1
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
2
|
Aksomaitiene J, Novoslavskij A, Kudirkiene E, Gabinaitiene A, Malakauskas M. Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania. Microorganisms 2020; 9:E66. [PMID: 33383765 PMCID: PMC7823968 DOI: 10.3390/microorganisms9010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Spread of antibiotic resistance via mobile genetic elements associates with transfer of genes providing resistance against multiple antibiotics. Use of various comparative genomics analysis techniques enables to find intrinsic and acquired genes associated with phenotypic antimicrobial resistance (AMR) in Campylobacter jejuni genome sequences with exceptionally high-level multidrug resistance. In this study, we used whole genome sequences of seven C. jejuni to identify isolate-specific genomic features associated with resistance and virulence determinants and their role in multidrug resistance (MDR). All isolates were phenotypically highly resistant to tetracycline, ciprofloxacin, and ceftriaxone (MIC range from 64 to ≥256 µg/mL). Besides, two C. jejuni isolates were resistant to gentamicin, and one was resistant to erythromycin. The extensive drug-resistance profiles were confirmed for the two C. jejuni isolates assigned to ST-4447 (CC179). The most occurring genetic antimicrobial-resistance determinants were tetO, beta-lactamase, and multidrug efflux pumps. In this study, mobile genetic elements (MGEs) were detected in genomic islands carrying genes that confer resistance to MDR, underline their importance for disseminating antibiotic resistance in C. jejuni. The genomic approach showed a diverse distribution of virulence markers, including both plasmids and phage sequences that serve as horizontal gene transfer tools. The study findings describe in silico prediction of AMR and virulence genetics determinants combined with phenotypic AMR detection in multidrug-resistant C. jejuni isolates from Lithuania.
Collapse
Affiliation(s)
- Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT 47181 Kaunas, Lithuania; (A.N.); (A.G.); (M.M.)
| | - Aleksandr Novoslavskij
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT 47181 Kaunas, Lithuania; (A.N.); (A.G.); (M.M.)
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark;
| | - Ausra Gabinaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT 47181 Kaunas, Lithuania; (A.N.); (A.G.); (M.M.)
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT 47181 Kaunas, Lithuania; (A.N.); (A.G.); (M.M.)
| |
Collapse
|
3
|
Rodzli NA, Lockhart-Cairns MP, Levy CW, Chipperfield J, Bird L, Baldock C, Prince SM. The Dual PDZ Domain from Postsynaptic Density Protein 95 Forms a Scaffold with Peptide Ligand. Biophys J 2020; 119:667-689. [PMID: 32652058 PMCID: PMC7399497 DOI: 10.1016/j.bpj.2020.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/29/2023] Open
Abstract
PSD-95 is a member of the membrane-associated guanylate kinase class of proteins that forms scaffolding interactions with partner proteins, including ion and receptor channels. PSD-95 is directly implicated in modulating the electrical responses of excitable cells. The first two PSD-95/disks large/zona occludens (PDZ) domains of PSD-95 have been shown to be the key component in the formation of channel clusters. We report crystal structures of this dual domain in both apo- and ligand-bound form: thermodynamic analysis of the ligand association and small-angle x-ray scattering of the dual domain in the absence and presence of ligands. These experiments reveal that the ligated double domain forms a three-dimensional scaffold that can be described by a space group. The concentration of the components in this study is comparable with those found in compartments of excitable cells such as the postsynaptic density and juxtaparanodes of Ranvier. These in vitro experiments inform the basis of the scaffolding function of PSD-95 and provide a detailed model for scaffold formation by the PDZ domains of PSD-95.
Collapse
Affiliation(s)
- Nazahiyah A Rodzli
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Colin W Levy
- Manchester Protein Structure Facility, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - John Chipperfield
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louise Bird
- Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephen M Prince
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
4
|
Xie Q, Li Z, Yang L, Lv J, Jobe TO, Wang Q. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress. PLoS One 2015; 10:e0136606. [PMID: 26327118 PMCID: PMC4556624 DOI: 10.1371/journal.pone.0136606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.
Collapse
Affiliation(s)
- Qingqing Xie
- Department of Chemistry, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenji Li
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Limin Yang
- Department of Chemistry, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Lv
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Timothy O. Jobe
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, United States of America
| | - Qiuquan Wang
- Department of Chemistry, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:239-46. [PMID: 21645493 DOI: 10.1016/j.bbabio.2011.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/28/2022]
Abstract
Photosystem II (PSII) catalyzes one of the key reactions of photosynthesis, the light-driven conversion of water into oxygen. Although the structure and function of PSII have been well documented, our understanding of the biogenesis and maintenance of PSII protein complexes is still limited. A considerable number of auxiliary and regulatory proteins have been identified to be involved in the regulation of this process. The carboxy-terminal processing protease CtpA, the serine-type protease DegP and the ATP-dependent thylakoid-bound metalloprotease FtsH are critical for the biogenesis and maintenance of PSII. Here, we summarize and discuss the structural and functional aspects of these chloroplast proteases in these processes. This article is part of a Special Issue entitled: SI: Photosystem II.
Collapse
|
6
|
Olinares PDB, Kim J, van Wijk KJ. The Clp protease system; a central component of the chloroplast protease network. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:999-1011. [PMID: 21167127 DOI: 10.1016/j.bbabio.2010.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
7
|
New Insights into the Types and Function of Proteases in Plastids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:185-218. [DOI: 10.1016/s1937-6448(10)80004-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Bandara AB, DeShazer D, Inzana TJ, Sriranganathan N, Schurig GG, Boyle SM. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice. Microb Pathog 2008; 45:207-16. [PMID: 18614331 DOI: 10.1016/j.micpath.2008.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 05/09/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.
Collapse
Affiliation(s)
- Aloka B Bandara
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0342, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Yin S, Sun X, Zhang L. An Arabidopsis ctpA homologue is involved in the repair of photosystem II under high light. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0153-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Satoh K, Yamamoto Y. The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center. PHOTOSYNTHESIS RESEARCH 2007; 94:203-15. [PMID: 17551844 DOI: 10.1007/s11120-007-9191-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 04/26/2007] [Indexed: 05/03/2023]
Abstract
The D1 protein, a key subunit of photosystem II reaction center, is synthesized as a precursor form with a carboxyl-terminal extension, in oxygenic photosynthetic organisms with some exceptions. This part of the protein is removed by the action of an endopeptidase, and the proteolytic processing is indispensable for the manifestation of oxygen-evolving activity in photosynthesis. The carboxyl-terminus of mature D1 protein, which appears upon the cleavage, has recently been demonstrated to be a ligand for a manganese atom in the Mn(4)Ca-cluster, which is responsible for the water oxidation chemistry in photosystem II, based on the isotope-edited Fourier transform infrared spectroscopy and the X-ray crystallography. On the other hand, the structure of a peptidase involved in the cleavage of precursor D1 protein has been resolved at a higher resolution, and the enzyme-substrate interactions have extensively been analyzed both in vivo and in vitro. The present article briefly summarizes the history of research and the present state of our knowledge on the carboxyl-terminal processing of precursor D1 protein in the photosystem II reaction center.
Collapse
|
11
|
Adam Z. Protein stability and degradation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0227] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Zsiros O, Allakhverdiev SI, Higashi S, Watanabe M, Nishiyama Y, Murata N. Very strong UV-A light temporally separates the photoinhibition of photosystem II into light-induced inactivation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:123-9. [PMID: 16500615 DOI: 10.1016/j.bbabio.2006.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/23/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 micromol photons m(-2) s(-1) inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.
Collapse
Affiliation(s)
- Otto Zsiros
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Bandara AB, Sriranganathan N, Schurig GG, Boyle SM. Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J Bacteriol 2005; 187:5767-75. [PMID: 16077124 PMCID: PMC1196076 DOI: 10.1128/jb.187.16.5767-5775.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative carboxyl-terminal processing protease (CtpA) of Brucella suis 1330 is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. The B. suis CtpA protein shared up to 77% homology with CtpA proteins of other bacteria. A CtpA-deficient Brucella strain (1330DeltactpA), generated by allelic exchange, produced smaller colonies on enriched agar plates and exhibited a 50% decrease in growth rate in enriched liquid medium and no growth in salt-free enriched medium compared to the wild-type strain 1330 or the ctpA-complemented strain 1330DeltactpA[pBBctpA]. Electron microscopy revealed that in contrast to the native coccobacillus shape of wild-type strain 1330, strain 1330DeltactpA possessed a spherical shape, an increased cell diameter, and cell membranes partially dissociated from the cell envelope. In the J774 mouse macrophage cell line, 24 h after infection, the CFU of the strain 1330DeltactpA declined by approximately 3 log(10) CFU relative to wild-type strain 1330. Nine weeks after intraperitoneal inoculation of BALB/c mice, strain 1330DeltactpA had cleared from spleens but strain 1330 was still present. These observations suggest that the CtpA activity is necessary for the intracellular survival of B. suis. Relative to the saline-injected mice, strain 1330DeltactpA-vaccinated mice exhibited 4 to 5 log(10) CFU of protection against challenge with virulent B. abortus strain 2308 or B. suis strain 1330 but no protection against B. melitensis strain 16 M. This is the first report correlating a CtpA deficiency with cell morphology and attenuation of B. suis.
Collapse
Affiliation(s)
- Aloka B Bandara
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd., Blacksburg, VA 24061-0342, USA
| | | | | | | |
Collapse
|
14
|
Allakhverdiev SI, Tsvetkova N, Mohanty P, Szalontai B, Moon BY, Debreczeny M, Murata N. Irreversible photoinhibition of photosystem II is caused by exposure of Synechocystis cells to strong light for a prolonged period. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:342-51. [PMID: 15950925 DOI: 10.1016/j.bbabio.2005.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/16/2022]
Abstract
Irreversible photoinhibition of photosystem II (PSII) occurred when Synechocystis sp. PCC 6803 cells were exposed to very strong light for a prolonged period. When wild-type cells were illuminated at 20 degrees C for 2 h with light at an intensity of 2,500 micromol photons m(-2) s(-1), the oxygen-evolving activity of PSII was almost entirely and irreversibly lost, whereas the photochemical reaction center in PSII was inactivated only reversibly. The extent of irreversible photoinhibition was enhanced at lower temperatures and by the genetically engineered rigidification of membrane lipids. Western and Northern blotting demonstrated that, after cells had undergone irreversible photoinhibition, the precursor to D1 protein in PSII was synthesized but not processed properly. These observations may suggest that exposure of Synechocystis cells to strong light results in the irreversible photoinhibition of the oxygen-evolving activity of PSII via impairment of the processing of pre-D1 and that this effect of strong light is enhanced by the rigidification of membrane lipids.
Collapse
|
15
|
Fabbri BJ, Duff SMG, Remsen EE, Chen YCS, Anderson JC, CaJacob CA. The carboxyterminal processing protease of D1 protein: expression, purification and enzymology of the recombinant and native spinach proteins. PEST MANAGEMENT SCIENCE 2005; 61:682-690. [PMID: 15726567 DOI: 10.1002/ps.1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The carboxyterminal processing protease of D1 protein (CtpA) is predicted to be an excellent target for a general broad-spectrum herbicide. The gene for spinach CtpA has been expressed in Escherichia coli. The expressed protein that was found mainly in inclusion bodies has been purified and refolded on a nickel-chelate column. Active recombinant CtpA was recovered. Two assays for CtpA activity were developed, a medium-throughput HPLC assay using a fluorescent substrate and a high-throughput assay based on fluorescence polarization capable of application in a high-throughput 96-well plate format. This high-throughput assay was developed to screen chemistry for CtpA inhibitors. Native spinach CtpA was partially purified and the native and recombinant enzymes were compared kinetically for their K(m) and V(max) values using different peptide substrates. Native CtpA partially purified from spinach was shown to have similar kinetic properties to recombinant CtpA. Antibodies developed against the recombinant protein were used to estimate the in planta abundance of the native enzyme in spinach. Since only a small proportion of the recombinant protein is refolded during isolation and it appears that only a small proportion of this enzyme is active, size-exclusion chromatography and light scattering experiments were performed on rCtpA in order to gain insight into its structure and the reasons why most of the protein is not active. The use of rCtpA to screen for herbicidal compounds and the more general question of how good a herbicide target the enzyme is are discussed.
Collapse
|
16
|
Ostberg Y, Carroll JA, Pinne M, Krum JG, Rosa P, Bergström S. Pleiotropic effects of inactivating a carboxyl-terminal protease, CtpA, in Borrelia burgdorferi. J Bacteriol 2004; 186:2074-84. [PMID: 15028692 PMCID: PMC374408 DOI: 10.1128/jb.186.7.2074-2084.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/01/2003] [Indexed: 11/20/2022] Open
Abstract
A gene encoding a putative carboxyl-terminal protease (CtpA), an unusual type of protease, is present in the Borrelia burgdorferi B31 genome. The B. burgdorferi CtpA amino acid sequence exhibits similarities to the sequences of the CtpA enzymes of the cyanobacterium Synechocystis sp. strain PCC 6803 and higher plants and also exhibits similarities to the sequences of putative CtpA proteins in other bacterial species. Here, we studied the effect of ctpA gene inactivation on the B. burgdorferi protein expression profile. Total B. burgdorferi proteins were separated by two-dimensional gel electrophoresis, and the results revealed that six proteins of the wild type were not detected in the ctpA mutant and that nine proteins observed in the ctpA mutant were undetectable in the wild type. Immunoblot analysis showed that the integral outer membrane protein P13 was larger and had a more acidic pI in the ctpA mutant, which is consistent with the theoretical change in pI for P13 not processed at the carboxyl terminus. Matrix-assisted laser desorption ionization-time of flight data indicated that in addition to P13, the BB0323 protein may serve as a substrate for carboxyl-terminal processing by CtpA. Complementation analysis of the ctpA mutant provided strong evidence that the observed effect on proteins depended on inactivation of the ctpA gene alone. We show that CtpA in B. burgdorferi is involved in the processing of proteins such as P13 and BB0323 and that inactivation of ctpA has a pleiotropic effect on borrelial protein synthesis. To our knowledge, this is the first analysis of both a CtpA protease and different substrate proteins in a pathogenic bacterium.
Collapse
Affiliation(s)
- Yngve Ostberg
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Allakhverdiev SI, Mohanty P, Murata N. Dissection of Photodamage at Low Temperature and Repair in Darkness Suggests the Existence of an Intermediate Form of Photodamaged Photosystem II†. Biochemistry 2003; 42:14277-83. [PMID: 14640696 DOI: 10.1021/bi035205+] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Irradiation of the photosynthetic machinery with strong light induces damage to the photosystem II complex (PSII), and this phenomenon is referred to as photodamage. In an attempt to characterize the mechanism of photodamage to PSII, we examined the events associated with photodamage by monitoring the phenomenon in Synechocystis sp. PCC 6803 at a low temperature. After the activity of PSII had been reduced to 10% of the original activity by exposure of Synechocystis cells to strong light at 10 degrees C, recovery was allowed to proceed at 34 degrees C in darkness. Under these conditions, approximately 50% of the activity of PSII was restored within 60 min. The recovery in darkness did not require protein synthesis, as demonstrated by Western blotting analysis and a radiolabeling experiment with [(35)S]methionine. We also observed a similar recovery of PSII in darkness in isolated thylakoid membranes. Our findings, together with those of other studies, suggest the presence of an intermediate form of photodamaged PSII that is generated prior to the formation of photodamaged PSII.
Collapse
|
18
|
Inagaki N, Yamamoto Y, Satoh K. A sequential two-step proteolytic process in the carboxyl-terminal truncation of precursor D1 protein in Synechocystis sp. PCC6803. FEBS Lett 2001; 509:197-201. [PMID: 11741588 DOI: 10.1016/s0014-5793(01)03180-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The D1 protein of photosystem II is synthesized in precursor with a carboxyl-terminal extension. Interestingly, there is quite a range in chain length of the extension, which roughly depends upon the class of organisms. In cyanobacteria, e.g. in Synechocystis sp. PCC6803, the extension consists of 16 amino acid residues, seven residues longer than its counterpart in higher plants. In this study, we examined the D1 processing in Synechocystis sp. PCC6803 by pulse-chase experiments and detected a proteolytic intermediate of this process. This finding suggests that the elongated extension in this organism is excised with a sequential two-step proteolysis, which differs markedly from the manner observed in higher plants.
Collapse
Affiliation(s)
- N Inagaki
- Photosynthesis Laboratory, Plant Physiology Department, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | |
Collapse
|
19
|
Lensch M, Herrmann RG, Sokolenko A. Identification and characterization of SppA, a novel light-inducible chloroplast protease complex associated with thylakoid membranes. J Biol Chem 2001; 276:33645-51. [PMID: 11443110 DOI: 10.1074/jbc.m100506200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new component of the chloroplast proteolytic machinery from Arabidopsis thaliana was identified as a SppA-type protease. The sequence of the mature protein, deduced from a full-length cDNA, displays 22% identity to the serine-type protease IV (SppA) from Escherichia coli and 27% identity to Synechocystis SppA1 (sll1703) but lacks the putative transmembrane spanning segments predicted from the E. coli sequence. The N-terminal sequence exhibits typical features of a cleavable chloroplast stroma-targeting sequence. The chloroplast localization of SppA was confirmed by in organello import experiments using an in vitro expression system and by immunodetection with antigen-specific antisera. Subfractionation of intact chloroplasts demonstrated that SppA is associated exclusively with thylakoid membranes, predominantly stroma lamellae, and is a part of some high molecular mass complex of about 270 kDa that exhibits proteolytic activity. Treatments with chaotropic salts and proteases showed that SppA is largely exposed to the stroma but that it behaves as an intrinsic membrane protein that may have an unusual monotopic arrangement in the thylakoids. We demonstrate that SppA is a light-inducible protease and discuss its possible involvement in the light-dependent degradation of antenna and photosystem II complexes that both involve serine-type proteases.
Collapse
Affiliation(s)
- M Lensch
- Botanisches Institut der Ludwig-Maximilians-Universität, Menzingerstrasse 67, D-80638 München, Germany
| | | | | |
Collapse
|
20
|
Inagaki N, Maitra R, Satoh K, Pakrasi HB. Amino acid residues that are critical for in vivo catalytic activity of CtpA, the carboxyl-terminal processing protease for the D1 protein of photosystem II. J Biol Chem 2001; 276:30099-105. [PMID: 11408480 DOI: 10.1074/jbc.m102600200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CtpA, a carboxyl-terminal processing protease, is a member of a novel family of endoproteases that includes a tail-specific protease from Escherichia coli. In oxygenic photosynthetic organisms, CtpA catalyzes C-terminal processing of the D1 protein of photosystem II, an essential event for the assembly of a manganese cluster and consequent light-mediated water oxidation. We introduced site-specific mutations at 14 conserved residues of CtpA in the cyanobacterium Synechocystis sp. PCC 6803 to examine their functional roles. Analysis of the photoautotrophic growth capabilities of these mutants, their ability to process precursor D1 protein and hence evolve oxygen, along with an estimation of the protease content in the mutants revealed that five of these residues are critical for in vivo activity of CtpA. Recent x-ray crystal structure analysis of CtpA from the eukaryotic alga Scenedesmus obliquus (Liao, D.-I., Qian, J., Chisholm, D. A., Jordan, D. B. and Diner, B. A. (2000) Nat. Struct. Biol. 7, 749-753) has shown that the residues equivalent to Ser-313 and Lys-338, two of the five residues mentioned above, form the catalytic center of this enzyme. Our in vivo analysis demonstrates that the three other residues, Asp-253, Arg-255, and Glu-316, are also important determinants of the catalytic activity of CtpA.
Collapse
Affiliation(s)
- N Inagaki
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA
| | | | | | | |
Collapse
|
21
|
Yamamoto Y, Inagaki N, Satoh K. Overexpression and characterization of carboxyl-terminal processing protease for precursor D1 protein: regulation of enzyme-substrate interaction by molecular environments. J Biol Chem 2001; 276:7518-25. [PMID: 11099501 DOI: 10.1074/jbc.m008877200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CtpA, which is classified as a novel type of serine protease with a Ser/Lys catalytic dyad, is responsible for the C-terminal processing of precursor D1 protein (pD1) of the photosystem II reaction center, a process that is indispensable for the integration of water-splitting machinery in photosynthesis. In this study, overexpression in Escherichia coli and one-step purification of spinach CtpA were carried out to analyze the characteristics of this new type of protease and to elucidate the molecular interactions in the C-terminal processing of pD1 on the thylakoid membrane. The successful accumulation of functional CtpA in E. coli may argue against the possibility, based on homology to E. coli Tsp, that the enzyme is involved in the degradation of incomplete proteins in chloroplasts, e.g. by utilizing the ssrA-tagging system. Analysis using a synthetic pD1 oligopeptide demonstrated that the enzymatic properties (including substrate recognition) of overexpressed CtpA with an extra sequence of GSHMLE at the N terminus were indistinguishable from those of the native enzyme. CtpA was insensitive to penem, which has been shown to inhibit some Ser/Lys-type proteases, suggesting that the catalytic center of CtpA is quite unique. By using the substrate in different molecular environments (i.e. synthetic pD1 oligopeptide in solution and pD1 in photosystem II-enriched thylakoid membrane), we observed a dramatic difference in the pH profile and affinity for the substrate, suggesting the presence of a specific interaction of CtpA with a factor(s) that modulates the pH dependence of proteolytic action in response to physiological conditions.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|
22
|
Diner BA. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:147-63. [PMID: 11115631 DOI: 10.1016/s0005-2728(00)00220-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The combination of site-directed mutagenesis, isotopic labeling, new magnetic resonance techniques and optical spectroscopic methods have provided new insights into cofactor coordination and into the mechanism of electron transport and proton-coupled electron transport in photosystem II. Site-directed mutations in the D1 polypeptide of this photosystem have implicated a number of histidine and carboxylate residues in the coordination and assembly of the manganese cluster, responsible for photosynthetic water oxidation. Many of these are located in the carboxy-terminal region of this polypeptide close to the processing site involved in its maturation. This maturation is a required precondition for cluster assembly. Recent proposals for the mechanism of water oxidation have directly implicated redox-active tyrosine Y(Z) in this mechanism and have emphasized the importance of the coupling of proton and electron transfer in the reduction of Y(Z)(radical) by the Mn cluster. The interaction of both homologous redox-active tyrosines Y(Z) and Y(D) with their respective homologous proton acceptors is discussed in an effort to better understand the significance of such coupling.
Collapse
Affiliation(s)
- B A Diner
- CR&D, Experimental Station, E.I. du Pont de Nemours and Co., Wilmington DE 19880-0173, USA.
| |
Collapse
|
23
|
|
24
|
Ivleva NB, Shestakov SV, Pakrasi HB. The carboxyl-terminal extension of the precursor D1 protein of photosystem II is required for optimal photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2000; 124:1403-12. [PMID: 11080315 PMCID: PMC59237 DOI: 10.1104/pp.124.3.1403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2000] [Accepted: 07/31/2000] [Indexed: 05/20/2023]
Abstract
The D1 protein is an integral component of the photosystem II reaction center complex. In the cyanobacterium Synechocystis sp. PCC 6803, D1 is synthesized with a short 16-amino acids-long carboxyl-terminal extension. Removal of this extension is necessary to form active oxygen-evolving photosystem II centers. Our earlier studies have shown that this extension is cleaved by CtpA, a specific carboxyl-terminal processing protease. The amino acid sequence of the carboxyl-terminal extension is conserved among D1 proteins from different organisms, although at a level lower than that of the mature protein. In the present study we have analyzed a mutant strain of Synechocystis sp. PCC 6803 with a duplicated extension, and a second mutant that lacks the extension, to investigate the effects of these alterations on the function of the D1 protein in vivo. No significant difference in the growth rates, photosynthetic pigment composition, fluorescence induction, and oxygen evolution rates was observed between the mutants and the control strain. However, using long-term mixed culture growth analysis, we detected significant decreases in the fitness of these mutant strains. The presented data demonstrate that the carboxyl-terminal extension of the precursor D1 protein is required for optimal photosynthetic performance.
Collapse
Affiliation(s)
- N B Ivleva
- Department of Biology, Box 1137, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
25
|
Abstract
A wide range of proteolytic processes in the chloroplast are well recognized. These include processing of precursor proteins, removal of oxidatively damaged proteins, degradation of proteins missing their prosthetic groups or their partner subunit in a protein complex, and adjustment of the quantity of certain chloroplast proteins in response to changing environmental conditions. To date, several chloroplast proteases have been identified and cloned. The chloroplast processing enzyme is responsible for removing the transit peptides of newly imported proteins. The thylakoid processing peptidase removes the thylakoid-transfer domain from proteins translocated into the thylakoid lumen. Within the lumen, Tsp removes the carboxy-terminal tail of the precursor of the PSII D1 protein. In contrast to these processing peptidases which perform a single endo-proteolytic cut, processive proteases that can completely degrade substrate proteins also exist in chloroplasts. The serine ATP-dependent Clp protease, composed of the proteolytic subunit ClpP and the regulatory subunit ClpC, is located in the stroma, and is involved in the degradation of abnormal soluble and membrane-bound proteins. The ATP-dependent metalloprotease FtsH is bound to the thylakoid membrane, facing the stroma. It degrades unassembled proteins and is involved in the degradation of the D1 protein of PSII following photoinhibition. DegP is a serine protease bound to the lumenal side of the thylakoid membrane that might be involved in the chloroplast response to heat. All these peptidases and proteases are homologues of known bacterial enzymes. Since ATP-dependent bacterial proteases and their mitochondrial homologues are also involved in the regulation of gene expression, via their determining the levels of key regulatory proteins, chloroplast proteases are expected to play a similar role.
Collapse
Affiliation(s)
- Z Adam
- Department of Agricultural Botany, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
26
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Yamamoto Y, Satoh K. Competitive inhibition analysis of the enzyme-substrate interaction in the carboxy-terminal processing of the precursor D1 protein of photosystem II reaction center using substituted oligopeptides. FEBS Lett 1998; 430:261-5. [PMID: 9688551 DOI: 10.1016/s0014-5793(98)00671-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A clear parallelism was demonstrated between the efficiency as substrate of the substituted oligopeptides corresponding to the carboxy-terminal (C-terminal) sequence of the precursor D1 protein (pD1) in the in vitro enzymatic assay and their competitive inhibitory capacity toward the proteolytic C-terminal processing of the full-length pD1 integrated in the intact photosystem II complex embedded in the thylakoid membrane of Scenedesmus obliquus LF-1 mutant, as shown e.g. by the influence of L343A, A345G and A345V substitutions and the effect of C-terminal fragments. This suggests that the basic mechanism for substrate recognition by the processing protease elucidated in the enzymatic analysis using synthetic oligopeptides is also effective in vivo, although it can sometimes be difficult to detect the consequence of amino acid substitution in the integrated systems.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biology, Okayama University, Japan
| | | |
Collapse
|
28
|
Itzhaki H, Naveh L, Lindahl M, Cook M, Adam Z. Identification and characterization of DegP, a serine protease associated with the luminal side of the thylakoid membrane. J Biol Chem 1998; 273:7094-8. [PMID: 9507020 DOI: 10.1074/jbc.273.12.7094] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteases involved in proteolytic degradation in the thylakoid lumen are largely unknown. Western analysis with an antibody against the Escherichia coli periplasmic serine protease DegP suggested that pea chloroplasts contain a homologue of this protease. This homologue was peripherally bound to the luminal side of the thylakoid membrane and could only be removed by a combination of high salt and non-ionic detergent. Its level increased almost 2-fold in pea seedlings exposed to elevated temperature for 4 h, suggesting this protease's role in the chloroplast's heat response. Isolated thylakoid membranes containing the chloroplastic homologue of DegP degraded beta-casein, an in vitro substrate of the bacterial protease. This activity was partially inhibited by a serine protease inhibitor, suggesting that at least part of the casein-degrading activity in the thylakoid membrane is attributable to DegP. The existence of chloroplastic DegP was further supported by isolating a full-length Arabidopsis cDNA (designated AtDegP) encoding a protein that is 37% identical and 60% similar to the E. coli protease. The amino terminus of the deduced amino acid sequence contained a bipartite transit peptide, typical of proteins targeted to the thylakoid lumen, and the mature portion of the protein contained the highly conserved serine protease catalytic triad His-Asp-Ser. The possible physiological roles of chloroplastic DegP protease are discussed.
Collapse
Affiliation(s)
- H Itzhaki
- Department of Agricultural Botany, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
29
|
Fanning AS, Anderson JM. PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immunol 1997; 228:209-33. [PMID: 9401208 DOI: 10.1007/978-3-642-80481-6_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A S Fanning
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
30
|
Karnauchov I, Herrmann RG, Pakrasi HB, Klösgen RB. Transport of CtpA protein from the cyanobacterium Synechocystis 6803 across the thylakoid membrane in chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:497-504. [PMID: 9370359 DOI: 10.1111/j.1432-1033.1997.t01-1-00497.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The CtpA protein in the cyanobacterium Synechocystis 6803 is a C-terminal processing protease that is essential for the assembly of the manganese cluster of the photosystem II complex. When fused to different chloroplast-targeting transit peptides, CtpA can be imported into isolated spinach chloroplasts and is subsequently translocated into the thylakoid lumen. Thylakoid transport is mediated by the cyanobacterial signal peptide which demonstrates that the protein transport machinery in thylakoid membranes is functionally conserved between chloroplasts and cyanobacteria. Transport of CtpA across spinach thylakoid membranes is affected by both nigericin and sodium azide indicating that the SecA protein and a transthylakoidal proton gradient are involved in this process. Saturation of the Sec-dependent thylakoid transport route by high concentrations of the precursor of the 33-kDa subunit of the oxygen-evolving system leads to a strongly reduced rate of thylakoid translocation of CtpA which demonstrates transport by the Sec pathway. However, thylakoid transport of CtpA is affected also by excess amounts of the 23-kDa subunit of the oxygen-evolving system, though to a lesser extent. This suggests that the cyanobacterial protein is capable of also interacing with components of the deltapH-dependent route and that transport of a protein across the thylakoid membrane may not always be restricted to a single pathway.
Collapse
Affiliation(s)
- I Karnauchov
- Botanisches Institut der Ludwig-Maximilians-Universität, München, Germany
| | | | | | | |
Collapse
|
31
|
Trost JT, Chisholm DA, Jordan DB, Diner BA. The D1 C-terminal processing protease of photosystem II from Scenedesmus obliquus. Protein purification and gene characterization in wild type and processing mutants. J Biol Chem 1997; 272:20348-56. [PMID: 9252339 DOI: 10.1074/jbc.272.33.20348] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polypeptide D1 of the photosystem II reaction center of oxygenic photosynthesis is expressed in precursor form (pre-D1), and it must be proteolytically processed at its C terminus to enable assembly of the manganese cluster responsible for photosynthetic water oxidation. A rapid and highly sensitive enzyme-linked immunosorbent assay-based microtiter plate method is described for assaying this D1 C-terminal processing protease. A protocol is described for the isolation and purification to homogeneity of the enzyme from the green alga, Scenedesmus obliquus. Amino acid sequence information on the purified protease was used to clone the corresponding gene, the translated sequence of which is presented. A comparison of the gene product with homologous proteases points to a region of conserved residues that likely corresponds to the active site of a new class of serine protease. The LF-1 mutant strain of Scenedesmus (isolated by Dr. Norman Bishop) is incapable of processing pre-D1. We show here that the C-terminal processing protease gene in this strain contains a single base deletion that causes a frame shift and a premature stop of translation within the likely active site of the enzyme. A suppressor strain, LF-1-RVT-1, which is photoautotrophic and capable of processing pre-D1 has a nearby single base insertion that restores the expression of active enzyme. These observations provide the first definitive proof that the enzyme isolated is responsible for in vivo proteolytic processing of pre-D1 and that no other protease can compensate for its loss.
Collapse
Affiliation(s)
- J T Trost
- Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0173, USA
| | | | | | | |
Collapse
|
32
|
van Wijk KJ, Roobol-Boza M, Kettunen R, Andersson B, Aro EM. Synthesis and assembly of the D1 protein into photosystem II: processing of the C-terminus and identification of the initial assembly partners and complexes during photosystem II repair. Biochemistry 1997; 36:6178-86. [PMID: 9166790 DOI: 10.1021/bi962921l] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous studies [van Wijk, K. J., Bingsmark, S., Aro, E.-M., & Andersson, B. (1995) J. Biol. Chem. 270, 25685-25695; van Wijk, K. J., Andersson, B., & Aro, E.-M. (1996) J. Biol. Chem 271, 9627-9636], we have demonstrated that D1 protein synthesized in isolated chloroplasts and thylakoids is incorporated into the photosystem II (PSII) core complex. By pulse-chase experiments in these in vitro systems, followed by sucrose gradient fractionation of solubilized thylakoid membranes, it was shown that this assembly proceeded stepwise; first the D1 protein was incorporated to form a PSII reaction center complex (PSII rc), and through additional assembly steps the PSII core complex was formed. In this study, we have analyzed this assembly process in more detail, with special emphasis on the initial events, through further purification and analysis of the assembly intermediates by nondenaturing Deriphat-PAGE and by flatbed isoelectric focusing. The D2 protein was found to be the dominant PSII reaction center protein initially associating with the new D1 protein. This strongly suggests that the D2 protein is the primary "receptor" or stabilizing component during or directly after synthesis of the D1 protein. After formation of the D1-D2 heterodimer, cyt b559 became attached, whereas the psbI gene product was assembled as a subsequent step, thereby forming a PSII reaction center complex. Subsequent formation of the PSII core occurred by binding of CP47 and then CP43 to the PSII rc. The rapid radiolabeling of a minor population of a PSII core subcomplex without CP43 indicated that an association of newly synthesized D1 protein with a preexisting complex consisting of D2/cyt b55q/psbI gene product/CP47 was possibly occurring, in parallel to the predominant sequential assembly pathway. The kinetics of synthesis and processing of the precursor D1 protein were followed in isolated chloroplasts and were compared with its incorporation into PSII assembly intermediates. No precursor D1 protein was found in PSII core complexes, indicating either that incorporation into the PSII core complex facilitates the cleavage of the C-terminus or, more likely, that processing is more rapid than the assembly into the PSII core.
Collapse
Affiliation(s)
- K J van Wijk
- Department of Biochemistry, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
33
|
Adam Z. Protein stability and degradation in chloroplasts. PLANT MOLECULAR BIOLOGY 1996; 32:773-783. [PMID: 8980530 DOI: 10.1007/bf00020476] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Z Adam
- Department of Agricultural Botany, Faculty of Agriculture, Hebrew University, Rehovot, Israel
| |
Collapse
|