1
|
Orr DJ, Robijns AKJ, Baker CR, Niyogi KK, Carmo-Silva E. Dynamics of Rubisco regulation by sugar phosphate derivatives and their phosphatases. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:581-590. [PMID: 36173669 PMCID: PMC9833046 DOI: 10.1093/jxb/erac386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/28/2022] [Indexed: 05/31/2023]
Abstract
Regulating the central CO2-fixing enzyme Rubisco is as complex as its ancient reaction mechanism and involves interaction with a series of cofactors and auxiliary proteins that activate catalytic sites and maintain activity. A key component among the regulatory mechanisms is the binding of sugar phosphate derivatives that inhibit activity. Removal of inhibitors via the action of Rubisco activase is required to restore catalytic competency. In addition, specific phosphatases dephosphorylate newly released inhibitors, rendering them incapable of binding to Rubisco catalytic sites. The best studied inhibitor is 2-carboxy-d-arabinitol 1-phosphate (CA1P), a naturally occurring nocturnal inhibitor that accumulates in most species during darkness and low light, progressively binding to Rubisco. As light increases, Rubisco activase removes CA1P from Rubisco, and the specific phosphatase CA1Pase dephosphorylates CA1P to CA, which cannot bind Rubisco. Misfire products of Rubisco's complex reaction chemistry can also act as inhibitors. One example is xylulose-1,5-bisphosphate (XuBP), which is dephosphorylated by XuBPase. Here we revisit key findings related to sugar phosphate derivatives and their specific phosphatases, highlighting outstanding questions and how further consideration of these inhibitors and their role is important for better understanding the regulation of carbon assimilation.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Alice K J Robijns
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Christopher R Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
2
|
Yamada K, Norikoshi R, Suzuki K, Imanishi H, Ichimura K. Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration-centrifugation method. PLANTA 2009; 230:1115-1127. [PMID: 20183924 DOI: 10.1007/s00425-009-1011-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Petal growth associated with flower opening depends on cell expansion. To understand the role of soluble carbohydrates in petal cell expansion during flower opening, changes in soluble carbohydrate concentrations in vacuole, cytoplasm and apoplast of petal cells during flower opening in rose (Rosa hybrida L.) were investigated. We determined the subcellular distribution of soluble carbohydrates by combining nonaqueous fractionation method and infiltration-centrifugation method. During petal growth, fructose and glucose rapidly accumulated in the vacuole, reaching a maximum when petals almost reflected. Transmission electron microscopy showed that the volume of vacuole and air space drastically increased with petal growth. Carbohydrate concentration was calculated for each compartment of the petal cells and in petals that almost reflected, glucose and fructose concentrations increased to higher than 100 mM in the vacuole. Osmotic pressure increased in apoplast and symplast during flower opening, and this increase was mainly attributed to increases in fructose and glucose concentrations. No large difference in osmotic pressure due to soluble carbohydrates was observed between the apoplast and symplast before flower opening, but total osmotic pressure was much higher in the symplast than in the apoplast, a difference that was partially attributed to inorganic ions. An increase in osmotic pressure due to the continued accumulation of glucose and fructose in the symplast may facilitate water influx into cells, contributing to cell expansion associated with flower opening under conditions where osmotic pressure is higher in the symplast than in the apoplast.
Collapse
Affiliation(s)
- Kunio Yamada
- National Institute of Floricultural Science, Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | | | | | | | | |
Collapse
|
3
|
Rosenstiel TN, Fisher AJ, Fall R, Monson RK. Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. PLANT PHYSIOLOGY 2002; 129:1276-84. [PMID: 12114581 PMCID: PMC166521 DOI: 10.1104/pp.002717] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 03/06/2002] [Indexed: 05/20/2023]
Abstract
The biosynthesis and emission of volatile plant terpenoids, such as isoprene and methylbutenol (MBO), depend on the chloroplastic production of dimethylallyl diphosphate (DMAPP). To date, it has been difficult to study the relationship of cellular DMAPP levels to emission of these volatiles because of the lack of a sensitive assay for DMAPP in plant tissues. Using a recent DMAPP assay developed in our laboratories, we report that species with the highest potential for isoprene and MBO production also exhibit elevated light-dependent DMAPP production, ranging from 110% to 1,063%. Even species that do not produce significant amounts of volatile terpenoids, however, exhibit some potential for light-dependent production of DMAPP. We used a nonaqueous fractionation technique to determine the intracellular distribution of DMAPP in isoprene-emitting cottonwood (Populus deltoides) leaves; approximately 65% to 70% of the DMAPP recovered at midday occurred in the chloroplasts, indicating that most of the light-dependent production of DMAPP was chloroplastic in origin. The midday concentration of chloroplastic DMAPP in cottonwood leaves is estimated to be 0.13 to 3.0 mM, which is consistent with the relatively high K(m)s that have been reported for isoprene synthases (0.5-8 mM). The results provide support for the hypothesis that the light dependence of isoprene and MBO emissions is in part due to controls over DMAPP production.
Collapse
Affiliation(s)
- Todd N Rosenstiel
- Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0334, USA
| | | | | | | |
Collapse
|
4
|
Andralojc PJ, Keys AJ, Kossmann J, Parry MAJ. Elucidating the biosynthesis of 2-carboxyarabinitol 1-phosphate through reduced expression of chloroplastic fructose 1,6-bisphosphate phosphatase and radiotracer studies with 14CO2. Proc Natl Acad Sci U S A 2002; 99:4742-7. [PMID: 11917127 PMCID: PMC123718 DOI: 10.1073/pnas.072137099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2-carboxyarabinitol 1-phosphate limits photosynthetic CO2 assimilation at low light because it is a potent, naturally occurring inhibitor of ribulose 1,5-bisphosphate carboxylase/oxygenase. Evidence is presented that this inhibitor is derived from chloroplastic fructose 1,6-bisphosphate. First, transgenic plants containing decreased amounts of chloroplastic fructose 1,6-bisphosphate phosphatase contained increased amounts of fructose 1,6-bisphosphate and 2-carboxyarabinitol 1-phosphate and greatly increased amounts of the putative intermediates hamamelose and 2-carboxyarabinitol, which in some cases were as abundant as sucrose. Second, French bean leaves in the light were shown to incorporate 14C from 14CO2 sequentially into fructose 1,6-bisphosphate, hamamelose bisphosphate, hamamelose monophosphate, hamamelose, and 2-carboxyarabinitol. As shown previously, 14C assimilated by photosynthesis was also incorporated into 2-carboxyarabinitol 1-phosphate during subsequent darkness.
Collapse
Affiliation(s)
- P John Andralojc
- IACR-Rothamsted, Crop Performance & Improvement Division, West Common, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | | | |
Collapse
|
5
|
Parry MA, Andralojc PJ, Lowe HM, Keys AJ. The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. FEBS Lett 1999; 444:106-10. [PMID: 10037157 DOI: 10.1016/s0014-5793(99)00038-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A recent controversial report suggests that the nocturnal inhibitor of Rubisco, 2-carboxy-D-arabinitol 1-phosphate (CAIP), does not bind to Rubisco in vivo and therefore that CA1P has no physiological relevance to photosynthetic regulation. It is now proved that a direct rapid assay can be used to distinguish between Rubisco-bound and free CA1P, as postulated in the controversial report. Application of this direct assay demonstrates that CA1P is bound to Rubisco in vivo in dark-adapted leaves. Furthermore, CA1P is shown to be in the chloroplasts of mesophyll cells. Thus, CA1P does play a physiological role in the regulation of Rubisco.
Collapse
Affiliation(s)
- M A Parry
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, UK.
| | | | | | | |
Collapse
|
6
|
|
7
|
Hammond ET, Andrews TJ, Woodrow IE. Regulation of ribulose-1,5-bisphosphate Carboxylase/Oxygenase by carbamylation and 2-carboxyarabinitol 1-phosphate in tobacco: insights from studies of antisense plants containing reduced amounts of rubisco activase. PLANT PHYSIOLOGY 1998; 118:1463-71. [PMID: 9847122 PMCID: PMC34764 DOI: 10.1104/pp.118.4.1463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/1998] [Accepted: 09/08/1998] [Indexed: 05/18/2023]
Abstract
The regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity by 2-carboxyarabinitol 1-phosphate (CA1P) was investigated using gas-exchange analysis of antisense tobacco (Nicotiana tabacum) plants containing reduced levels of Rubisco activase. When an increase in light flux from darkness to 1200 &mgr;mol quanta m-2 s-1 was followed, the slow increase in CO2 assimilation by antisense leaves contained two phases: one represented the activation of the noncarbamylated form of Rubisco, which was described previously, and the other represented the activation of the CA1P-inhibited form of Rubisco. We present evidence supporting this conclusion, including the observation that this second phase, like CA1P, is only present following darkness or very low light flux. In addition, the second phase of CO2 assimilation was correlated with leaf CA1P content. When this novel phase was resolved from the CO2 assimilation trace, most of it was found to have kinetics similar to the activation of the noncarbamylated form of Rubisco. Additionally, kinetics of the novel phase indicated that the activation of the CA1P-inhibited form of Rubisco proceeds faster than the degradation of CA1P by CA1P phosphatase. These results may be significant with respect to current models of the regulation of Rubisco activity by Rubisco activase.
Collapse
Affiliation(s)
- ET Hammond
- School of Botany, The University of Melbourne, Parkville, Victoria 3052, Australia (E.T.H., I.E.W.)
| | | | | |
Collapse
|
8
|
Andralojc PJ, Keys AJ, Martindale W, Dawson GW, Parry MA. Conversion of D-hamamelose into 2-carboxy-D-arabinitol and 2-carboxy-D-arabinitol 1-phosphate in leaves of Phaseolus vulgaris L. J Biol Chem 1996; 271:26803-9. [PMID: 8900161 DOI: 10.1074/jbc.271.43.26803] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
[1-14C]Hamamelose (2-hydroxymethyl-D-ribose) was synthesized by reaction of ribulose 5-phosphate with potassium [14C]cyanide, catalytic hydrogenation of the resulting cyanohydrin, and dephosphorylation of the product. Its identity was established by a chromatographic comparison with hamamelose isolated from the bark of witch hazel (Hamamelis virginiana L.). Following vacuum infiltration of the [1-14C]hamamelose into leaf discs from Phaseolus vulgaris L., 14C-labeled 2carboxy-D-arabinitol (CA) and 2-carboxy-D-arabinitol 1-phosphate (CA1P) were formed, in the dark. Conversion of hamamelose to both CA and CA1P in the leaf discs was inhibited by dithiothreitol and sodium fluoride, although at high concentrations of these inhibitors conversion into CA was still evident when conversion into CA1P was totally inhibited. Wheat (Triticum aestivum L.) leaves converted hamamelose into CA without formation of CA1P. Leaves from P. vulgaris contained 68 nmol.g-1 fresh weight of hamamelose in the light and 35 nmol.g-1 fresh weight in the dark. A pathway for the biosynthesis of CA1P from Calvin cycle intermediates is proposed which includes the sequence: hamamelose --> CA --> CA1P.
Collapse
Affiliation(s)
- P J Andralojc
- Department of Biochemistry and Physiology, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Nakano Y, Yokota A. Different location in dark-adapted leaves of Phaseolus vulgaris of ribulose-1,5-bisphosphate carboxylase/oxygenase and 2-carboxyarabinitol 1-phosphate. FEBS Lett 1996; 388:223-7. [PMID: 8690092 DOI: 10.1016/0014-5793(96)00555-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In situ RuBisCO activity was analyzed in order to determine whether 2-carboxyarabinitol 1-phosphate (CA1P) interacts with the enzyme in dark-adapted leaves of Phaseolus vulgaris. Leaves ground to fine powder in liquid nitrogen were put directly into a reaction mixture containing a saturating concentration of ribulose 1,5-bisphosphate (RuBP) to preserve the activity of RuBisCO which was in the chloroplasts. Some 70% of the total catalytic sites of RuBisCO possessed carboxylase activity in this assay, however, RuBisCO was inhibited in the absence of RuBP. CA1P seemed to be concentrated in the veins. These results indicate that RuBisCO was not complexed with CA1P in leaves.
Collapse
|