1
|
Ye J, Li D, Jie Y, Luo H, Zhang W, Qiu C. Exosome-based nanoparticles and cancer immunotherapy. Biomed Pharmacother 2024; 179:117296. [PMID: 39167842 DOI: 10.1016/j.biopha.2024.117296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Over the past decades, cancer immunotherapy has encountered challenges such as immunogenicity, inefficiency, and cytotoxicity. Consequently, exosome-based cancer immunotherapy has gained rapid traction as a promising alternative. Exosomes, a type of extracellular vesicles (EVs) ranging from 50 to 150 nm, are self-originating and exhibit fewer side effects compared to traditional therapies. Exosome-based immunotherapy encompasses three significant areas: cancer vaccination, co-inhibitory checkpoints, and adoptive T-cell therapy. Each of these fields leverages the inherent advantages of exosomes, demonstrating substantial potential for individualized tumor therapy and precision medicine. This review aims to elucidate the reasons behind the promise of exosome-based nanoparticles as cancer therapies by examining their characteristics and summarizing the latest research advancements in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, 330000 China.
| | - Danni Li
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Yiting Jie
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Wenjun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Cheng Qiu
- Gastrointestinal Surgery, Pingxiang People's Hospital, Jiangxi Province 330000, China.
| |
Collapse
|
2
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
3
|
Lin C, Chen Y, Shi L, Lin H, Xia H, Yin W. Advances in bio-immunotherapy for castration-resistant prostate cancer. J Cancer Res Clin Oncol 2023; 149:13451-13458. [PMID: 37460807 DOI: 10.1007/s00432-023-05152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 10/20/2023]
Abstract
Prostate cancer is one of the significant diseases that threaten the survival of men worldwide, with the progression of androgen deprivation therapy, become much rely on it, finally, developed into castration-resistant prostate cancer (ADT). In western countries, ranks second in incidence, and in China, with increasing lifespan, the incidence of prostate cancer is rising steadily. Although chemotherapy agents, such as taxane, have achieved some efficacy, treatment failure still occur. As sensitivity of hormone levels change, the disease can progress to castrate-resistant prostate cancer. Because of the poor efficacy of traditional surgery, endocrine therapy, radiation therapy, and chemotherapy, the treatment options for castrate-resistant prostate cancer are limited. Advanced prostate cancer can progress on immunotherapy, and thus, bio -immunotherapy targeting the unique, prostate microenvironment is an important option. In this paper, we systematically revealed the role of three types of bio-immunotherapies (immune checkpoint inhibitors, tumors, vaccines, cytokines) in castrate-resistant prostate cancer, providing a reference for clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Canling Lin
- Yichun University, Yichun, 336000, Jiangxi, China
| | - Yonghui Chen
- Yichun University, Yichun, 336000, Jiangxi, China
| | - Liji Shi
- Yichun University, Yichun, 336000, Jiangxi, China
| | - Huarong Lin
- The Graduate School of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Hongmei Xia
- Department of Oncology, The People's Hospital of Yichun Affiliated to Clinical Medicine School, Yichun, 336000, Jiangxi, China
| | - Weihua Yin
- Department of Oncology, The People's Hospital of Yichun Affiliated to Clinical Medicine School, Yichun, 336000, Jiangxi, China.
| |
Collapse
|
4
|
Jin Y, Deng Z, Zhu T. Membrane protein trafficking in the anti-tumor immune response: work of endosomal-lysosomal system. Cancer Cell Int 2022; 22:413. [PMID: 36528587 PMCID: PMC9759898 DOI: 10.1186/s12935-022-02805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has changed the treatment landscape for multiple cancer types. In the recent decade, great progress has been made in immunotherapy, including immune checkpoint inhibitors, adoptive T-cell therapy, and cancer vaccines. ICIs work by reversing tumor-induced immunosuppression, resulting in robust activation of the immune system and lasting immune responses. Whereas, their clinical use faces several challenges, especially the low response rate in most patients. As an increasing number of studies have focused on membrane immune checkpoint protein trafficking and degradation, which interferes with response to immunotherapy, it is necessary to summarize the mechanism regulating those transmembrane domain proteins translocated into the cytoplasm and degraded via lysosome. In addition, other immune-related transmembrane domain proteins such as T-cell receptor and major histocompatibility are associated with neoantigen presentation. The endosomal-lysosomal system can also regulate TCR and neoantigen-MHC complexes on the membrane to affect the efficacy of adoptive T-cell therapy and cancer vaccines. In conclusion, we discuss the process of surface delivery, internalization, recycling, and degradation of immune checkpoint proteins, TCR, and neoantigen-MHC complexes on the endosomal-lysosomal system in biology for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Jin
- grid.412632.00000 0004 1758 2270Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Zhifeng Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Ting Zhu
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
5
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
6
|
Yu X, Li W, Young KH, Li Y. Posttranslational Modifications in PD-L1 Turnover and Function: From Cradle to Grave. Biomedicines 2021; 9:1702. [PMID: 34829931 PMCID: PMC8615371 DOI: 10.3390/biomedicines9111702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is one of the most classic immune checkpoint molecules. Cancer cells express PD-L1 to inhibit the activity of effector T cells' cytotoxicity through programmed death 1 (PD-1) engagement in exposure to inflammatory cytokines. PD-L1 expression levels on cancer cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for regulating PD-L1 expression is essential for improving the clinical response rate and efficacy of PD-1/PD-L1 blockade. Posttranslational modifications (PTMs), including phosphorylation, glycosylation, ubiquitination, and acetylation, regulate PD-L1 stability, cellular translocation, and interaction with its receptor. A coordinated positive and negative regulation via PTMs is required to ensure the balance and function of the PD-L1 protein. In this review, we primarily focus on the roles of PTMs in PD-L1 expression, trafficking, and antitumor immune response. We also discuss the implication of PTMs in anti-PD-1/PD-L1 therapies.
Collapse
Affiliation(s)
- Xinfang Yu
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| | - Wei Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| |
Collapse
|
7
|
Tseng YJ, Lee CH, Chen WY, Yang JL, Tzeng HT. Inhibition of PAI-1 Blocks PD-L1 Endocytosis and Improves the Response of Melanoma Cells to Immune Checkpoint Blockade. J Invest Dermatol 2021; 141:2690-2698.e6. [PMID: 34000287 DOI: 10.1016/j.jid.2021.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Immune checkpoint molecules, especially PD-1 and its ligand PD-L1, act as a major mechanism of cancer immune evasion. Although anti-PD-1/PD-L1 monotherapy increases therapeutic efficacy in melanoma treatment, only a subset of patients exhibits long-term tumor remission, and the underlying mechanism of resistance to PD-1/PD-L1 inhibitors remains unclear. In this study, we demonstrated that cell surface retention of PD-L1 is inversely correlated with PAI-1 expression in vitro, in vivo, and in clinical specimens. Moreover, extracellular PAI-1 induced the internalization of surface-expressed PD-L1 by triggering clathrin-mediated endocytosis. The endocytosed PD-L1 was transported to lysosomes for degradation by endolysosomal systems, resulting in the reduction of surface PD-L1. Notably, inhibition of PAI-1 by pharmacological inhibitor with tiplaxtinin led to elevated PD-L1 expression on the plasma membrane, both in vitro and in vivo. Strikingly, targeting PAI-1 by tiplaxtinin treatment synergizes with anti-PD-L1 immune checkpoint blockade therapy in a syngeneic murine model of melanoma. Our findings demonstrate a role for PAI-1 activity in immune checkpoint modulation by promoting surface PD-L1 for lysosomal degradation and provides an insight into the combination of PAI-1 inhibition and anti-PD-L1 immunotherapy as a promising therapeutic regimen for melanoma treatment.
Collapse
Affiliation(s)
- Yu-Ju Tseng
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
8
|
Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene 2020; 39:7106-7113. [PMID: 33024277 DOI: 10.1038/s41388-020-01491-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy using immune-checkpoint blockade has displayed promising clinical effects, but prevalent antibody-based inhibitors face multiple challenges such as low response rate, acquired resistance, and adverse effects. The intracellular expression of PD-1/PD-L1 in recycling endosomes and their active trafficking to membrane highlight the importance of depleting rather than interfering with checkpoint proteins. Preclinical investigations on the therapeutic effects of lead compounds that function by degrading immune checkpoint ligands and receptors have reported highly promising results. By harnessing the degradation capabilities of the lysosome, proteasome and autophagosomes, different small molecules and peptides potently induced degradation of checkpoint proteins and enhanced anti-tumor immunity. Both in vitro and in vivo experiments support the therapeutic efficacy of these molecules. Thus, targeted degradation through endo-lysosomal, autophagic, proteasomal, or endoplasmic reticulum-related pathways may provide promising strategies for tackling the challenges in cancer immunotherapy.
Collapse
|