1
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
2
|
Ning K, Sun T, Wang Z, Li H, Fang P, Cai X, Wu X, Xu M, Xu P. Selective penetration of fullerenol through pea seed coats mitigates osmosis-repressed germination via chromatin remodeling and transcriptional reprograming. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6008-6017. [PMID: 38437455 DOI: 10.1002/jsfa.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The alteration of chromatin accessibility plays an important role in plant responses to abiotic stress. Carbon-based nanomaterials (CBNMs) have attracted increasing interest in agriculture due to their potential impact on crop productivity, showcasing effects on plant biological processes at transcriptional levels; however, their impact on chromatin accessibility remains unknown. RESULTS This study found that fullerenol can penetrate the seed coat of pea to mitigate the reduction of seed germination caused by osmotic stress. RNA sequencing (RNA-seq) revealed that the application of fullerenol caused the high expression of genes related to oxidoreduction to return to a normal level. Assay for transposase accessible chromatin sequencing (ATAC-seq) confirmed that fullerenol application reduced the overall levels of chromatin accessibility of numerous genes, including those related to environmental signaling, transcriptional regulation, and metabolism. CONCLUSION This study suggests that fullerenol alleviates osmotic stress on various fronts, encompassing antioxidant, transcriptional, and epigenetic levels. This advances knowledge of the working mechanism of this nanomaterial within plant cells. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Ting Sun
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Zhuoyi Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Hailan Li
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Pingping Fang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Xiaoqi Cai
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Xinyang Wu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Min Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Pei Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Zhang H, Guan W, Shu J, Yu S, Xiong Y, Liu G, Zhong Y, Chen J, Zhao Z, He N, Xing Q, Guo D, Li L, Hongbing O. Graphene nano zinc oxide reduces the expression and release of antibiotic resistance-related genes and virulence factors in animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163520. [PMID: 37061060 DOI: 10.1016/j.scitotenv.2023.163520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Animal manure contains many antibiotic resistance genes (ARGs) and virulence factors (VFs), posing significant health threats to humans. However, the effects of graphene nano zinc oxide (GZnONP), a zinc bioaugmentation substitute, on bacterial chemotaxis, ARGs, and VFs in animal manure remain scanty. Herein, the effect of GZnONP on the in vivo anaerobic expression of ARGs and VFs in cattle manure was assessed using high-throughput sequencing. Results showed that GZnONP inhibited bacterial chemotaxis by reducing the zinc pressure under anaerobic fermentation, altering the microbial community structure. The expression of ARGs was significantly lower in GZnONP than in zinc oxide and nano zinc oxide (ZnONP) groups. The expression of VFs was lower in the GZnONP than in the zinc oxide and ZnONP groups by 9.85 % and 13.46 %, respectively. Co-occurrence network analysis revealed that ARGs and VFs were expressed by the Spirochaetes phylum, Paraprevotella genus, and Treponema genus et al. The ARGs-VFs coexistence was related to the expression/abundance of ARGs and VFs genes. GZnONP reduces the abundance of certain bacterial species by disrupting chemotaxis, minimizing the transfer of ARGs and VFs. These findings suggest that GZnONP, a bacterial chemotaxis suppressor, effectively reduces the expression and release of ARGs and VFs in animal manure.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jun Shu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Sen Yu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yingmin Xiong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Gao Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | | |
Collapse
|
4
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|