarily associated not only with bone but also vascular and connective tissue ontologies. A pattern‐based approach used to screen the entire Gene Expression Omnibus (GEO) database against those that were sex‐specific in bone identified two coordinately regulated gene sets: one related to high phosphate–induced aortic calcification and one induced by mechanical stimulation in bone. Temporal clustering of the transcriptome identified two skeletal tissue‐associated, sex‐specific patterns of gene expression. One set of genes, associated with skeletal patterning and morphology, showed peak expression earlier in females. The second set of genes, associated with coupled remodeling, had quantitatively higher expression in females and exhibited a broad peak between 3 to 12 months, concurrent with the animals' reproductive period. Results of phenome‐level structural assessments of the tibia and vertebrae, and in vivo and in vitro analysis of cells having osteogenic potential, were consistent with the existence of functionally unique, skeletogenic cell populations that are separately responsible for appositional growth and intramedullary functions. These data suggest that skeletal sexual dimorphism arises through sex‐specific, temporally different processes controlling morphometric growth and later coupled remodeling of the skeleton during the reproductive period of the animal. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Darlene Lu
- Department of Biostatistics Boston University School of Public Health Boston MA USA
| | - Serkalem Demissie
- Department of Biostatistics Boston University School of Public Health Boston MA USA
| | - Nina B Horowitz
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Adam C Gower
- Department of Medicine, Section of Computational Biomedicine Boston University School of Medicine Boston MA USA
| | - Marc E Lenburg
- Department of Medicine, Section of Computational Biomedicine Boston University School of Medicine Boston MA USA
- Department of Pathology and Laboratory Medicine Boston University School of Medicine Boston MA USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine Boston University School of Medicine Boston MA USA
| | - Amira I Hussein
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Beth Bragdon
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Yu Liu
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Dana Daukss
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Jack M Page
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Micheal Z Webster
- Department of Mechanical Engineering Boston University Boston MA USA
| | - Jennifer J Schlezinger
- Department of Environmental Health Boston University School of Public Health Boston MA USA
| | - Elise F Morgan
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
- Department of Mechanical Engineering Boston University Boston MA USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| |
Collapse
|
21
|
Labrèche C, Cook DP, Abou-Hamad J, Pascoal J, Pryce BR, Al-Zahrani KN, Sabourin LA. Periostin gene expression in neu-positive breast cancer cells is regulated by a FGFR signaling cross talk with TGFβ/PI3K/AKT pathways. Breast Cancer Res 2021; 23:107. [PMID: 34809697 PMCID: PMC8607680 DOI: 10.1186/s13058-021-01487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. METHODS Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. RESULTS Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFβ and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFβ can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. CONCLUSION Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.
Collapse
Affiliation(s)
- Cédrik Labrèche
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Abou-Hamad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Pascoal
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
| | - Benjamin R Pryce
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalid N Al-Zahrani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Lunenfeld-Tanenbaum Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Luc A Sabourin
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
22
|
Sun H, Dong J, Wang Y, Shen S, Shi Y, Zhang L, Zhao J, Sun X, Jiang Q. Polydopamine-Coated Poly(l-lactide) Nanofibers with Controlled Release of VEGF and BMP-2 as a Regenerative Periosteum. ACS Biomater Sci Eng 2021; 7:4883-4897. [PMID: 34472855 DOI: 10.1021/acsbiomaterials.1c00246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The periosteum plays an important role in vascularization and ossification during bone repair. However, in most studies, an artificial periosteum cannot restore both functions of the periosteum concurrently. In this study, a novel nanofiber that can sustain the release of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) was fabricated to enhance the durability of angiogenesis and osteogenesis during bone regeneration. A cell-free tissue engineered periosteum based on an electrospinning poly-l-lactic acid (PLLA) nanofiber was fabricated, on which VEGF and BMP-2 were immobilized through a polydopamine (PDA) coating conveniently and safely (BVP@PLLA membrane). The results indicated a significantly improved loading rate as well as a slow and sustained release of VEGF and BMP-2 with the help of the PDA coating. BMP-2 immobilized on nanofibers successfully induced the osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) in vitro with high expression of runt-related transcription factor 2 (Runx2), osteopontin (OPN), and alkaline phosphatase (ALP). Similarly, angiogenic differentiation of BMSCs with the expression of fetal liver kinase-1 (Flk-1) and vascular endothelial cadherin (VE-cadherin) was observed under the environment of VEGF sustained release. Moreover, an in vivo study revealed that the BVP@PLLA membrane could enhance vascular formation and new bone formation, which accelerates bone regeneration in rat femoral defects along with a massive periosteum defect. Therefore, our study suggests that the novel artificial periosteum with dual growth factor controlled release is a promising system to improve bone regeneration in bone defects along with a massive periosteum defect.
Collapse
Affiliation(s)
- Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, Jiangsu 213003, P.R. China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Zhao
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, 2 Yongning Road, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoliang Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, Jiangsu 213003, P.R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
23
|
Zhu D, Zhou W, Wang Z, Wang Y, Liu M, Zhang G, Guo X, Kang X. Periostin: An Emerging Molecule With a Potential Role in Spinal Degenerative Diseases. Front Med (Lausanne) 2021; 8:694800. [PMID: 34513869 PMCID: PMC8430223 DOI: 10.3389/fmed.2021.694800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Periostin, an extracellular matrix protein, is widely expressed in a variety of tissues and cells. It has many biological functions and is related to many diseases: for example, it promotes cell proliferation and differentiation in osteoblasts, which are closely related to osteoporosis, and mediates cell senescence and apoptosis in chondrocytes, which are involved in osteoarthritis. Furthermore, it also plays an important role in mediating inflammation and reconstruction during bronchial asthma, as well as in promoting bone development, reconstruction, repair, and strength. Therefore, periostin has been explored as a potential biomarker for various diseases. Recently, periostin has also been found to be expressed in intervertebral disc cells as a component of the intervertebral extracellular matrix, and to play a crucial role in the maintenance and degeneration of intervertebral discs. This article reviews the biological role of periostin in bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, chondrocytes, and annulus fibrosus and nucleus pulposus cells, which are closely related to spinal degenerative diseases. The study of its pathophysiological effects is of great significance for the diagnosis and treatment of spinal degeneration, although additional studies are needed.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wupin Zhou
- The 947th Army Hospital of the Chinese PLA, Kashgar, China
| | - Zhen Wang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
24
|
Free Periosteal Flaps with Scaffold: An Overlooked Armamentarium for Maxillary and Mandibular Reconstruction. Cancers (Basel) 2021; 13:cancers13174373. [PMID: 34503183 PMCID: PMC8431391 DOI: 10.3390/cancers13174373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Head and neck bone reconstruction with revascularized free periosteal flaps and scaffold is an overlooked option in the literature. Aim of the present paper was to systematically analyse the results of maxillary and mandibular reconstruction with this technique. We found a total of 7 studies with 55 patients fitting with our inclusion criteria. The overall rate of complications was 43.7%. The success rate intended as scaffold integration resulted to be 74.5%. Our paper therefore highlighted that maxillary and mandibular reconstruction with revascularized free periosteal flaps and scaffold is a possible alternative in patient unable to bone free flap complex reconstruction, with a success rate higher to that of other secondary options. Abstract Introduction: Head and neck bone reconstruction is a challenging surgical scenario. Although several strategies have been described in the literature, bone free flaps (BFFs) have become the preferred technique for large defects. Revascularized free periosteal flaps (FPFs) with support scaffold represents a possible alternative in compromised patient, BFF failure, or relapsing cancers as salvage treatment. However, only few clinical applications in head and neck are reported in literature. Purpose of the study was to systematically analyse the results of functional and oncologic maxillary and mandibular reconstruction with FPF with scaffold. Materials and Methods: A comprehensive review of the dedicated literature was performed according to the PRISMA guidelines searching on Scopus, PubMed/MEDLINE, Cochrane Library, Embase, Researchgate and Google Scholar databases using relevant keywords, phrases and medical subject headings (MeSH) terms. An excursus on the most valuable FPF’ harvesting sites was also carried out. Results: A total of 7 studies with 55 patients were included. Overall, the majority of the patients (n = 54, 98.1%) underwent an FPF reconstruction of the mandibular site. The most used technique was the radial forearm FPF with autologous frozen bone as scaffold (n = 40, 72.7%). The overall rate of complications was 43.7%. The success rate intended as scaffold integration resulted to be 74.5%. Conclusions: Maxillary and mandibular reconstruction with FPF and scaffold is a possible alternative in patient unfit for complex BFF reconstruction and it should be considered as a valid alternative in the sequential salvage surgery for locally advanced cancer. Moreover, it opens future scenarios in head and neck reconstructive surgery, as a promising tool that can be modelled to tailor complex 3D defects, with less morbidities to the donor site.
Collapse
|
25
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in Allergy and Inflammation. Front Immunol 2021; 12:722170. [PMID: 34512647 PMCID: PMC8429843 DOI: 10.3389/fimmu.2021.722170] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michaela Miehe
- Department of Biological and Chemical Engineering – Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
26
|
Ishizuka S, Dong QN, Ngo HX, Bai Y, Sha J, Toda E, Okui T, Kanno T. Bioactive Regeneration Potential of the Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-Lactide-Co-Glycolide Biomaterial in Maxillofacial Reconstructive Surgery: An In Vivo Preliminary Study. MATERIALS 2021; 14:ma14092461. [PMID: 34068558 PMCID: PMC8126161 DOI: 10.3390/ma14092461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Uncalcined/unsintered hydroxyapatite (HA) and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) are novel bioresorbable bioactive materials with bone regeneration characteristics and have been used to treat mandibular defects in a rat model. However, the bone regenerative interaction with the periosteum, the inflammatory response, and the degradation of this material have not been examined. In this study, we used a rat mandible model to compare the above features in u-HA/PLLA/PGA and uncalcined/unsintered HA and poly-l-lactic acid (u-HA/PLLA). We divided 11 male Sprague–Dawley rats into 3- and 16-week groups. In each group, we assessed the characteristics of a u-HA/PLLA/PGA sheet covering the right mandibular angle and a u-HA/PLLA sheet covering the left mandibular angle in three rats each, and one rat was used as a sham control. The remaining three rats in the 16-week group were used for a degradation assessment and received both sheets of material as in the material assessment subgroup. At 3 and 16 weeks after surgery, the rats were sacrificed, and mandible specimens were subjected to micro-computed tomography, histological analysis, and immunohistochemical staining. The results indicated that the interaction between the periosteum and u-HA/PLLA/PGA material produced significantly more new bone regeneration with a lower inflammatory response and a faster resorption rate compared to u-HA/PLLA alone. These findings may indicate that this new biomaterial has ideal potential in treating maxillofacial defects of the midface and orbital regions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takahiro Kanno
- Correspondence: ; Tel.: +81-(0)853-20-2301; Fax: +81-(0)853-20-2299
| |
Collapse
|
27
|
Le J, Zhongqun L, Zhaoyan W, Yijun S, Yingjin W, Yaojie W, Yanan J, Zhanrong J, Chunyang M, Fangli G, Nan X, Lingyun Z, Xiumei W, Qiong W, Xiong L, Xiaodan S. Development of methods for detecting the fate of mesenchymal stem cells regulated by bone bioactive materials. Bioact Mater 2021; 6:613-626. [PMID: 33005826 PMCID: PMC7508719 DOI: 10.1016/j.bioactmat.2020.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
The fate of mesenchymal stem cells (MSCs) is regulated by biological, physical and chemical signals. Developments in biotechnology and materials science promoted the occurrence of bioactive materials which can provide physical and chemical signals for MSCs to regulate their fate. In order to design and synthesize materials that can precisely regulate the fate of MSCs, the relationship between the properties of materials and the fate of mesenchymal stem cells need to be clarified, in which the detection of the fate of mesenchymal stem cells plays an important role. In the past 30 years, a series of detection technologies have been developed to detect the fate of MSCs regulated by bioactive materials, among which high-throughput technology has shown great advantages due to its ability to detect large amounts of data at one time. In this review, the latest research progresses of detecting the fate of MSCs regulated by bone bioactive materials (BBMs) are systematically reviewed from traditional technology to high-throughput technology which is emphasized especially. Moreover, current problems and the future development direction of detection technologies of the MSCs fate regulated by BBMs are prospected. The aim of this review is to provide a detection technical framework for researchers to establish the relationship between the properties of BMMs and the fate of MSCs, so as to help researchers to design and synthesize BBMs better which can precisely regulate the fate of MSCs.
Collapse
Affiliation(s)
- Jiang Le
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Liu Zhongqun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Zhaoyan
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Su Yijun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Yingjin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wei Yaojie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jiang Yanan
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jia Zhanrong
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ma Chunyang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Gang Fangli
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xu Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhao Lingyun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Xiumei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wu Qiong
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Lu Xiong
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Sun Xiaodan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
28
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
29
|
Effect of periostin silencing on Runx2, RANKL and OPG expression in osteoblasts. J Orofac Orthop 2020; 82:82-91. [PMID: 33141273 DOI: 10.1007/s00056-020-00253-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Normal tooth eruption is closely related to relevant genes and the dynamic balance between osteoblasts and osteoclasts. If secretion of RANKL and OPG by osteoblasts is disordered, relevant gene deficiencies or mutations will result in serious tooth eruption disturbances, e.g., cleidocranial dysplasia (CCD). Thus, we examined changes in Runx2, RANKL, and OPG protein expression in MC3T3-E1 cells after silencing the periostin gene, thus, providing an experimental basis to study tooth eruption mechanisms. METHODS Based on previous research, cells were divided into two groups according to the virus number: the contrast group (NC group; pFU-GW-016 PSC53349-1) and the experimental group (KD group; LVpFU-GW-016PSC66473-1). Cells were infected with the lentiviral vector (multiplicity of infection = 100) and assessed by image cytometry 72 h after infection. After screening cells for the strongest gene silencing effect, Runx2, RANKL and OPG protein expression were detected by western blotting. RESULTS Based on quantitative PCR, the periostin gene silencing efficiency in the KD group was over 90% (P < 0.01). After periostin gene silencing, compared with the control group, Runx2 and RANKL expression in the KD group was reduced (P < 0.01 and P < 0.05, respectively), but OPG protein expression showed no significant change (P > 0.05). The RANKL/OPG ratios in the KD group were lower than those in the NC group after periostin gene silencing (P < 0.05). CONCLUSIONS Silencing periostin may reduce the expression of Runx2, suggesting that there may be a synergistic relationship between periostin and Runx2 in their effects on osteoblast differentiation, while reducing RANKL expression obviously confirms that the NF-κB (nuclear factor κB) pathway plays an important role in this process and that periostin silencing changes the underlying tendency toward bone metabolism. This method could even provide an experimental basis for using exogenous periostin protein to treat some abnormal bone metabolism diseases, as it could be used as a supplement for the treatment of tooth eruption abnormalities caused by Runx2 gene deficiencies or mutations (CCD).
Collapse
|
30
|
He Z, Liu Y, Liu X, Sun Y, Zhao Q, Liu L, Zhu Z, Luo E. Smart Porous Scaffold Promotes Peri-Implant Osteogenesis under the Periosteum. ACS Biomater Sci Eng 2020; 6:6321-6330. [PMID: 33449673 DOI: 10.1021/acsbiomaterials.0c00956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Adequate peri-implant bone mass and bone quality are essential factors to ensure the initial stability of the implant and success of implant operation. In clinical settings, the lack of bone mass often restricts the implant operation. In this study, we fabricated a smart porous scaffold with a shape memory function and investigated whether it could promote peri-implant osteogenesis under the periosteum. Methods: A porous shape memory polymer (SMP) scaffold was fabricated and its shape memory function, mechanical properties, and degradation rate were tested in vitro. Moreover, the scaffold was implanted in the mandible of rabbits to evaluate its efficacy to promote peri-implant osteogenesis in the periosteum and enhance the initial stability of the implant. Histological, micro-CT, and biomechanical analyses were carried out for further verification. Results: The SMP scaffold has a good shape memory function and biocompatibility in vitro. In vivo experiments demonstrated that the SMP scaffold could recover to its original shape after implantation to create a small gap in the periosteum. After 12 weeks, the scaffold was gradually replaced by a newly formed bone, and the stability of the implant increased when it implanted with the scaffold. Conclusion: The present study indicates that the SMP scaffolds have a good shape memory function and could enhance peri-implant bone formation under the periosteum. The SMP scaffold provides a clinical potential candidate for bone tissue engineering under the periosteum.
Collapse
Affiliation(s)
- Ze He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yue Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qiucheng Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Linan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Zhaokun Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
31
|
Xia C, Ge Q, Fang L, Yu H, Zou Z, Zhang P, Lv S, Tong P, Xiao L, Chen D, Wang PE, Jin H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1 + periosteal cells during fracture healing. Cell Prolif 2020; 53:e12904. [PMID: 32997394 PMCID: PMC7653269 DOI: 10.1111/cpr.12904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Most bone fracture heals through enchondral bone formation that relies on the involvement of periosteal progenitor cells. However, the identity of periosteal progenitor cells and the regulatory mechanism of their proliferation and differentiation remain unclear. The aim of this study was to investigate whether Gli1-CreERT2 can identify a population of murine periosteal progenitor cells and the role of TGF-β signalling in periosteal progenitor cells on fracture healing. MATERIALS AND METHODS Double heterozygous Gli1-CreERT2 ;Rosa26-tdTomatoflox/wt mice were sacrificed at different time points for tracing the fate of Gli1+ cells in both intact and fracture bone. Gli1-CreERT2 -mediated Tgfbr2 knockout (Gli1-CreERT2 ;Tgfbr2flox/flox ) mice were subjected to fracture surgery. At 4, 7, 10, 14 and 21 days post-surgery, tibia samples were harvested for tissue analyses including μCT, histology, real-time PCR and immunofluorescence staining. RESULTS Through cell lineage-tracing experiments, we have revealed that Gli1-CreER T2 can be used to identify a subpopulation of periosteal progenitor cells in vivo that persistently reside in periosteum and contribute to osteochondral elements during fracture repair. During the healing process, TGF-β signalling is continually activated in the reparative Gli1+ periosteal cells. Conditional knockout of Tgfbr2 in these cells leads to a delayed and impaired enchondral bone formation, at least partially due to the reduced proliferation and chondrogenic and osteogenic differentiation of Gli1+ periosteal cells. CONCLUSIONS TGF-β signalling plays an essential role on fracture repair via regulating enchondral bone formation process of Gli1+ periosteal cells.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qinwen Ge
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Fang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yu
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zou
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng Zhang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping-Er Wang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Wang Y, Bian Y, Zhou L, Feng B, Weng X, Liang R. Biological evaluation of bone substitute. Clin Chim Acta 2020; 510:544-555. [PMID: 32798511 DOI: 10.1016/j.cca.2020.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023]
Abstract
Critical-sized defects (CSDs) caused by trauma, tumor resection, or skeletal abnormalities create a high demand for bone repair materials (BRMs). Over the years, scientists have been trying to develop BRMs and evaluate their efficacy using numerous developed methods. BRMs are characterized by osteogenesis and angiogenesis promoting properties, the latter of which has rarely been studied in vitro and in vivo. While blood vessels are required to provide nutrients. Bone mass maintains a dynamic balance under the joint action of osteolytic and osteogenic activity in which monocytes differentiate into osteolytic cells, and osteoprogenitor cells differentiate into osteogenic cells. This review would be helpful for inexperienced researchers as well as present a comprehensive overview of methods used to investigate the effect of BRMs on osteogenic cells, osteolytic cells, and blood vessels, as well as their biocompatibility and biological performance. This review is expected to facilitate further research and development of new BRMs.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanyan Bian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lizhi Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Skeletal stem cells (SSCs) are considered to play important roles in bone development and repair. These cells have been historically defined by their in vitro potential for self-renewal and differentiation into "trilineage" cells; however, little is known about their in vivo identity. Here, we discuss recent progress on SSCs and how they potentially contribute to bone development and repair. RECENT FINDINGS Bone is composed of diverse tissues, which include cartilage and its perichondrium, cortical bone and its periosteum, and bone marrow and its trabecular bone and stromal compartment. We are now at the initial stage of understanding the precise identity of SSCs in each bone tissue. The emerging concept is that functionally dedicated SSCs are encased by their own unique cellular and extracellular matrix microenvironment, and locally support its own compartment. Diverse groups of SSCs are likely to work in concert to achieve development and repair of the highly functional skeletal organ.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|