1
|
Jia X, Chen W, Liu T, Chen Z. Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae. Int J Mol Sci 2024; 25:8584. [PMID: 39201271 PMCID: PMC11354929 DOI: 10.3390/ijms25168584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Sargassum hemiphyllum var. chinense, a prevalent seaweed along the Chinese coast, has economic and ecological significance. However, systematic positions within Sargassum and among the three orders of Phaeophyceae, Fucales, Ectocarpales, and Laminariales are in debate. Here, we reported the organellar genomes of S. hemiphyllum var. chinense (34,686-bp mitogenome with 65 genes and 124,323 bp plastome with 173 genes) and the investigation of comparative genomics and systematics of 37 mitogenomes and 22 plastomes of Fucales (including S. hemiphyllum var. chinense), Ectocarpales, and Laminariales in Phaeophyceae. Whole genome collinearity analysis showed gene number, type, and arrangement were consistent in organellar genomes of Sargassum with 360 SNP loci identified as S. hemiphyllum var. chinense and two genes (rps7 and cox2) identified as intrageneric classifications of Sargassum. Comparative genomics of the three orders of Phaeophyceae exhibited the same content and different types (petL was only found in plastomes of the order Fucales and Ectocarpales) and arrangements (most plastomes were rearranged, but trnA and trnD in the mitogenome represented different orders) in genes. We quantified the frequency of RNA-editing (canonical C-to-U) in both organellar genomes; the proportion of edited sites corresponded to 0.02% of the plastome and 0.23% of the mitogenome (in reference to the total genome) of S. hemiphyllum var. chinense. The repetition ratio of Fucales was relatively low, with scattered and tandem repeats (nine tandem repeats of 14-24 bp) dominating, while most protein-coding genes underwent negative selection (Ka/Ks < 1). Collectively, these findings provide valuable insights to guide future species identification and evolutionary status of three important Phaeophyceae order species.
Collapse
Affiliation(s)
- Xuli Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Weizhou Chen
- Marine Biology Institute, Shantou University, Shantou 515063, China; (W.C.); (Z.C.)
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Zepan Chen
- Marine Biology Institute, Shantou University, Shantou 515063, China; (W.C.); (Z.C.)
| |
Collapse
|
2
|
Glass SE, McCourt RM, Gottschalk SD, Lewis LA, Karol KG. Chloroplast genome evolution and phylogeny of the early-diverging charophycean green algae with a focus on the Klebsormidiophyceae and Streptofilum. JOURNAL OF PHYCOLOGY 2023; 59:1133-1146. [PMID: 37548118 DOI: 10.1111/jpy.13359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution.
Collapse
Affiliation(s)
- Sarah E Glass
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, New York, New York, USA
| | - Richard M McCourt
- Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, USA
| | - Stephen D Gottschalk
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Kenneth G Karol
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
| |
Collapse
|
3
|
Raman G, Park KT, Kim JH, Park S. Characteristics of the completed chloroplast genome sequence of Xanthium spinosum: comparative analyses, identification of mutational hotspots and phylogenetic implications. BMC Genomics 2020; 21:855. [PMID: 33267775 PMCID: PMC7709266 DOI: 10.1186/s12864-020-07219-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The invasive species Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, no extensive molecular studies of this plant have been conducted. RESULTS Here, the complete chloroplast (cp) genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 base pairs (bp) in length, with a quadripartite circular structure. The cp genome contained 115 unique genes, including 80 PCGs, 31 tRNA genes, and 4 rRNA genes. Comparative analyses revealed that X. spinosum contains a large number of repeats (999 repeats) and 701 SSRs in its cp genome. Fourteen divergences (Π > 0.03) were found in the intergenic spacer regions. Phylogenetic analyses revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and an early-diverging lineage of subtribe Ambrosiinae, although this finding was supported with a very weak bootstrap value. CONCLUSION The identified hotspot regions could be used as molecular markers for resolving phylogenetic relationships and species identification in the genus Xanthium.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea, 38541
| | - Kyu Tae Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea, 38541
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea, 38541.
| |
Collapse
|
4
|
Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One 2019; 14:e0226865. [PMID: 31860647 PMCID: PMC6924677 DOI: 10.1371/journal.pone.0226865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.
Collapse
Affiliation(s)
- Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | | | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| |
Collapse
|
5
|
McManus HA, Fučíková K, Lewis PO, Lewis LA, Karol KG. Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:315-329. [PMID: 29722901 DOI: 10.1002/ajb2.1066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/19/2017] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Phylogenomic analyses across the green algae are resolving relationships at the class, order, and family levels and highlighting dynamic patterns of evolution in organellar genomes. Here we present a within-family phylogenomic study to resolve genera and species relationships in the family Hydrodictyaceae (Chlorophyceae), for which poor resolution in previous phylogenetic studies, along with divergent morphological traits, have precluded taxonomic revisions. METHODS Complete plastome sequences and mitochondrial protein-coding gene sequences were acquired from representatives of the Hydrodictyaceae using next-generation sequencing methods. Plastomes were characterized, and gene order and content were compared with plastomes spanning the Sphaeropleales. Single-gene and concatenated-gene phylogenetic analyses of plastid and mitochondrial genes were performed. KEY RESULTS The Hydrodictyaceae contain the largest sphaeroplealean plastomes thus far fully sequenced. Conservation of plastome gene order within Hydrodictyaceae is striking compared with more dynamic patterns revealed across Sphaeropleales. Phylogenetic analyses resolve Hydrodictyon sister to a monophyletic Pediastrum, though the morphologically distinct P. angulosum and P. duplex continue to be polyphyletic. Analyses of plastid data supported the neochloridacean genus Chlorotetraëdron as sister to Hydrodictyaceae, while conflicting signal was found in the mitochondrial data. CONCLUSIONS A phylogenomic approach resolved within-family relationships not obtainable with previous phylogenetic analyses. Denser taxon sampling across Sphaeropleales is necessary to capture patterns in plastome evolution, and further taxa and studies are needed to fully resolve the sister lineage to Hydrodictyaceae and polyphyly of Pediastrum angulosum and P. duplex.
Collapse
Affiliation(s)
- Hilary A McManus
- Department of Biological and Environmental Sciences, Le Moyne College, 1419 Salt Springs Road, Syracuse, New York, 13066, USA
| | - Karolina Fučíková
- Department of Natural Sciences, Assumption College, 500 Salisbury Street, Worcester, Massachusetts, 01609, USA
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Kenneth G Karol
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA
| |
Collapse
|
6
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Brouard JS, Otis C, Lemieux C, Turmel M. The chloroplast genome of the green alga Schizomeris leibleinii (Chlorophyceae) provides evidence for bidirectional DNA replication from a single origin in the chaetophorales. Genome Biol Evol 2011; 3:505-15. [PMID: 21546564 PMCID: PMC3138424 DOI: 10.1093/gbe/evr037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the Chlorophyceae, the chloroplast genome is extraordinarily fluid in architecture and displays unique features relative to other groups of green algae. For the Chaetophorales, 1 of the 5 major lineages of the Chlorophyceae, it has been shown that the distinctive architecture of the 223,902-bp genome of Stigeoclonium helveticum is consistent with bidirectional DNA replication from a single origin. Here, we report the 182,759-bp chloroplast genome sequence of Schizomeris leibleinii, a member of the earliest diverging lineage of the Chaetophorales. Like its Stigeoclonium homolog, the Schizomeris genome lacks a large inverted repeat encoding the rRNA operon and displays a striking bias in coding regions that is associated with a bias in base composition along each strand. Our results support the notion that these two chaetophoralean genomes replicate bidirectionally from a putative origin located in the vicinity of the small subunit ribosomal RNA gene. Their shared structural characteristics were most probably inherited from the common ancestor of all chaetophoralean algae. Short dispersed repeats account for most of the 41-kb size variation between the Schizomeris and Stigeoclonium genomes, and there is no indication that homologous recombination between these repeated elements led to the observed gene rearrangements. A comparison of the extent of variation sustained by the Stigeoclonium and Schizomeris chloroplast DNAs (cpDNAs) with that observed for the cpDNAs of the chlamydomonadalean Chlamydomonas and Volvox suggests that gene rearrangements as well as changes in the abundance of intergenic and intron sequences occurred at a slower pace in the Chaetophorales than in the Chlamydomonadales.
Collapse
Affiliation(s)
- Jean-Simon Brouard
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Ville de Québec, Québec, Canada
| | | | | | | |
Collapse
|
8
|
Brouard JS, Otis C, Lemieux C, Turmel M. The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2010; 2:240-56. [PMID: 20624729 PMCID: PMC2997540 DOI: 10.1093/gbe/evq014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Chlorophyceae, an advanced class of chlorophyte green algae, comprises five lineages that form two major clades (Chlamydomonadales + Sphaeropleales and Oedogoniales + Chaetopeltidales + Chaetophorales). The four complete chloroplast DNA (cpDNA) sequences currently available for chlorophyceans uncovered an extraordinarily fluid genome architecture as well as many structural features distinguishing this group from other green algae. We report here the 521,168-bp cpDNA sequence from a member of the Chaetopeltidales (Floydiella terrestris), the sole chlorophycean lineage not previously sampled for chloroplast genome analysis. This genome, which contains 97 conserved genes and 26 introns (19 group I and 7 group II introns), is the largest chloroplast genome ever sequenced. Intergenic regions account for 77.8% of the genome size and are populated by short repeats. Numerous genomic features are shared with the cpDNA of the chaetophoralean Stigeoclonium helveticum, notably the absence of a large inverted repeat and the presence of unique gene clusters and trans-spliced group II introns. Although only one of the Floydiella group I introns encodes a homing endonuclease gene, our finding of five free-standing reading frames having similarity with such genes suggests that chloroplast group I introns endowed with mobility were once more abundant in the Floydiella lineage. Parsimony analysis of structural genomic features and phylogenetic analysis of chloroplast sequence data unambiguously resolved the Oedogoniales as sister to the Chaetopeltidales and Chaetophorales. An evolutionary scenario of the molecular events that shaped the chloroplast genome in the Chlorophyceae is presented.
Collapse
Affiliation(s)
- Jean-Simon Brouard
- Département de biochimie et de microbiologie, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
9
|
Smith DR, Hua J, Lee RW. Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Genet 2010; 56:427-38. [PMID: 20574726 DOI: 10.1007/s00294-010-0311-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
Abstract
Although DNA sequences of linear mitochondrial genomes are available for a wide variety of species, sequence and conformational data from the extreme ends of these molecules (i.e., the telomeres) are limited. Data on the telomeres is important because it can provide insights into how linear genomes overcome the end-replication problem. This study explores the evolution of linear mitochondrial DNAs (mtDNAs) in the green-algal genus Polytomella (Chlorophyceae, Chlorophyta), the members of which are non-photosynthetic. Earlier works analyzed the linear and linear-fragmented mitochondrial genomes of Polytomella capuana and Polytomella parva. Here we present the mtDNA sequence for Polytomella strain SAG 63-10 [also known as Polytomella piriformis (Pringsheim 1963)], which is the only known representative of a mostly unexplored Polytomella lineage. We show that the P. piriformis mtDNA is made up of two linear fragments of 13 and 3 kb. The telomeric sequences of the large and small fragments are terminally inverted, and appear to end in vitro with either closed (hairpin-loop) or open (nicked-loop) structures as also shown here for P. parva and shown earlier for P. capuana. The structure of the P. piriformis mtDNA is more similar to that of P. parva, which is also fragmented, than to that of P. capuana, which is contained in a single chromosome. Phylogenetic analyses reveal high substitution rates in the mtDNA of all three Polytomella species relative to other chlamydomonadalean algae. These elevated rates could be the result of a greater number of vegetative cell divisions and/or small population sizes in Polytomella species as compared with other chlamydomonadalean algae.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| | | | | |
Collapse
|
10
|
Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JEW. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC PLANT BIOLOGY 2010; 10:83. [PMID: 20459666 PMCID: PMC3017802 DOI: 10.1186/1471-2229-10-83] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/07/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of beta-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. RESULTS The D. salina organelle genomes are large, circular-mapping molecules with approximately 60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: approximately 1.5 and approximately 0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. CONCLUSIONS These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable plastid transformation system for this model alga, and they will complement the forthcoming D. salina nuclear genome sequence, placing D. salina in a group of a select few photosynthetic eukaryotes for which complete genome sequences from all three genetic compartments are available.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - Robert W Lee
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS200, 311B Fleischmann Agriculture, University of Nevada, Reno, NV 89557-0014, USA
| | - Jon K Magnuson
- Chemical and Biological Process Development, Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Duc Tran
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Ave, 200 NE, Brooklyn, NY 11210, USA
| | - Jürgen EW Polle
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Ave, 200 NE, Brooklyn, NY 11210, USA
| |
Collapse
|
11
|
Brouard JS, Otis C, Lemieux C, Turmel M. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer. BMC Genomics 2008; 9:290. [PMID: 18558012 PMCID: PMC2442088 DOI: 10.1186/1471-2164-9-290] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/16/2008] [Indexed: 11/11/2022] Open
Abstract
Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA) from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales), Scenedesmus (Sphaeropleales), and Stigeoclonium (Chaetophorales) revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade) and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade). Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales). Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns), and displays 99 different conserved genes and four long open reading frames (ORFs), three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB) revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members of the CS clade include the retention of psaM, rpl32 and trnL(caa), the loss of petA, the disruption of three ancestral clusters and the presence of five derived gene clusters. Conclusion The Oedogonium chloroplast genome disclosed additional characters that bolster the evidence for a close alliance between the Oedogoniales and Chaetophorales. Our unprecedented finding of int and dpoB in this cpDNA provides a clear example that novel genes were acquired by the chloroplast genome through horizontal transfers, possibly from a mitochondrial genome donor.
Collapse
Affiliation(s)
- Jean-Simon Brouard
- Département de biochimie et de microbiologie, Université Laval, Québec, QC G1V 0A6, Canada .
| | | | | | | |
Collapse
|
12
|
de Cambiaire JC, Otis C, Lemieux C, Turmel M. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 2006; 6:37. [PMID: 16638149 PMCID: PMC1513399 DOI: 10.1186/1471-2148-6-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/25/2006] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. RESULTS The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ considerably in gene content. CONCLUSION Our results underscore the remarkable plasticity of the chlorophycean chloroplast genome. Owing to this plasticity, only a sketchy portrait could be drawn for the chloroplast genome of the last common ancestor of Scenedesmus and Chlamydomonas.
Collapse
Affiliation(s)
| | - Christian Otis
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| |
Collapse
|
13
|
Cui L, Leebens-Mack J, Wang LS, Tang J, Rymarquis L, Stern DB, dePamphilis CW. Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evol Biol 2006; 6:13. [PMID: 16469102 PMCID: PMC1421436 DOI: 10.1186/1471-2148-6-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 02/09/2006] [Indexed: 11/29/2022] Open
Abstract
Background Genome rearrangements influence gene order and configuration of gene clusters in all genomes. Most land plant chloroplast DNAs (cpDNAs) share a highly conserved gene content and with notable exceptions, a largely co-linear gene order. Conserved gene orders may reflect a slow intrinsic rate of neutral chromosomal rearrangements, or selective constraint. It is unknown to what extent observed changes in gene order are random or adaptive. We investigate the influence of natural selection on gene order in association with increased rate of chromosomal rearrangement. We use a novel parametric bootstrap approach to test if directional selection is responsible for the clustering of functionally related genes observed in the highly rearranged chloroplast genome of the unicellular green alga Chlamydomonas reinhardtii, relative to ancestral chloroplast genomes. Results Ancestral gene orders were inferred and then subjected to simulated rearrangement events under the random breakage model with varying ratios of inversions and transpositions. We found that adjacent chloroplast genes in C. reinhardtii were located on the same strand much more frequently than in simulated genomes that were generated under a random rearrangement processes (increased sidedness; p < 0.0001). In addition, functionally related genes were found to be more clustered than those evolved under random rearrangements (p < 0.0001). We report evidence of co-transcription of neighboring genes, which may be responsible for the observed gene clusters in C. reinhardtii cpDNA. Conclusion Simulations and experimental evidence suggest that both selective maintenance and directional selection for gene clusters are determinants of chloroplast gene order.
Collapse
Affiliation(s)
- Liying Cui
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jim Leebens-Mack
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li-San Wang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Linda Rymarquis
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - David B Stern
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Claude W dePamphilis
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Pombert JF, Lemieux C, Turmel M. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol 2006; 4:3. [PMID: 16472375 PMCID: PMC1402334 DOI: 10.1186/1741-7007-4-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/03/2006] [Indexed: 11/10/2022] Open
Abstract
Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA) sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae), in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR) featuring an inverted rRNA operon and a small single-copy (SSC) region containing 14 genes normally found in the large single-copy (LSC) region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of Oltmannsiellopsis cpDNA more closely resembles that of Chlorella (Trebouxiophyceae) cpDNA. Conclusion The chloroplast genome of the last common ancestor of Oltmannsiellopsis and Pseudendoclonium contained a minimum of 108 genes, carried only a few group I introns, and featured a distinctive quadripartite architecture. Numerous changes were experienced by the chloroplast genome in the lineages leading to Oltmannsiellopsis and Pseudendoclonium. Our comparative analyses of chlorophyte cpDNAs support the notion that the Ulvophyceae is sister to the Chlorophyceae.
Collapse
Affiliation(s)
| | - Claude Lemieux
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de biochimie et de microbiologie, Université Laval, Québec, Canada
| |
Collapse
|
15
|
Pombert JF, Otis C, Lemieux C, Turmel M. The Chloroplast Genome Sequence of the Green Alga Pseudendoclonium akinetum (Ulvophyceae) Reveals Unusual Structural Features and New Insights into the Branching Order of Chlorophyte Lineages. Mol Biol Evol 2005; 22:1903-18. [PMID: 15930151 DOI: 10.1093/molbev/msi182] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One major lineage of green plants, the Chlorophyta, is represented by the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The Prasinophyceae occupies the most basal position in the Chlorophyta, but the branching order of the Ulvophyceae, Trebouxiophyceae, and Chlorophyceae remains unresolved. The chloroplast genome sequences currently available for representatives of three chlorophyte classes have revealed that this genome is highly plastic, with Chlamydomonas (Chlorophyceae) and Chlorella (Trebouxiophyceae) showing fewer ancestral features than Nephroselmis (Prasinophyceae). We report the 195,867-bp chloroplast DNA (cpDNA) sequence of Pseudendoclonium akinetum (Ulvophyceae), a member of the class that has not been previously examined for detailed cpDNA analysis. This genome shares common evolutionary trends with its Chlorella and Chlamydomonas homologs. The gene content, number of ancestral gene clusters, and abundance of short dispersed repeats in Pseudendoclonium cpDNA are intermediate between those observed for Chlorella and Chlamydomonas cpDNAs. Although Pseudendoclonium cpDNA features a large inverted repeat, its quadripartite structure is unusual in displaying an rRNA operon transcribed toward the large single-copy (LSC) region and a small single-copy region containing 14 genes that are normally found in the LSC region. Twenty-seven group I introns lie in nine genes and fall within four subgroups (IA1, IA2, IA3, and IB); 19 encode putative homing endonucleases, and 7 have homologs at identical insertion sites in other chlorophyte or streptophyte organelle genomes. The high similarity observed among the 14 IA1 and 7 IA2 introns and their encoded endonucleases suggests that many introns arose from intragenomic proliferation of a few founding introns in the lineage leading to Pseudendoclonium. Interestingly, one intron (in atpA) and some of the dispersed repeats also reside in Pseudendoclonium mitochondria, providing strong evidence for interorganellar lateral transfer of these genetic elements. Phylogenetic analyses of 58 cpDNA-encoded proteins and genes support the hypothesis that the Ulvophyceae is sister to the Trebouxiophyceae but cannot eliminate the hypothesis that the Ulvophyceae is sister to the Chlorophyceae. We favor the latter hypothesis because it is strongly supported by phylogenetic analyses of gene order data and by independent structural evidence based on shared gene losses and rearrangement break points within ancestrally conserved gene clusters.
Collapse
Affiliation(s)
- Jean-François Pombert
- Département de biochimie et de microbiologie, Université Laval, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
16
|
Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB. The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. THE PLANT CELL 2002; 14:2659-79. [PMID: 12417694 PMCID: PMC153795 DOI: 10.1105/tpc.006155] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 09/10/2002] [Indexed: 05/17/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular eukaryotic alga possessing a single chloroplast that is widely used as a model system for the study of photosynthetic processes. This report analyzes the surprising structural and evolutionary features of the completely sequenced 203,395-bp plastid chromosome. The genome is divided by 21.2-kb inverted repeats into two single-copy regions of approximately 80 kb and contains only 99 genes, including a full complement of tRNAs and atypical genes encoding the RNA polymerase. A remarkable feature is that >20% of the genome is repetitive DNA: the majority of intergenic regions consist of numerous classes of short dispersed repeats (SDRs), which may have structural or evolutionary significance. Among other sequenced chlorophyte plastid genomes, only that of the green alga Chlorella vulgaris appears to share this feature. The program MultiPipMaker was used to compare the genic complement of Chlamydomonas with those of other chloroplast genomes and to scan the genomes for sequence similarities and repetitive DNAs. Among the results was evidence that the SDRs were not derived from extant coding sequences, although some SDRs may have arisen from other genomic fragments. Phylogenetic reconstruction of changes in plastid genome content revealed that an accelerated rate of gene loss also characterized the Chlamydomonas/Chlorella lineage, a phenomenon that might be independent of the proliferation of SDRs. Together, our results reveal a dynamic and unusual plastid genome whose existence in a model organism will allow its features to be tested functionally.
Collapse
Affiliation(s)
- Jude E Maul
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Leu S. Extraordinary features in the Chlamydomonas reinhardtii chloroplast genome: (1). rps2 as part of a large open reading frame; (2). A C. reinhardtii specific repeat sequence. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:541-4. [PMID: 9711304 DOI: 10.1016/s0005-2728(98)00107-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have determined the DNA sequence of the 3574-bp chloroplast DNA fragment of Chlamydomonas reinhardtii formed by the overlap of BamHI fragment 3 and EcoRI fragment 5. This sequence encodes most of rps18 and orf570, an unidentified open reading frame that contains a 150 amino acid domain with high homology to the N-terminal part of 30 S ribosomal protein S2 of other chloroplast, cyanobacterial and bacterial genomes. Between these two sequences lies a highly repetitive sequence element of 500 bp, that is composed of multiple direct and inverted repeat sequences that occur in rearranged, but highly conserved form in at least 36 locations in the C. reinhardtii chloroplast genome. Among the conserved repeat sequences in the C. reinhardtii chloroplast genome we identified the borders of the inverted repeats near atpB and rps4. This might indicate that the conserved sequence elements are remainders of gene rearrangements in the chloroplast genome that occurred by relocations of the inverted repeats.
Collapse
Affiliation(s)
- S Leu
- Doris and Bertie Black Center for Bioenergetics, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
19
|
Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 1997; 16:6095-104. [PMID: 9321389 PMCID: PMC1326293 DOI: 10.1093/emboj/16.20.6095] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52% and 64-78% sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C. reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.
Collapse
Affiliation(s)
- E Boudreau
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneve 4, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Goulding SE, Olmstead RG, Morden CW, Wolfe KH. Ebb and flow of the chloroplast inverted repeat. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:195-206. [PMID: 8804393 DOI: 10.1007/bf02173220] [Citation(s) in RCA: 229] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The endpoints of the large inverted repeat (IR) of chloroplast DNA in flowering plants differ by small amounts between species. To quantify the extent of this movement and define a possible mechanism for IR expansion, DNA sequences across the IR-large single-copy (IR-LSC) junctions were compared among 13 Nicotiana species and other dicots. In most Nicotiana species the IR terminates just upstream of, or somewhere within, the 5' portion of the rps19 gene. The truncated copy of this gene, rps19', varies in length even between closely related species but is of constant size within a single species. In Nicotiana, six different rps19' structures were found. A phylogenetic tree of Nicotiana species based on restriction site data shows that the IR has both expanded and contracted during the evolution of this genus. Gene conversion is proposed to account for these small and apparently random IR expansions. A large IR expansion of over 12 kb has occurred in Nicotiana acuminata. The new IR-LSC junction in this species lies within intron 1 of the clpP gene. This rearrangement occurred via a double-strand DNA break and recombination between poly (A) tracts in clpP intron 1 and upstream of rps19. Nicotiana acuminata chloroplast DNA contains a "molecular fossil' of the IR-LSC junction that existed prior to this dramatic rearrangement.
Collapse
Affiliation(s)
- S E Goulding
- Department of Genetics, University of Dublin, Trinity College, Ireland
| | | | | | | |
Collapse
|