1
|
Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Mol Biotechnol 2024; 66:1563-1580. [PMID: 37340198 DOI: 10.1007/s12033-023-00788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Agrobacterium tumefaciens-mediated plant transformation is the most dominant technique for the transformation of plants. It is used to transform monocotyledonous and dicotyledonous plants. A. tumefaciens apply for stable and transient transformation, random and targeted integration of foreign genes, as well as genome editing of plants. The Advantages of this method include cheapness, uncomplicated operation, high reproducibility, a low copy number of integrated transgenes, and the possibility of transferring larger DNA fragments. Engineered endonucleases such as CRISPR/Cas9 systems, TALENs, and ZFNs can be delivered with this method. Nowadays, Agrobacterium-mediated transformation is used for the Knock in, Knock down, and Knock out of genes. The transformation effectiveness of this method is not always desirable. Researchers applied various strategies to improve the effectiveness of this method. Here, a general overview of the characteristics and mechanism of gene transfer with Agrobacterium is presented. Advantages, updated data on the factors involved in optimizing this method, and other useful materials that lead to maximum exploitation as well as overcoming obstacles of this method are discussed. Moreover, the application of this method in the generation of genetically edited plants is stated. This review can help researchers to establish a rapid and highly effective Agrobacterium-mediated transformation protocol for any plant species.
Collapse
Affiliation(s)
| | - Mahin Pouresmaeil
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
2
|
Thomson G, Dickinson L, Jacob Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:342-363. [PMID: 37831618 PMCID: PMC10841553 DOI: 10.1111/tpj.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.
Collapse
Affiliation(s)
- Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
3
|
Slaman E, Lammers M, Angenent GC, de Maagd RA. High-throughput sgRNA testing reveals rules for Cas9 specificity and DNA repair in tomato cells. Front Genome Ed 2023; 5:1196763. [PMID: 37346168 PMCID: PMC10279869 DOI: 10.3389/fgeed.2023.1196763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
CRISPR/Cas9 technology has the potential to significantly enhance plant breeding. To determine the specificity and the mutagenic spectrum of SpCas9 in tomato, we designed 89 g(uide) RNAs targeting genes of the tomato MYB transcription factor family with varying predicted specificities. Plasmids encoding sgRNAs and Cas9 were introduced into tomato protoplasts, and target sites as well as 224 predicted off-target sites were screened for the occurrence of mutations using amplicon sequencing. Algorithms for the prediction of efficacy of the sgRNAs had little predictive power in this system. The analysis of mutations suggested predictable identity of single base insertions. Off-target mutations were found for 13 out of 89 sgRNAs and only occurred at positions with one or two mismatches (at 14 and 3 sites, respectively). We found that PAM-proximal mismatches do not preclude low frequency off-target mutations. Off-target mutations were not found at all 138 positions that had three or four mismatches. We compared off-target mutation frequencies obtained with plasmid encoding sgRNAs and Cas9 with those induced by ribonucleoprotein (RNP) transfections. The use of RNPs led to a significant decrease in relative off-target frequencies at 6 out of 17, no significant difference at 9, and an increase at 2 sites. Additionally, we show that off-target sequences with insertions or deletions relative to the sgRNA may be mutated, and should be considered during sgRNA design. Altogether, our data help sgRNA design by providing insight into the Cas9-induced double-strand break repair outcomes and the occurrence of off-target mutations.
Collapse
Affiliation(s)
- Ellen Slaman
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioscience, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Lammers
- Bioscience, Wageningen University & Research, Wageningen, Netherlands
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioscience, Wageningen University & Research, Wageningen, Netherlands
| | - Ruud A. de Maagd
- Bioscience, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Plant DNA Repair and Agrobacterium T-DNA Integration. Int J Mol Sci 2021; 22:ijms22168458. [PMID: 34445162 PMCID: PMC8395108 DOI: 10.3390/ijms22168458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Agrobacterium species transfer DNA (T-DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated T-DNA often contains, at its junctions with plant DNA, deletions of T-DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. T-DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of T-DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate T-DNA integration into the plant genome.
Collapse
|
5
|
Zhang K, He J, Liu L, Xie R, Qiu L, Li X, Yuan W, Chen K, Yin Y, Kyaw MMM, San AA, Li S, Tang X, Fu C, Li M. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus. PLANT METHODS 2020; 16:43. [PMID: 32256679 PMCID: PMC7106750 DOI: 10.1186/s13007-020-00585-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brassica napus is an important oilseed crop that offers a considerable amount of biomass for global vegetable oil production. The establishment of an efficient genetic transformation system with a convenient transgenic-positive screening method is of great importance for gene functional analysis and molecular breeding. However, to our knowledge, there are few of the aforementioned systems available for efficient application in B. napus. RESULTS Based on the well-established genetic transformation system in B. napus, five vectors carrying the red fluorescence protein encoding gene from Discosoma sp. (DsRed) were constructed and integrated into rapeseed via Agrobacterium-mediated hypocotyl transformation. An average of 59.1% tissues were marked with red fluorescence by the visual screening method in tissue culture medium, 96.1% of which, on average, were amplified with the objective genes from eight different rapeseed varieties. In addition, the final transgenic-positive efficiency of the rooted plantlets reached up to 90.7% from red fluorescence marked tissues, which was much higher than that in previous reports. Additionally, visual screening could be applicable to seedlings via integration of DsRed, including seed coats, roots, hypocotyls and cotyledons during seed germination. These results indicate that the highly efficient genetic transformation system combined with the transgenic-positive visual screening method helps to conveniently and efficiently obtain transgenic-positive rapeseed plantlets. CONCLUSION A rapid, convenient and highly efficient method was developed to obtain transgenic plants, which can help to obtain the largest proportion of transgene-positive regenerated plantlets, thereby avoiding a long period of plant regeneration. The results of this study will benefit gene functional studies especially in high-throughput molecular biology research.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lu Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Runda Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lu Qiu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xicheng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wenjue Yuan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - May Me Me Kyaw
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Aye Aye San
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Shisheng Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000 China
| | - Xianying Tang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074 China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000 China
| |
Collapse
|
6
|
Lee K, Eggenberger AL, Banakar R, McCaw ME, Zhu H, Main M, Kang M, Gelvin SB, Wang K. CRISPR/Cas9-mediated targeted T-DNA integration in rice. PLANT MOLECULAR BIOLOGY 2019; 99:317-328. [PMID: 30645710 DOI: 10.1007/s11103-018-00819-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/27/2018] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Combining with a CRISPR/Cas9 system, Agrobacterium-mediated transformation can lead to precise targeted T-DNA integration in the rice genome. Agrobacterium-mediated T-DNA integration into the plant genomes is random, which often causes variable transgene expression and insertional mutagenesis. Because T-DNA preferentially integrates into double-strand DNA breaks, we adapted a CRISPR/Cas9 system to demonstrate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Agrobacterium binary vector, we constructed a T-DNA that contains a CRISPR/Cas9 system using SpCas9 and a gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020. The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII) gene. One version of the vector had hptII expression driven by an OsAct2 promoter. In an effort to detect targeted T-DNA insertion events, we built another T-DNA with a promoterless hptII gene adjacent to the T-DNA right border such that integration of T-DNA into the targeted exon sequence in-frame with the hptII gene would allow hptII expression. Our results showed that these constructs could produce targeted T-DNA insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in addition to generating a high frequency (50-80%) of targeted indel mutations. Sequencing analyses showed that four out of five sequenced T-DNA/gDNA junctions carry a single copy of full-length T-DNA at the target site. Our results indicate that Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can efficiently generate targeted T-DNA insertions.
Collapse
MESH Headings
- Agrobacterium/genetics
- Base Sequence
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems/genetics
- DNA, Bacterial/genetics
- Exons
- Gene Editing
- Gene Expression Regulation, Plant/genetics
- Gene Frequency
- Gene Targeting
- Genes, Plant/genetics
- Genetic Vectors/genetics
- Genome, Plant/genetics
- INDEL Mutation
- Luminescent Proteins/genetics
- Mutagenesis, Insertional/methods
- Oryza/genetics
- Oryza/metabolism
- Plant Proteins/genetics
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Sequence Analysis
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Keunsub Lee
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Alan L Eggenberger
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Raviraj Banakar
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Morgan E McCaw
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Huilan Zhu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Plant Transformation Facility, Iowa State University, Ames, IA, 50011, USA
| | - Marcy Main
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Plant Transformation Facility, Iowa State University, Ames, IA, 50011, USA
| | - Minjeong Kang
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, 50011, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kan Wang
- Crop Bioengineering Center, Iowa State University, Ames, IA, 50011, USA.
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
Agrobacterium strains transfer a single-strand form of T-DNA (T-strands) and Virulence (Vir) effector proteins to plant cells. Following transfer, T-strands likely form complexes with Vir and plant proteins that traffic through the cytoplasm and enter the nucleus. T-strands may subsequently randomly integrate into plant chromosomes and permanently express encoded transgenes, a process known as stable transformation. The molecular processes by which T-strands integrate into the host genome remain unknown. Although integration resembles DNA repair processes, the requirement of known DNA repair pathways for integration is controversial. The configuration and genomic position of integrated T-DNA molecules likely affect transgene expression, and control of integration is consequently important for basic research and agricultural biotechnology applications. This article reviews our current knowledge of the process of T-DNA integration and proposes ways in which this knowledge may be manipulated for genome editing and synthetic biology purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA;
| |
Collapse
|
9
|
Hu Y, Chen Z, Zhuang C, Huang J. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:954-965. [PMID: 28244154 DOI: 10.1111/tpj.13523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities.
Collapse
Affiliation(s)
- Yufei Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyu Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. NATURE PLANTS 2016; 2:16164. [PMID: 27797358 DOI: 10.1038/nplants.2016.164] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/27/2016] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens is a pathogenic bacterium, which transforms plants by transferring a discrete segment of its DNA, the T-DNA, to plant cells. The T-DNA then integrates into the plant genome. T-DNA biotechnology is widely exploited in the genetic engineering of model plants and crops. However, the molecular mechanism underlying T-DNA integration remains unknown1. Here we demonstrate that in Arabidopsis thaliana T-DNA integration critically depends on polymerase theta (Pol θ). We find that TEBICHI/POLQ mutant plants (which have mutated Pol θ), although susceptible to Agrobacterium infection, are resistant to T-DNA integration. Characterization of >10,000 T-DNA-plant genome junctions reveals a distinct signature of Pol θ action and also indicates that 3' end capture at genomic breaks is the prevalent mechanism of T-DNA integration. The primer-template switching ability of Pol θ can explain the molecular patchwork known as filler DNA that is frequently observed at sites of integration. T-DNA integration signatures in other plant species closely resemble those of Arabidopsis, suggesting that Pol-θ-mediated integration is evolutionarily conserved. Thus, Pol θ provides the mechanism for T-DNA random integration into the plant genome, demonstrating a potential to disrupt random integration so as to improve the quality and biosafety of plant transgenesis.
Collapse
Affiliation(s)
- Maartje van Kregten
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Paul J J Hooykaas
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| |
Collapse
|
11
|
Park SY, Vaghchhipawala Z, Vasudevan B, Lee LY, Shen Y, Singer K, Waterworth WM, Zhang ZJ, West CE, Mysore KS, Gelvin SB. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:934-46. [PMID: 25641249 DOI: 10.1111/tpj.12779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 05/29/2023]
Abstract
Non-homologous end joining (NHEJ) is the major model proposed for Agrobacterium T-DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA-PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM- and Rad3-related (ATR), play an important role in 'classical' (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a 'backup' (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant-specific DNA Ligase VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild-type plants, suggesting enhanced T-DNA integration in these mutants. These results were confirmed using a promoter-trap transformation vector that requires T-DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus-induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T-DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T-DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T-DNA integration. Thus, T-DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration.
Collapse
Affiliation(s)
- So-Yon Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Plant Transformation Core Facility, University of Missouri, Columbia, MO, 65211, USA; Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Epigenetic control of Agrobacterium T-DNA integration. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:388-94. [PMID: 21296691 DOI: 10.1016/j.bbagrm.2011.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/22/2022]
Abstract
To genetically transform plants, Agrobacterium transfers its T-DNA into the host cell and integrates it into the plant genome, resulting in neoplastic growths. Over the past 2 decades, a great deal has been learned about the molecular mechanism by which Agrobacterium produces T-DNA and transports it into the host nucleus. However, T-DNA integration, which is the limiting, hence, the most critical step of the transformation process, largely remains an enigma. Increasing evidence suggests that Agrobacterium utilizes the host DNA repair machinery to facilitate T-DNA integration. Meanwhile, it is well known that chromatin modifications, including the phosphorylation of histone H2AX, play an important role in DNA repair. Thus, by implication, such epigenetic codes in chromatin may also have a considerable impact on T-DNA integration, although the direct evidence to demonstrate this hypothesis is still lacking. In this review, we summarize the recent advances in our understanding of Agrobacterium T-DNA integration and discuss the potential link between this process and the epigenetic information in the host chromatin. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
Collapse
|
14
|
Levin A, Benyamini H, Hayouka Z, Friedler A, Loyter A. Peptides that bind the HIV-1 integrase and modulate its enzymatic activity - kinetic studies and mode of action. FEBS J 2010; 278:316-30. [DOI: 10.1111/j.1742-4658.2010.07952.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Levin A, Hayouka Z, Friedler A, Loyter A. Over-expression of the HIV-1 Rev promotes death of nondividing eukaryotic cells. Virus Genes 2010; 40:341-6. [PMID: 20151187 DOI: 10.1007/s11262-010-0458-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
Abstract
Expression of the human immunodeficiency virus type 1 (HIV-1) Rev protein is essential for completion of the viral life cycle. Rev mediates nuclear export of partially spliced and unspliced viral transcripts and therefore bears a nuclear localization signal (NLS) as well as a nuclear export signal (NES), which allow its nucleocytoplasmic shuttling. Attempts to express the wild-type Rev protein in eukaryotic human cultured cells have encountered difficulties and so far have failed. Here we show that accumulation of Rev, which occurs in nondividing Rev-expressing cells or when such cells reach confluency, results in death of these cells. Cell death was also promoted by addition of a cell permeable peptide bearing the Rev-NES sequence, but not by the Rev-NLS peptide. Our results probably indicate that binding of excess amounts of the Rev protein or the NES peptide to the exportin receptor CRM1 results in cells' death.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
16
|
Levin A, Hayouka Z, Friedler A, Brack-Werner R, Volsky DJ, Loyter A. A novel role for the viral Rev protein in promoting resistance to superinfection by human immunodeficiency virus type 1. J Gen Virol 2010; 91:1503-13. [PMID: 20147519 DOI: 10.1099/vir.0.019760-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
At the cellular level, cells infected with human immunodeficiency virus type 1 (HIV-1) exhibit immunity to a second infection by the virus that initiated the first infection or by related viruses [superinfection resistance (SIR)]. In the case of HIV infection, SIR was basically attributed to downregulation of the CD4 receptors. We have recently reported on an interaction between HIV-1 Rev and integrase (IN) proteins, which results in inhibition of IN activity in vitro and integration of cDNA in HIV-1-infected cells. A novel function for the viral Rev protein in controlling integration of HIV cDNAs was thus proposed. The results of the present work suggest involvement of the inhibitory Rev in sustaining SIR. A single exposure to wild-type HIV-1 resulted in one to two integrations per cell. The number of integrated proviral cDNA copies remained at this low level even after double infection or superinfection. SIR was dependent on Rev expression by the strain used for the first infection and was eliminated by peptides that disrupt intracellular complex formation between IN and Rev. The same lack of resistance was observed in the absence of Rev, namely following first infection with a DeltaRev HIV strain. The involvement of Rev, expressed from either unintegrated or integrated viral cDNA, in promoting SIR was clearly demonstrated. We conclude that SIR involves Rev-dependent control of HIV cDNA integration.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Levin A, Hayouka Z, Brack-Werner R, Volsky DJ, Friedler A, Loyter A. Novel regulation of HIV-1 replication and pathogenicity: Rev inhibition of integration. Protein Eng Des Sel 2009; 22:753-63. [PMID: 19875511 DOI: 10.1093/protein/gzp060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following fusion of the human immunodeficiency virus type-1 (HIV-1) with host cells' membrane and reverse transcription of the viral RNA, the resulted cDNA is integrated into the host genome by the viral integrase enzyme (IN). Quantitative estimations have revealed that only 1-2 copies are integrated per infected cell, although many copies of the viral RNA are reverse-transcribed. The molecular mechanism that restricts the integration degree has not, so far, been elucidated. Following integration, expressed partially spliced and unspliced transcripts are exported from the nuclei by the viral Rev protein. Here, we show that in virally infected cells, the Rev interacts with the IN forming a Rev-IN complex and consequently limits the number of integration events. Disruption of the Rev-IN complex by selected IN-derived peptides or infection by a Rev-deficient virus stimulate integration resulting in large numbers of integration event/cell. Conversely, infection of Rev-expression cells blocks integration and inhibits virus production. Increased integration appears to correlate with increased cell death of infected cultures. Our results thus demonstrate a new regulatory function of Rev and probably establish a link between Rev restriction of HIV-1 integration and protection of HIV-1-infected cells from premature cell death.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Kovalchuk I, Boyko A. Improvement of Plant Transformation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Levin A, Hayouka Z, Helfer M, Brack-Werner R, Friedler A, Loyter A. Peptides derived from HIV-1 integrase that bind Rev stimulate viral genome integration. PLoS One 2009; 4:e4155. [PMID: 19127291 PMCID: PMC2607543 DOI: 10.1371/journal.pone.0004155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/02/2008] [Indexed: 01/05/2023] Open
Abstract
Background The human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3′-end processing in which IN removes a pGT dinucleotide from the 3′ end of each viral long terminal repeat (LTR). Following nuclear import of the viral preintegration complex, the host chromosomal DNA becomes accessible to the viral cDNA and the second step of the integration process, namely the strand-transfer step takes place. This ordered sequence of events, centered on integration, is mandatory for HIV replication. Methodology/Principal Findings Using an integrase peptide library, we selected two peptides, designated INr-1 and INr-2, which interact with the Rev protein and probably mediate the Rev-integrase interaction. Using an in-vitro assay system, we show that INr-1 and INr-2 are able to abrogate the inhibitory effects exerted by Rev and Rev-derived peptides on integrase activity. Both INr-1 and INr-2 were found to be cell-permeable and nontoxic, allowing a study of their effect in HIV-1-infected cultured cells. Interestingly, both INr peptides stimulated virus infectivity as estimated by production of the viral P24 protein, as well as by determination of the appearance of newly formed virus particles. Furthermore, kinetics studies revealed that the cell-permeable INr peptides enhance the integration process, as was indeed confirmed by direct determination of viral DNA integration by real-time PCR. Conclusions/Significance The results of the present study raise the possibility that in HIV-infected cells, the Rev protein may be involved in the integration of proviral DNA by controlling/regulating the activity of the integrase. Release from such inhibition leads to stimulation of IN activity and multiple viral DNA integration events.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zvi Hayouka
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Markus Helfer
- Institute of Virology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstr, Neuherberg, Germany
| | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstr, Neuherberg, Germany
- Clinical Cooperation Group ‘Immune-Monitoring’, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstr, Neuherberg, Germany
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham Loyter
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
20
|
Arbibe L. Immune subversion by chromatin manipulation: a new face of hostbacterial pathogen interaction. Cell Microbiol 2008; 10:1582-90. [DOI: 10.1111/j.1462-5822.2008.01170.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Armon-Omer A, Levin A, Hayouka Z, Butz K, Hoppe-Seyler F, Loya S, Hizi A, Friedler A, Loyter A. Correlation between shiftide activity and HIV-1 integrase inhibition by a peptide selected from a combinatorial library. J Mol Biol 2007; 376:971-82. [PMID: 18201721 DOI: 10.1016/j.jmb.2007.11.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/24/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein is an emerging target for the development of anti-HIV drugs. We recently described a new approach for inhibiting IN by "shiftides"--peptides that inhibit the protein by shifting its oligomerization equilibrium from the active dimer to the inactive tetramer. In this study, we used the yeast two-hybrid system with the HIV-1 IN as a bait and a combinatorial peptide aptamer library as a prey to select peptides of 20 amino acids that specifically bind IN. Five non-homologous peptides, designated as IN-1 to IN-5, were selected. ELISA studies confirmed that IN binds the free peptides. All the five peptides interact with IN with comparable affinity (K(d approximately )10 microM), as was revealed by fluorescence anisotropy studies. Only one peptide, IN-1, inhibited the enzymatic activity of IN in vitro and the HIV-1 replication in cultured cells. In correlation, fluorescence anisotropy binding experiments revealed that of the five peptides, only the inhibitory IN-1 inhibited the DNA binding of IN. Analytical gel filtration experiments revealed that only the IN-1 and not the four other peptides shifted the oligomerization equilibrium of IN towards the tetramer. Thus, the results show a distinct correlation between the ability of the selected peptides to inhibit IN activity and that to shift its oligomerization equilibrium.
Collapse
Affiliation(s)
- Ayelet Armon-Omer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li G, Zhou Z, Liu G, Zheng F, He C. Characterization of T-DNA insertion patterns in the genome of rice blast fungus Magnaporthe oryzae. Curr Genet 2007; 51:233-43. [PMID: 17372735 DOI: 10.1007/s00294-007-0122-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/27/2007] [Accepted: 01/29/2007] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) has been proven to be a powerful strategy for gene disruption in plants and fungi. Patterns associated with transferred DNA (T-DNA) integration in plants and yeast have been studied comprehensively, whereas no detailed analysis of T-DNA integration has been reported yet in filamentous fungi. Here, we reported the T-DNA insertion patterns in the genome of filamentous fungus Magnaporthe oryzae. Using ATMT, a T-DNA tagged population consisting of 6,179 transformants of M. oryzae was constructed. With thermal asymmetric interlaced-PCR (TAIL-PCR), 623 right border (RB) flanking sequences and 124 left border (LB) flanking sequences were generated. Analysis of these flanking sequences indicated a significant integration bias toward non-coding sequences, suggesting distribution of T-DNAs was not random. Comparing to T-DNA RB, LB was nicked inaccurately and truncated frequently during integration. Chromosomal rearrangements, such as deletion, inversion, and translocation, were associated with T-DNA integration in some transformants. Our data suggest that, comparing with plant cells, T-DNA integrates into this filamentous fungus with more precise and simpler patterns. Some phenotypic mutants were observed in our T-DNA tagged population, and these transformants will be very useful for functional genomics research of M. oryzae.
Collapse
Affiliation(s)
- Guihua Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Zhu QH, Ramm K, Eamens AL, Dennis ES, Upadhyaya NM. Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:308-22. [PMID: 22980200 DOI: 10.1016/j.plantsci.2006.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/20/2006] [Accepted: 03/28/2006] [Indexed: 05/04/2023]
Abstract
To gain further understanding of the mechanisms involved in Agrobacterium-mediated genetic transformation and T-DNA integration, we analysed 156 T-DNA/rice, 69 T-DNA/T-DNA and 11 T-DNA/vector backbone (VB) junctions, which included 171 left borders (LB) and 134 right borders (RB). Conserved cleavage was observed in 6% of the LB and 43% of the RB. Terminal microhomology (1-10bp) was identified in 58% of T-DNA/rice, 43% of T-DNA/T-DNA and 82% of T-DNA/VB junctions, and this occurred particularly at the LB junctions. Approximately 32% of both T-DNA/rice and T-DNA/T-DNA junctions harboured 1-344bp of filler DNA that was derived mainly from the T-DNA region adjacent to the breakpoint and/or from the rice genome flanking the T-DNA integration site. Structure of the filler DNA was more complicated at the T-DNA/T-DNA junction than at the T-DNA/rice junction, indicating the presence of T-DNA recombination or rearrangement prior to or during T-DNA integration. When two T-DNAs were integrated in the inverted repeat configuration, significant truncation was always observed in one of the two T-DNAs whereas with direct repeat configuration, a large truncation was less frequent. Most integration events analysed in this study could be addressed by previously proposed models; however, the characteristics of the T-DNA repeats and the complicated filler DNA between two T-DNA copies imply that multiple mechanisms are involved in the formation of T-DNA repeats as well as in T-DNA integration in plants.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Plant Industry, Canberra, ACT 2601, Australia; New South Wales Agricultural Genomics Centre, Wagga Wagga, NSW 2678, Australia
| | | | | | | | | |
Collapse
|
24
|
Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 2006; 17:147-54. [PMID: 16459071 DOI: 10.1016/j.copbio.2006.01.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/16/2005] [Accepted: 01/26/2006] [Indexed: 11/20/2022]
Abstract
Agrobacterium-mediated genetic transformation is the dominant technology used for the production of genetically modified transgenic plants. Extensive research aimed at understanding and improving the molecular machinery of Agrobacterium responsible for the generation and transport of the bacterial DNA into the host cell has resulted in the establishment of many recombinant Agrobacterium strains, plasmids and technologies currently used for the successful transformation of numerous plant species. Unlike the role of bacterial proteins, the role of host factors in the transformation process has remained obscure for nearly a century of Agrobacterium research, and only recently have we begun to understand how Agrobacterium hijacks host factors and cellular processes during the transformation process. The identification of such factors and studies of these processes hold great promise for the future of plant biotechnology and plant genetic engineering, as they might help in the development of conceptually new techniques and approaches needed today to expand the host range of Agrobacterium and to control the transformation process and its outcome during the production of transgenic plants.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
25
|
Hanin M, Paszkowski J. Plant genome modification by homologous recombination. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:157-162. [PMID: 12667873 DOI: 10.1016/s1369-5266(03)00016-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mechanisms and frequencies of various types of homologous recombination (HR) have been studied in plants for several years. However, the application of techniques involving HR for precise genome modification is still not routine. The low frequency of HR remains the major obstacle but recent progress in gene targeting in Arabidopsis and rice, as well as accumulating knowledge on the regulation of recombination levels, is an encouraging sign of the further development of HR-based approaches for genome engineering in plants.
Collapse
Affiliation(s)
- Moez Hanin
- Institut Supérieur de Biotechnologie de Sfax, route M'harza, 3018. Sfax, Tunisia
| | | |
Collapse
|
26
|
Radchuk VV, Ryschka U, Schumann G, Klocke E. Genetic transformation of cauliflower (Brassica oleracea var. botrytis) by direct DNA uptake into mesophyll protoplasts. PHYSIOLOGIA PLANTARUM 2002; 114:429-438. [PMID: 12060266 DOI: 10.1034/j.1399-3054.2002.1140313.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mesophyll protoplasts of Brassica oleracea var. botrytis were successfully transformed using polyethylene glycol (PEG). The success of plant transformation depended on both gene transfer and plant regeneration. Parameters, such as PEG and vector concentrations and heat shock conditions were tested in experiments on transient expression of the beta-glucuronidase (EC 3.2.1.31) gene and the most suitable conditions for DNA uptake were determined. Two antibiotic resistance marker genes for neomycin phosphotransferase (EC 2.7.1.95) and hygromycin phosphotransferase (EC 2.7.1.104), and three vector plasmids with different lengths were used to obtain stable transformants.
Collapse
Affiliation(s)
- Volodymyr V Radchuk
- Institute of Horticultural Crops, Federal Centre for Breeding Research on Cultivated Plants, Neuer Weg 22/23, D-06484 Quedlinburg, Germany Present address: Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany Corresponding author, e-mail:
| | | | | | | |
Collapse
|
27
|
Methods of Genetic Transformation: Electroporation and Polyethylene Glycol Treatment. MOLECULAR IMPROVEMENT OF CEREAL CROPS 1999. [DOI: 10.1007/978-94-011-4802-3_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Nam J, Mysore KS, Gelvin SB. Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1136-1141. [PMID: 9805401 DOI: 10.1094/mpmi.1998.11.11.1136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Arabidopsis thaliana mutants uvh1 and rad5, originally identified as radiation hypersensitive, were reported to be deficient in T-DNA integration based on the relative efficiencies of stable transformation and T-DNA transfer. We reassessed these mutants for susceptibility to transformation by Agrobacterium tumefaciens. The mutant rad5 showed a significant reduction in the efficiency of transient as well as stable transformation, compared with its wild-type progenitor. These data indicate that rad5 is blocked at a step in the transformation process prior to T-DNA integration. We additionally found, using both an in vitro root inoculation and an in vivo flower bolt inoculation assay, that the mutant uvh1 is as susceptible to A. tumefaciens-mediated transformation as is its wild-type progenitor, C10.
Collapse
Affiliation(s)
- J Nam
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | |
Collapse
|
29
|
Pawlowski WP, Somers DA. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci U S A 1998; 95:12106-10. [PMID: 9770447 PMCID: PMC22792 DOI: 10.1073/pnas.95.21.12106] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35-280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.
Collapse
Affiliation(s)
- W P Pawlowski
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | | |
Collapse
|
30
|
Pawlowski WP, Somers DA. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 1996; 6:17-30. [PMID: 8887358 DOI: 10.1007/bf02762320] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microprojectile bombardment to deliver DNA into plant cells represents a major breakthrough in the development of plant transformation technologies and accordingly has resulted in transformation of numerous species considered recalcitrant to Agrobacterium- or protoplast-mediated transformation methods. This article attempts to review the current understanding of the molecular and genetic behavior of transgenes introduced by microprojectile bombardment. The characteristic features of the transgene integration pattern resulting from DNA delivery via microprojectile bombardment include integration of the full length transgene as well as rearranged copies of the introduced DNA. Copy number of both the transgene and rearranged fragments is often highly variable. Most frequently the multiple transgene copies and rearranged fragments are inherited as a single locus. However, a variable proportion of transgenic events produced by microprojectile bombardment exhibit Mendelian ratios for monogenic and digenic segregation vs events exhibiting segregation distortion. The potential mechanisms underlying these observations are discussed.
Collapse
Affiliation(s)
- W P Pawlowski
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
31
|
Chiurazzi M, Signer ER. Termini and telomeres in T-DNA transformation. PLANT MOLECULAR BIOLOGY 1994; 26:923-934. [PMID: 8000005 DOI: 10.1007/bf00028859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A T-DNA vector for plant transformation has been constructed in which the cloning site is located 9 bp from the right-border (RB) end and 27 bp from the left-border (LB) end. In this vector cloned DNA homologous to plant chromosomal sequences is located at the T-DNA termini, and will thus be exposed by even limited exonucleolysis in planta. The arabidopsis ADH (alcohol dehydrogenase) locus was mobilized from Agrobacterium, and integration into the recipient genome was studied. Despite the terminal location of ADH homology in this vector, the T-DNA integrated essentially at random in the Arabidopsis genome rather than at the endogenous ADH locus. T-DNA integration was blocked, however, when Arabidopsis telomeric sequences were added to the construct at each end of the ADH homology. Thus the predominant mode by which incoming T-DNA is integrated into the continuity of chromosomal DNA involves free DNA ends, but, in contrast to modes of recombination such as gap repair, does not involve extensive terminal DNA sequence homology.
Collapse
Affiliation(s)
- M Chiurazzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307
| | | |
Collapse
|
32
|
Bergman P, Glimelius K. Electroporation of rapeseed protoplasts - transient and stable transformation. PHYSIOLOGIA PLANTARUM 1993; 88:604-611. [PMID: 28741766 DOI: 10.1111/j.1399-3054.1993.tb01378.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protoplasts of Brassica napus hypocotyls were transfected using electroporation. Parameters such as discharge potential, protoplast density and buffer constituents were tested to determine the most suitable conditions for gene transfer. To monitor the introduction of DNA into protoplasts a plasmid containing the β-glucuronidase (EC 3.2.1.31), and the neomycin phospotransferase (EC 2.7.1.95) genes was used. By using this construct, expression of a screenable marker gene for transient expression analysis as well as an antibiotic resistance marker gene for selection of stable transformants were obtained. Refined electroporation conditions resulted in a frequency of 0.1% transiently transformed protoplasts. Microcalluses were cultured under selective conditions in a bead-type culture system. Resistant callus, with an absolute transformation frequency of 4.9 × 10-5 and a relative transformation frequency of 0.3% could be achieved. X-ray irradiation of newly electroporated protoplasts did not enhance absolute transformation frequencies. From some of the resistant calluses, transgenic plants could be regenerated which were characterized by molecular analysis.
Collapse
Affiliation(s)
- Per Bergman
- Swedish Univ. of Agricultural Sciences, Dept of Plant Breeding, PO Box 7003, S-75007 Uppsala, Sweden
| | - Kristina Glimelius
- Swedish Univ. of Agricultural Sciences, Dept of Plant Breeding, PO Box 7003, S-75007 Uppsala, Sweden
| |
Collapse
|
33
|
Ashraf M, Altschuler M, Galasinski S, Griffiths TD. Alteration of gene expression by restriction enzymes electroporated into plant cells. Mutat Res 1993; 302:75-82. [PMID: 7684508 DOI: 10.1016/0165-7992(93)90007-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The alteration in the expression of a beta-glucuronidase (GUS) reporter gene was used to monitor the effect of restriction endonucleases electroporated into the tobacco (Nicotiana tabacum L.) protoplasts. Restriction enzyme (RE) Hind III which does not have a recognition site within the gene cassette, had little effect on enzyme activity. In contrast restriction endonucleases Hae III and Sau3A1 which possess 8 and 16 recognition sites in the GUS cassette, were found to reduce the enzyme activity by 89% and 94% respectively when compared to control electroporations. Restriction-site mutation analysis (RSM) and Southern blot analysis indicated the enzymatic degradation of GUS coding sequence by the REs Hae III and Sau3A1. Results of this study suggest that on electroporation, REs can enter into plant cells and alter the expression of the GUS gene. The alteration of gene expression is thus correlated with the digestion of GUS template DNA. Future applications of this technique could include addressing fundamental questions with regard to DNA repair, site-specific recombination, identifying mutations, insertional mutagenesis, enhancement of stable transformation and gene tagging in plants.
Collapse
Affiliation(s)
- M Ashraf
- Plant Molecular Biology Center, Northern Illinois University, DeKalb 60115
| | | | | | | |
Collapse
|
34
|
Melzer JM, O'Connell MA. Effect of radiation dose on the production of and the extent of asymmetry in tomato asymmetric somatic hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 83:337-344. [PMID: 24202516 DOI: 10.1007/bf00224280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/1990] [Accepted: 03/07/1991] [Indexed: 06/02/2023]
Abstract
Asymmetric somatic hybrids were recovered following fusion of tomato leaf mesophyll protoplasts with irradiated protoplasts isolated from Lycopersicon pennellii suspension cells. The asymmetry was determined by scoring the regenerants at between 20 and 24 loci using isozymes and restriction fragment length polymorphisms. In addition, three quantitative traits, fruit size, leaf shape, and stigma exsertion, were measured in the regenerants. The recovery of asymmetric somatic hybrids was as high as 50% of the regenerants, and there was no requirement for the transfer of a selectable marker gene from the irradiated partner. The amount of nuclear DNA transferred from the irradiated protoplast fusion partner was found to be inversely proportional to the radiation dose. It was possible to recover tomato asymmetric somatic hybrids which were self-fertile and contained limited amounts of genetic information from L. pennelli.
Collapse
Affiliation(s)
- J M Melzer
- Plant Genetic Engineering Laboratory, Department of Agronomy and Horticulture, New Mexico State University, 88003, Las Cruces, NM, USA
| | | |
Collapse
|
35
|
Transient and stable expression of marker genes in cotransformedPetunia protoplasts in relation to X-ray and UV-irradiation. Transgenic Res 1991. [DOI: 10.1007/bf02512995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Maeser S, Kahmann R. The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:170-6. [PMID: 1836050 DOI: 10.1007/bf00290665] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mutant Gin recombinase of the phage Mu DNA inversion system was successfully expressed in Arabidopsis thaliana and tobacco protoplasts. Site-specific recombination was monitored both physically and biologically with the help of a recombination assay system in which expression of a beta-glucuronidase (gus) gene requires Gin-mediated recombination. We demonstrate that the wild-type Gin protein is not able to promote recombination in plant protoplasts, presumably because plant cells do not contain a protein that can substitute for the Escherichia coli FIS protein needed for full activity of wild-type Gin in E. coli. A FIS-independent Gin mutant protein on the other hand was efficient in promoting recombination on recombination substrates introduced transiently and on substrates stably integrated into the plant genome. We discuss the various advantages this system can provide for genetic manipulation of plant cells.
Collapse
Affiliation(s)
- S Maeser
- Institut für Genbiologische Forschung Berlin GmbH, FRG
| | | |
Collapse
|
37
|
Schaefer D, Zryd JP, Knight CD, Cove DJ. Stable transformation of the moss Physcomitrella patens. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:418-24. [PMID: 2038304 DOI: 10.1007/bf00260654] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the stable transformation of Physcomitrella patens to either G418 or hygromycin B resistance following polyethylene glycol-mediated direct DNA uptake by protoplasts. The method described in this paper was used successfully in independent experiments carried out in our two laboratories. Transformation was assessed by the following criteria: selection of antibiotic-resistant plants, mitotic and meiotic stability of phenotypes after removal of selective pressure and stable transmission of the character to the offspring; Southern hybridisation analysis of genomic DNA to show integration of the plasmid DNA; segregation of the resistance gene following crosses with antibiotic-sensitive strains; and finally Southern hybridisation analysis of both resistant and sensitive progeny. In addition to stable transformants, a heterogeneous class of unstable transformants was obtained.
Collapse
Affiliation(s)
- D Schaefer
- Laboratoire de Phytogénétique Cellulaire, Université de Lausanne, Switzerland
| | | | | | | |
Collapse
|
38
|
Gheysen G, Villarroel R, Van Montagu M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 1991; 5:287-97. [PMID: 1995418 DOI: 10.1101/gad.5.2.287] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Agrobacterium tumefaciens is a soil bacterium capable of transferring DNA (the T-DNA) to the genome of higher plants, where it is then stably integrated. Six T-DNA inserts and their corresponding preinsertion sites were cloned from Arabidopsis thaliana and analyzed. Two T-DNA integration events from Nicotiana tabacum were included in the analysis. Nucleotide sequence comparison of plant target sites before and after T-DNA integration showed that the T-DNA usually causes only a small (13-28 bp) deletion in the plant DNA, but larger target rearrangements can occur. Short homologies between the T-DNA ends and the target sites, as well as the presence of filler sequences at the junctions, indicate that T-DNA integration is mediated by illegitimate recombination and that these processes in plants are very analogous to events in mammalian cells. We propose a model for T-DNA integration on the basis of limited base-pairing for initial synapsis, followed by DNA repair at the junctions. Variations of the model can explain the formation of filler DNA at the junctions by polymerase slipping and template switching during DNA repair synthesis and the presence of larger plant target DNA rearrangements.
Collapse
Affiliation(s)
- G Gheysen
- Laboratorium voor Genetica, Rijksuniversiteit Gent, Belgium
| | | | | |
Collapse
|
39
|
Steinbiss HH, Davidson A. Transient gene expression of chimeric genes in cells and tissues of crops. Subcell Biochem 1991; 17:143-66. [PMID: 1796483 DOI: 10.1007/978-1-4613-9365-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H H Steinbiss
- Max-Planck Institut für Züchtungsforschung, Abt. Genetische Grundlagen der Pflanzenzüchtung, Köln, Germany
| | | |
Collapse
|
40
|
Golz C, Köhler F, Schieder O. Transfer of hygromycin resistance into Brassica napus using total DNA of a transgenic B. nigra line. PLANT MOLECULAR BIOLOGY 1990; 15:475-483. [PMID: 2103465 DOI: 10.1007/bf00019164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The successful transfer of a marker gene (hpt gene) from Brassica nigra into B. napus via direct gene transfer was demonstrated. Total DNA was isolated from a hygromycin-resistant callus line, which contained three to five copies of the hpt gene. This line had been produced via direct gene transfer with the hygromycin resistance-conferring plasmid pGL2. The treatment of B. napus protoplasts with genomic DNA of B. nigra (HygR) resulted in relative transformation frequencies of 0.1-0.4%. Similar transformation rates were obtained in direct gene transfer experiments using B. napus protoplasts and plasmid pGL2.
Collapse
Affiliation(s)
- C Golz
- Institut für Angewandte Genetik, FU Berlin, FRG
| | | | | |
Collapse
|
41
|
Gharti-Chhetri GB, Cherdshewasart W, Dewulf J, Paszkowski J, Jacobs M, Negrutiu I. Hybrid genes in the analysis of transformation conditions. 3. Temporal/spatial fate of NPTII gene integration, its inheritance and factors affecting these processes in Nicotiana plumbaginifolia. PLANT MOLECULAR BIOLOGY 1990; 14:687-96. [PMID: 1966385 DOI: 10.1007/bf00016501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Freshly isolated haploid mesophyll protoplasts of Nicotiana plumbaginifolia were transformed for kanamycin resistance. In 38% of the 224 transformants analysed, transmission of the NPTII gene occurred as a homozygous trait, while 62% of the transformants were heterozygous for the trait. In the first case, the foreign DNA integration predominantly (95%) resulted in monogenic inheritance. The second group was characterized by a significant (46%) proportion of multiple insertions. However, there was no clear-cut difference in the integration pattern between the two groups. Furthermore, transformation rates were increased by 4- to 10-fold when transformed diploid protoplasts were treated with UV light or with 3-aminobenzamide. The number of insertion sites was also increased by these treatments. These results shed further light on the fate of the foreign DNA in transformed plants and on means to control or manipulate the integration event(s).
Collapse
Affiliation(s)
- G B Gharti-Chhetri
- Laboratorium voor Plantengenetica, Vrije Universiteit Brussel, IMOL, Sint-Genesius-Rode, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Köhler F, Benediktsson I, Cardon G, Andreo CS, Schieder O. Effect of various irradiation treatments of plant protoplasts on the transformation rates after direct gene transfer. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1990; 79:679-685. [PMID: 24226584 DOI: 10.1007/bf00226883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/1989] [Accepted: 12/20/1989] [Indexed: 06/02/2023]
Abstract
In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8-12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%-10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.
Collapse
Affiliation(s)
- F Köhler
- Institute for Applied Genetics, Free University Berlin, Albrecht-Thaer-Weg 6, D-1000, Berlin 33
| | | | | | | | | |
Collapse
|