1
|
Moore V, Vermaas W. Functional consequences of modification of the photosystem I/photosystem II ratio in the cyanobacterium Synechocystis sp. PCC 6803. J Bacteriol 2024; 206:e0045423. [PMID: 38695523 PMCID: PMC11112997 DOI: 10.1128/jb.00454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 05/24/2024] Open
Abstract
The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium Synechocystis sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the psaAB operon. We thus generated mutants with varied psaAB expression, ranging from ~3% to almost 200% of the wild-type transcript level, but all showing a reduction in PSI levels, relative to wild type, suggesting a role of the psaAB promoter region in translational regulation. Mutants with 25%-70% of wild-type PSI levels were photoautotrophic, with whole-chain oxygen evolution rates on a per-cell basis comparable to that of wild type. In contrast, mutant strains with <10% of the wild-type level of PSI were obligate photoheterotrophs. Variable fluorescence yields of all mutants were much higher than those of wild type, indicating that the PSI content is localized differently than in wild type, with less transfer of PSII-absorbed energy to PSI. Strains with less PSI saturate at a higher light intensity, enhancing productivity at higher light intensities. This is similar to what is found in mutants with reduced antennae. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea present, P700+ re-reduction kinetics in the mutants were slower than in wild type, consistent with the notion that there is less cyclic electron transport if less PSI is present. Overall, strains with a reduction in PSI content displayed surprisingly vigorous growth and linear electron transport. IMPORTANCE Consequences of reduction in photosystem I content were investigated in the cyanobacterium Synechocystis sp. PCC 6803 where photosystem I far exceeds the number of photosystem II complexes. Strains with less photosystem I displayed less cyclic electron transport, grew more slowly at lower light intensity and needed more light for saturation but were surprisingly normal in their whole-chain electron transport rates, implying that a significant fraction of photosystem I is dispensable for linear electron transport in cyanobacteria. These strains with reduced photosystem I levels may have biotechnological relevance as they grow well at higher light intensities.
Collapse
Affiliation(s)
- Vicki Moore
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, USA
| | - Wim Vermaas
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
3
|
Xiong W, Brune D, Vermaas WFJ. The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle inSynechocystissp. PCC 6803. Mol Microbiol 2014; 93:786-96. [DOI: 10.1111/mmi.12699] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Xiong
- School of Life Sciences and Center for Bioenergy and Photosynthesis; Arizona State University; Tempe Arizona 85287-4501 USA
| | - Daniel Brune
- School of Life Sciences and Center for Bioenergy and Photosynthesis; Arizona State University; Tempe Arizona 85287-4501 USA
| | - Wim F. J. Vermaas
- School of Life Sciences and Center for Bioenergy and Photosynthesis; Arizona State University; Tempe Arizona 85287-4501 USA
| |
Collapse
|
4
|
Chen G, Qu S, Wang Q, Bian F, Peng Z, Zhang Y, Ge H, Yu J, Xuan N, Bi Y, He Q. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:32. [PMID: 24581179 PMCID: PMC3941260 DOI: 10.1186/1754-6834-7-32] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/12/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. RESULTS We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. CONCLUSIONS In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs.
Collapse
Affiliation(s)
- Gao Chen
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Shujie Qu
- Test Base Service Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Fei Bian
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Zhenying Peng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Yan Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Haitao Ge
- School of Life Science, Shandong University, Jinan 250100, P. R. China
| | - Jinhui Yu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
| | - Qingfang He
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, P. R. China
- Department of Applied Science, University of Arkansas, Little Rock, Arkansas 72204, USA
| |
Collapse
|
5
|
Bricker TM, Bell AJ, Tran L, Frankel LK, Theg SM. Photoheterotrophic growth of Physcomitrella patens. PLANTA 2014; 239:605-613. [PMID: 24281299 DOI: 10.1007/s00425-013-2000-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/08/2013] [Indexed: 06/02/2023]
Abstract
Physcomitrella patens is a model bryophyte representing an early land plant in the green plant lineage. This organism possesses many advantages as a model organism. Its genome has been sequenced, its predominant life cycle stage is the haploid gametophyte, it is readily transformable and it can integrate transformed DNA into its genome by homologous recombination. One limitation for the use of P. patens in photosynthesis research is its reported inability to grow photoheterotrophically, in the presence of sucrose and the Photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which prevents linear photosynthetic electron transport. In this communication we describe the facile isolation of a P. patens strain which can grow photoheterotrophically. Additionally, we have examined a number of photosynthetic parameters for this strain grown under photoautotrophic, mixotrophic (in the presence of sucrose) and photoheterotrophic conditions, as well as the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-inhibited state. The ability to grow P. patens photoheterotrophically should significantly facilitate its use in photosynthetic studies.
Collapse
Affiliation(s)
- Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | | | | | |
Collapse
|
6
|
Viola S, Rühle T, Leister D. A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803. Microb Cell Fact 2014; 13:4. [PMID: 24401024 PMCID: PMC3893515 DOI: 10.1186/1475-2859-13-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cyanobacterium Synechocystis sp. PCC 6803 is widely used for research on photosynthesis and circadian rhythms, and also finds application in sustainable biotechnologies. Synechocystis is naturally transformable and undergoes homologous recombination, which enables the development of a variety of tools for genetic and genomic manipulations. To generate multiple gene deletions and/or replacements, marker-less manipulation methods based on counter-selection are generally employed. Currently available methods require two transformation steps with different DNA plasmids. RESULTS In this study, we present a marker-less gene deletion and replacement strategy in Synechocystis sp. PCC 6803 which needs only a single transformation step. The method utilizes an nptI-sacB double selection cassette and exploits the ability of the cyanobacterium to undergo two successive genomic recombination events via double and single crossing-over upon application of appropriate selective procedures. CONCLUSIONS By reducing the number of cloning steps, this strategy will facilitate gene manipulation, gain-of-function studies, and automated screening of mutants.
Collapse
Affiliation(s)
- Stefania Viola
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg, Martinsried D-82152, Germany
| | - Thilo Rühle
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg, Martinsried D-82152, Germany
| | - Dario Leister
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg, Martinsried D-82152, Germany
| |
Collapse
|
7
|
Tsang TK, Roberson RW, Vermaas WFJ. Polyhydroxybutyrate particles in Synechocystis sp. PCC 6803: facts and fiction. PHOTOSYNTHESIS RESEARCH 2013; 118:37-49. [PMID: 24052269 DOI: 10.1007/s11120-013-9923-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp. PCC 6803. Inclusions that resemble PHB granules were present in strains lacking a pair of genes essential for PHB synthesis and in wild-type cells under conditions that no PHB granules could be detected by fluorescence staining of PHB. Indeed, in these cells PHB could not be demonstrated chemically by GC/MS either. Based on the results gathered, it is concluded that not all the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria. Alternate assignments for these inclusions are discussed.
Collapse
Affiliation(s)
- Tin Ki Tsang
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287-4501, USA
| | | | | |
Collapse
|
8
|
The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 2013; 195:5370-80. [PMID: 24078613 DOI: 10.1128/jb.00615-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ~30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.
Collapse
|
9
|
ClpB1 overproduction in Synechocystis sp. strain PCC 6803 increases tolerance to rapid heat shock. Appl Environ Microbiol 2013; 79:6220-7. [PMID: 23913426 DOI: 10.1128/aem.01661-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ClpB1 is a heat shock protein known to disaggregate large protein complexes. Constitutive, 16-fold ClpB1 overproduction in the cyanobacterium Synechocystis sp. strain PCC 6803 increased cell survival by 20-fold when cultures were heated quickly (1°C/s) to 50°C and delayed cell death by an average of 3 min during incubation at high temperatures (>46°C). Cooverexpression of ClpB1 and another heat shock protein, DnaK2, further increased cell survival. According to immunocytochemistry results, ClpB1 is dispersed throughout the cytoplasm but is concentrated in specific areas and is more prevalent near thylakoid membranes. However, ClpB1 overproduction does not lead to a change in the morphology, chlorophyll content, or photosystem ratio. Whereas electron microscopy demonstrated that apparent protein aggregation occurred after heat treatment in the control strain, protein aggregate size was maintained in the ClpB1 overexpresser. Constitutive ClpB1 overproduction allows an earlier response to heat shock and protects from rapid heating of cultures.
Collapse
|
10
|
Tyo KEJ, Jin YS, Espinoza FA, Stephanopoulos G. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol Prog 2010; 25:1236-43. [PMID: 19606467 DOI: 10.1002/btpr.228] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inverse metabolic engineering (IME) is a combinatorial approach for identifying genotypes associated with a particular phenotype of interest. In this study, gene disruptions that increase the biosynthesis of poly-3-hydroxybutyrate (PHB) in the photosynthetic bacterium Synechocystis PCC6803 were identified. A Synechocystis mutant library was constructed by homologous recombination between the Synechocystis genome and a mutagenized genomic plasmid library generated through transposon insertion. Using a fluorescence-activated cell sorting-based high throughput screen, high PHB accumulating mutants from the library grown in different nutrient conditions were isolated and characterized. While several mutants isolated from the screen had increased PHB accumulation, transposon insertions in only two ORFs could be linked to increased PHB production. Disruptions of sll0461, coding for gamma-glutamyl phosphate reductase (proA), and sll0565, a hypothetical protein, resulted in increased accumulation in standard growth media and acetate supplemented media. These genetic perturbations have increased PHB accumulation in Synechocystis and serve as markers for engineering increased polymer production in higher photosynthetic organisms.
Collapse
Affiliation(s)
- Keith E J Tyo
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
11
|
Yang D, Qing Y, Min C. Incorporation of the chlorophyll d-binding light-harvesting protein from Acaryochloris marina and its localization within the photosynthetic apparatus of Synechocystis sp. PCC6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:204-11. [DOI: 10.1016/j.bbabio.2009.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/11/2009] [Accepted: 10/14/2009] [Indexed: 11/30/2022]
|
12
|
Mohamed HE, van de Meene AML, Roberson RW, Vermaas WFJ. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:6883-92. [PMID: 16199557 PMCID: PMC1251633 DOI: 10.1128/jb.187.20.6883-6892.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxoxanthophyll is a carotenoid glycoside in cyanobacteria that is of unknown biological significance. The sugar moiety of myxoxanthophyll in Synechocystis sp. strain PCC 6803 was identified as dimethyl fucose. The open reading frame sll1213 encoding a fucose synthetase orthologue was deleted to probe the role of fucose and to determine the biological significance of myxoxanthophyll in Synechocystis sp. strain PCC 6803. Upon deletion of sll1213, a pleiotropic phenotype was obtained: when propagated at 0.5 micromol photons m(-2) s(-1), photomixotrophic growth of cells lacking sll1213 was poor. When grown at 40 micromol photons m(-2) s(-1), growth was comparable to that of the wild type, but cells showed a severe reduction in or loss of the glycocalyx (S-layer). As a consequence, cells aggregated in liquid as well as on plates. At both light intensities, new carotenoid glycosides accumulated, but myxoxanthophyll was absent. New carotenoid glycosides may be a consequence of less-specific glycosylation reactions that gained prominence upon the disappearance of the native sugar moiety (fucose) of myxoxanthophyll. In the mutant, the N-storage compound cyanophycin accumulated, and the organization of thylakoid membranes was altered. Altered cell wall structure and thylakoid membrane organization and increased cyanophycin accumulation were also observed for deltaslr0940K, a strain lacking zeta-carotene desaturase and thereby all carotenoids but retaining fucose. Therefore, lack of myxoxanthophyll and not simply of fucose results in most of the phenotypic effects described here. It is concluded that myxoxanthophyll contributes significantly to the vigor of cyanobacteria, as it stabilizes thylakoid membranes and is critical for S-layer formation.
Collapse
Affiliation(s)
- Hatem E Mohamed
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501, USA
| | | | | | | |
Collapse
|
13
|
Mohamed HE, Vermaas W. Slr1293 in Synechocystis sp. strain PCC 6803 Is the C-3',4' desaturase (CrtD) involved in myxoxanthophyll biosynthesis. J Bacteriol 2004; 186:5621-8. [PMID: 15317766 PMCID: PMC516807 DOI: 10.1128/jb.186.17.5621-5628.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When grown at high light intensity, more than a quarter of the total carotenoids in the unicellular cyanobacterium Synechocystis consists of myxoxanthophyll, a polar carotenoid glycoside. The biosynthetic pathway of myxoxanthophyll is unknown but is presumed to involve a number of enzymes, including a C-3',4' desaturase required to add one double bond to generate 11 conjugated double bonds in the monocyclic myxoxanthophyll. A candidate for this desaturase is Slr1293, which was identified by genome similarity searching. To determine whether Slr1293 is a desaturase recognizing neurosporene and lycopene, slr1293 was expressed in Escherichia coli strains accumulating neurosporene or lycopene. Confirming such a desaturase function for Slr1293, these E. coli strains accumulated 3',4'-didehydroneurosporene and 3',4'-didehydrolycopene, respectively. Indeed, deletion of slr1293 in Synechocystis provides further evidence that Slr1293 is a desaturase recognizing neurosporene: In the slr1293 deletion mutant, neurosporene was found to accumulate and was further processed to produce neurosporene glycoside. Neurosporene hereby becomes a primary candidate to be the branch point molecule between carotene and myxoxanthophyll biosynthesis in this cyanobacterium. The slr1293 gene was concluded to encode a C-3',4' desaturase that is essential for myxoxanthophyll biosynthesis, and thus it was designated as crtD. Furthermore, as Slr1293 appears to recognize neurosporene and to catalyze the first committed step on the myxoxanthophyll biosynthesis pathway, Slr1293 plays a pivotal role in directing a portion of the precursor pool for carotenoid biosynthesis toward myxoxanthophyll biosynthesis in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Hatem E Mohamed
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501, USA
| | | |
Collapse
|
14
|
Xu H, Vavilin D, Funk C, Vermaas W. Multiple Deletions of Small Cab-like Proteins in the Cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2004; 279:27971-9. [PMID: 15107425 DOI: 10.1074/jbc.m403307200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of the genes for four or five small Cab-like proteins (SCPs) in photosystem (PS) I-less and PS I-less/PS II-less strains of Synechocystis sp. PCC 6803 caused a large decrease in the chlorophyll and carotenoid content of the cells without accumulation of early intermediates in the chlorophyll biosynthesis pathway, suggesting limited chlorophyll availability. The PS II/PS I ratio increased upon deletion of multiple SCPs in a wild type background, similar to what is observed in the presence of subsaturating concentrations of gabaculin, an inhibitor of an early step in the tetrapyrrole biosynthesis pathway. Upon deletion of multiple SCPs, neither 77 K fluorescence emission properties of phycobilisomeless thylakoids from the PS I-less/PS II-less strain nor the energy trapping efficiency of PS II were affected, indicating that under steady-state conditions SCPs do not bind much chlorophyll and do not serve as PS II antenna. Under conditions where protochlorophyllide reduction and thus chlorophyll synthesis were inhibited, chlorophyll disappeared quickly in a mutant lacking all five SCPs. This implies a role of SCPs in stabilization of chlorophyll-binding proteins and/or in reuse of chlorophylls. Under these conditions of inhibited reduction of protochlorophyllide, the accumulation kinetics of this intermediate were greatly altered in the absence of the five SCPs. This indicates an alteration of tetrapyrrole biosynthesis kinetics by SCPs. Based on this and other evidence, we propose that SCPs bind carotenoids and transiently bind chlorophyll, aiding in the supply of chlorophyll to nascent or reassembling photosynthetic complexes, and regulate the tetrapyrrole biosynthesis pathway as a function of the demand for chlorophyll.
Collapse
Affiliation(s)
- Hong Xu
- School of Life Sciences and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | |
Collapse
|
15
|
Rhee KH. Photosystem II: the solid structural era. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:307-28. [PMID: 11340062 DOI: 10.1146/annurev.biophys.30.1.307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the precise role of photosystem II as an element of oxygenic photosynthesis requires knowledge of the molecular structure of this membrane protein complex. The past few years have been particularly exciting because the structural era of the plant photosystem II has begun. Although the atomic structure has yet to be determined, the map obtained at 6 A resolution by electron crystallography allows assignment of the key reaction center subunits with their associated pigment molecules. In the following, we first review the structural details that have recently emerged and then discuss the primary and secondary photochemical reaction pathways. Finally, in an attempt to establish the evolutionary link between the oxygenic and the anoxygenic photosynthesis, a framework structure common to all photosynthetic reaction centers has been defined, and the implications have been described.
Collapse
Affiliation(s)
- K H Rhee
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
16
|
Tichy M, Vermaas W. Combinatorial mutagenesis and pseudorevertant analysis to characterize regions in loop E of the CP47 protein in Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6296-301. [PMID: 11012684 DOI: 10.1046/j.1432-1327.2000.01718.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletion of the I265-F268 and T271-K277 regions in the large lumenally exposed loop of the CP47 protein are known to lead to a loss of photoautotrophic growth. Here, these regions have been investigated by combinatorial mutagenesis and pseudorevertant mapping. No single amino-acid residue in the I265-F268 region was found to be critical for function, but a large hydrophobic residue at position 267 and preferentially an aromatic residue at position 268 appeared to be required for photoautotrophic growth. Starting from an obligate photoheterotrophic mutant lacking the T271-K277 region, photoautotrophic pseudorevertants were generated with short in-frame tandem repeats near the site of the original deletion, partially or fully restoring the length of the original protein. These pseudorevertants were sensitive to oxygen indicating that the T271-K277 region may provide PS II stability and/or protection against oxygen-dependent photoinactivation. Pseudorevertants with much improved photoautotrophic growth were also generated for one of the combinatorial mutants in the I265-F268 region. Surprisingly, the secondary mutations in these pseudorevertants mapped to the ferrochelatase gene. We speculate that the secondary mutation in ferrochelatase gene resulted in altered ferrochelatase activity. Decreased heme (phycobilin) biosynthesis and/or increased chlorophyll biosynthesis could then lead to improved PS II performance of the combinatorial CP47 mutant.
Collapse
Affiliation(s)
- M Tichy
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|
17
|
Keilty AT, Ermakova-Gerdes SY, Vermaas WF. Probing the CD lumenal loop region of the D2 protein of photosystem II in Synechocystis sp. strain PCC 6803 by combinatorial mutagenesis. J Bacteriol 2000; 182:2453-60. [PMID: 10762245 PMCID: PMC111307 DOI: 10.1128/jb.182.9.2453-2460.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CD lumenal loop region of the photosystem II reaction center protein D2 contains residues involved in oxygen evolution. Since detailed structural information about this region is unavailable, an M13-based combinatorial mutagenesis approach was used to investigate structure-function relationships in this vital region of D2 in Synechocystis sp. strain PCC 6803. The CD loop coding region contains close to 100 nucleotides, and for effective mutagenesis, it was subdivided into four regions of seven to eight codons. A gain-of-function selection protocol was employed such that all mutants that were selected contained a functional D2 protein. In this way, conservation patterns of residues along with numbers and types of amino acid substitutions accommodated at each position for each set of mutants would indicate which residues in the CD loop may play important structural and functional roles. Results of this study have substantiated the importance of residues previously studied by site-directed mutagenesis such as Arg180 and His189 and have identified other previously unremarkable residues in the CD loop (such as Ser166, Phe169, and Ala170) that cannot be replaced by many other residues. In addition, the pliability of the CD loop was further tested using deletion and D1-D2 substitution constructs in M13. This showed that the length of the loop was important to its function, and in two cases, D2 could accommodate homologous sequences from D1, which forms a heterodimer with D2 in photosystem II, but not the other way around. This study of the CD loop in D2 provides valuable clues regarding the structural and functional requirements of the region.
Collapse
Affiliation(s)
- A T Keilty
- Department of Plant Biology, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA.
| | | | | |
Collapse
|
18
|
He Q, Schlich T, Paulsen H, Vermaas W. Expression of a higher plant light-harvesting chlorophyll a/b-binding protein in Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:561-70. [PMID: 10406967 DOI: 10.1046/j.1432-1327.1999.00526.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A chimeric lhcb gene, coding for Lhcb, a higher plant chlorophyll a/b-binding light-harvesting complex of photosystem II (LHCII), was constructed using the Synechocystis sp. PCC 6803 psbA3 promoter and a modified lhcb gene from pea. This construct drives synthesis of full-length, mature Lhcb under the control of the strong psbA3 promoter that usually drives expression of the D1 protein of photosystem II. This chimeric gene was transformed into a photosystem I-less/chlL(-) Synechocystis sp. PCC 6803 strain that is unable to synthesize chlorophyll in darkness. In the resulting strain, a high level of lhcb transcript was detected and transcript accumulation was enhanced by addition of exogenous Zn-chlorophyllide b. The chimeric lhcb gene was translated to produce full-length Lhcb as demonstrated by pulse-labeling: a new radioactively labeled band of a size corresponding to full-length Lhcb was visible on autoradiograms. Using Triton X-114 phase fractionation, this labeled protein band was found to partition to the phase containing integral membrane proteins, indicating that the pulse-labeled Lhcb is readily integrated into the membrane. However, Lhcb was rapidly degraded and did not accumulate in thylakoid membranes to levels that were detectable other than by pulse labeling. Upon immunological detection with LHCII antibodies, a small protein (approximately 8 kDa) was found specifically in the lhcb-containing mutant. We interpret this protein to be a degradation product of the full-length Lhcb. This fragment was stabilized by supplementing cells with xanthophylls, which incorporated into thylakoid membranes only in the mutant carrying lhcb. The lutein/chlorophyll ratio of thylakoids of this mutant was about 1 : 10. These results indicate that in this cyanobacterial system Lhcb is synthesized, integrated into the membrane, and then degraded to a approximately 8 kDa fragment that is stabilized by pigment binding and does not require the presence of chlorophyll b.
Collapse
Affiliation(s)
- Q He
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, Tempe, AZ 85287-1601, USA
| | | | | | | |
Collapse
|
19
|
Putnam-Evans C, Wu J, Bricker TM. Site-directed mutagenesis of the CP 47 protein of photosystem II: alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop E. PLANT MOLECULAR BIOLOGY 1996; 32:1191-1195. [PMID: 9002620 DOI: 10.1007/bf00041405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. The large extrinsic loop E of this protein has been shown to interact with the oxygen-evolving site. Previously, Vermaas and coworkers have produced a number of deletions within loop E which yielded mutants which were unable to grow photoautotrophically and which could not evolve oxygen at normal rates. During the course of our site-directed mutagenesis program in Synechocystis 6803, we have altered all of the conserved charged residues which were present within six of these deletions. All ten of these mutants were photoautotrophic and evolved oxygen at normal rates. We speculate that the severe phenotypes of the deletion mutants observed by Vermaas and coworkers is due to large structural perturbations in the extrinsic loop E of CP 47.
Collapse
Affiliation(s)
- C Putnam-Evans
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | |
Collapse
|
20
|
Wu J, Putnam-Evans C, Bricker TM. Site-directed mutagenesis of the CP 47 protein of photosystem II: 167W in the lumenally exposed loop C is required for photosystem II assembly and stability. PLANT MOLECULAR BIOLOGY 1996; 32:537-542. [PMID: 8980503 DOI: 10.1007/bf00019106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. Using site-directed mutagenesis we have produced the mutant W167S which lies in loop C of CP 47. This strain exhibited a 75% loss in oxygen evolution activity and grew extremely slowly in the absence of glucose. Examination of normalized oxygen evolution traces indicated that the mutant was susceptible to photoinactivation. Analysis of the variable fluorescence yield indicated that the mutant accumulated very few functional PS II reaction centers. This was confirmed by immunoblotting experiments. Interestingly, when W167S was grown in the presence of 20 microM DCMU, the mutant continued to exhibit these defects. These results indicate that tryptophan 167 in loop C of CP 47 is important for the assembly and stability of the PS II reaction center.
Collapse
Affiliation(s)
- J Wu
- Department of Plant Biology, Louisiana State University, Baton Rouge 70803, USA
| | | | | |
Collapse
|
21
|
Vermaas WF, Shen G, Ohad I. Chimaeric CP47 mutants of the cyanobacterium Synechocystis sp. PCC 6803 carrying spinach sequences: Construction and function. PHOTOSYNTHESIS RESEARCH 1996; 48:147-162. [PMID: 24271295 DOI: 10.1007/bf00041005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/1995] [Accepted: 12/06/1995] [Indexed: 06/02/2023]
Abstract
Chimaeric mutants of the cyanobacterium Synechocystis sp. PCC 6803 have been generated carrying part or all of the spinach psbB gene, encoding CP47 (one of the chlorophyll-binding core antenna proteins in Photosystem II). The mutant in which the entire psbB gene had been replaced by the homologous gene from spinach was an obligate photoheterotroph and lacked Photosystem II complexes in its thylakoid membranes. However, this strain could be transformed with plasmids carrying selected regions of Synechocystis psbB to give rise to photoautotrophs with a chimaeric spinach/cyanobacterial CP47 protein. This process involved heterologous recombination in the cyanobacterium between psbB sequences from spinach and Synechocystis 6803; which was found to be reasonably effective in Synechocystis. Also other approaches were used that can produce a broad spectrum of chimaeric mutants in a single experiment. Functional characterization of the chimaeric photoautotrophic mutants indicated that if a decrease in the photoautotrophic growth rates was observed, this was correlated with a decrease in the number of Photosystem II reaction centers (on a chlorophyll basis) in the thylakoid membrane and with a decrease in oxygen evolution rates. Remaining Photosystem II reaction centers in these chimaeric mutants appeared to function rather normally, but thermoluminescence and chlorophyll a fluorescence measurements provided evidence for a destabilization of QB (-). This illustrates the sensitivity of the functional properties of the PS II reaction center to mild perturbations in a neighboring protein.
Collapse
Affiliation(s)
- W F Vermaas
- Department of Botany, Arizona State University, 85287-1601, Tempe, AZ, USA
| | | | | |
Collapse
|
22
|
Kaneko T, Matsubayashi T, Sugita M, Sugiura M. Physical and gene maps of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome. PLANT MOLECULAR BIOLOGY 1996; 31:193-201. [PMID: 8704155 DOI: 10.1007/bf00020621] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A physical map of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome has been constructed with restriction endonucleases PmeI, SwaI, and an intron-encoded endonuclease I-CeuI. The estimated size of the genome is 2.7 Mb. On the genome 49 genes or operons have been mapped. Two rRNA operons are separated by 600 kb and transcribed oppositely.
Collapse
Affiliation(s)
- T Kaneko
- Center for Gene Research, Nagoya University, Japan
| | | | | | | |
Collapse
|
23
|
Ermakova-Gerdes S, Shestakov S, Vermaas W. Random chemical mutagenesis of a specific psbDI region coding for a lumenal loop of the D2 protein of photosystem II in Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1996; 30:243-254. [PMID: 8616249 DOI: 10.1007/bf00020111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To identify amino acid residues of the D2 protein that are critical fo r functional photosystem II (PS II), sodium bisulfite was utilized for in vitro random mutagenesis of the psbDI gene from Synechocystis sp. PCC 6803. Sodium bisulfite reacts specifically with cytosine in single-stranded regions of DNA and does not attack double-stranded DNA. Using a hybrid plasmid that was single-stranded in the region to be mutagenized and that was double-stranded elsewhere, mutations were targeted to a specific psbDI region coding for the lumenal A-B loop of the D2 protein. Several mutants were isolated with a total of 15 different amino acid changes in the loop. The majority of these mutations did not result in a loss of photoautotrophic growth or in significantly altered PS II function. However, mutation of Glu-69 to Lys, Ser-79 to Phe, and Ser-88 to Phe were found to influence photosystem II activity; the importance of the latter two residues for proper PS II function was unexpected. Cells carrying the double mutation S79F/S88F in D2 did not grow photoautotrophically and had no functionally active PS II centers. The single mutant S79F was also incapable of photoautotrophic growth, but displayed reasonably stable oxygen evolution, while PS II function in the single mutant S88F appeared to be close to normal. Because of the more pronounced phenotype of the S79F/S88F strain as compared to the single mutants, both Ser residues appear to affect stable assembly and function of the PS II complex. The mechanism by which the S79F mutant loses photoautotrophic growth remains to be established. However, these results show the potential of targeted random mutagenesis to identify functionally important residues in selected regions of proteins.
Collapse
Affiliation(s)
- S Ermakova-Gerdes
- Department of Botany and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, AZ 85287-1601, USA
| | | | | |
Collapse
|
24
|
Jennings RC, Bassi R, Zucchelli G. Antenna structure and energy transfer in higher plant photosystems. ELECTRON TRANSFER II 1996. [DOI: 10.1007/3-540-60110-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Wu Q, Vermaas WF. Light-dependent chlorophyll a biosynthesis upon chlL deletion in wild-type and photosystem I-less strains of the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1995; 29:933-945. [PMID: 8555457 DOI: 10.1007/bf00014967] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL- mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL- strain, greening occurred at the same rate at two different light intensities (5 and 50 microE m-2 s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding 'chelator' protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.
Collapse
Affiliation(s)
- Q Wu
- Department of Botany, Arizona State University, Tempe 85287-1601, USA
| | | |
Collapse
|
26
|
Churin YN, Shalak IN, Börner T, Shestakov SV. Physical and genetic map of the chromosome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 1995; 177:3337-43. [PMID: 7768838 PMCID: PMC177031 DOI: 10.1128/jb.177.11.3337-3343.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A combined physical and genetic map of the cyanobacterium Synechocystis sp. strain PCC 6803 chromosome was constructed. An estimated genome size of 3.82 Mb was obtained by summing the sizes of 25 MluI or 40 NotI fragments seen by pulsed-field electrophoresis. The order of the restriction fragments was determined by using two independent experimental approaches: pulsed-field fragment hybridization and linking clone analysis. The relative positions of 30 known genes or gene clusters were localized.
Collapse
Affiliation(s)
- Y N Churin
- Department of Genetics, Humboldt University Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WF, Renger G. Involvement of the CP47 protein in stabilization and photoactivation of a functional water-oxidizing complex in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 1995; 34:6847-56. [PMID: 7756315 DOI: 10.1021/bi00020a031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oscillation patterns of the oxygen yield per flash induced by a train of single-turnover flashes were measured as a function of dark incubation and different pre-illumination conditions in several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions within the large, lumen-exposed hydrophilic region (loop E) of the chlorophyll a-binding photosystem II protein CP47. A physiological and biochemical characterization of these mutant strains has been presented previously [Eaton-Rye, J. J., & Vermaas, W. F. J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J. J., Renger, G., & Vermaas, W. F. J. (1993) Biochemistry 32, 4444-4454], and some functional properties were described recently [Gleiter, H. M., Haag, E., Shen, J.-R., Eaton-Rye, J. J., Inoue, Y., Vermaas, W. F. J., & Renger, G. (1994) Biochemistry 33, 12063-12071]. The present study shows that in several mutants the water-oxidizing complex (WOC) became inactivated during prolonged dark incubation, whereas the WOC of the wild-type strain remained active. The rate and extent of the inactivation in the mutants depend on the domain of loop E, where 3-8 amino acid residues were deleted. The most pronounced effects are observed in mutants delta(A373-D380) and delta(R384-V392). A competent WOC can be restored from the fully inactivated state by illumination with short saturating flashes. The number of flashes required for this process strongly depends on the site at which a deletion has been introduced into loop E. Again, the most prominent effects were found in mutants delta(A373-D380) and delta(R384-V392). Interestingly, the number of flashes required for activation was reduced by more than an order of magnitude in both mutants by the addition of 10 mM CaCl2 to the cell suspension. On the basis of a model for photoactivation proposed by Tamura and Cheniae (1987) [Biochim. Biophys. Acta 890, 179-194], a scheme is presented for the processes of dark inactivation and photoactivation in these mutants. The results presented here corroborate an important role of the large hydrophilic domain (loop E) of CP47 in a functional and stable WOC.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer-Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hong L, Stevenson JK, Roth WB, Hallick RB. Euglena gracilis chloroplast psbB, psbT, psbH and psbN gene cluster: regulation of psbB-psbT pre-mRNA processing. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:180-8. [PMID: 7753027 DOI: 10.1007/bf00705648] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 2.4 kb region of the Euglena gracilis chloroplast genome containing the genes psbT, psbH and psbN was characterized. The mRNAs transcribed from psbB, psbT, psbH and psbN were analyzed by northern hybridization, S1 nuclease protection analysis and primer extension RNA sequencing. The gene pairs psbB-psbT and psbH-psbN are cotranscribed from opposite strands. The 5' end of the psbN-psbH transcript and the intercistronic cleavage sites between psbB-psbT and psbN-psbH were determined. The extent of psbB-psbT intercistronic cleavage is greater during photoautotrophic than heterotrophic growth and thus may be developmentally regulated. Processing is absent in the non-photosynthetic E. gracilis mutant Y9Z1NaL.
Collapse
Affiliation(s)
- L Hong
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
29
|
Sugita M, Sugita C, Sugiura M. Structure and expression of the gene encoding ribosomal protein S1 from the cyanobacterium Synechococcus sp. strain PCC 6301: striking sequence similarity to the chloroplast ribosomal protein CS1. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:142-7. [PMID: 7862084 DOI: 10.1007/bf00294676] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem II P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
30
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Inoue Y, Vermaas WF, Renger G. Functional characterization of mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in photosystem II. Biochemistry 1994; 33:12063-71. [PMID: 7918426 DOI: 10.1021/bi00206a008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions or a single-site mutation within the large, lumen-exposed loop (loop E) of the chlorophyll a-binding photosystem II core protein, CP47, are analyzed for their functional properties by measuring the flash-induced pattern of thermoluminescence, oxygen yield, and fluorescence quantum yield. A physiological and biochemical characterization of these mutant strains has been given in two previous reports [Eaton-Rye, J.J., & Vermaas, W.F.J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J.J., Renger, G., & Vermaas, S. F.J. (1993) Biochemistry 32, 4444-4454]. The results of the present study show that deletion of charged and conserved amino acids in a region roughly located between residues 370 and 390 decreases the binding affinity of the extrinsic PS II-O protein to photosystem II. Marked differences with PSII-O deletion mutants are observed with respect to Ca2+ requirement and the flash-induced pattern of oxygen evolution. Under conditions where a sufficient light activation is provided, the psbB mutants assayed in this study reveal normal S-state parameters and lifetimes. The results bear two basic implications: (i) the manganese involved in water oxidation can still be bound in a functionally normal or only slightly distorted manner, and (ii) the binding of the extrinsic PS II-O protein to photosystem II is impaired in mutants carrying a deletion in the domain between residues 370 and 390, but the presence of the PS II-O protein is still of functional relevance for the PS II complex, e.g., for maintenance of a high-affinity binding site for Ca2+ and/or involvement during the process of photoactivation.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Vermaas WF. Evolution of heliobacteria: Implications for photosynthetic reaction center complexes. PHOTOSYNTHESIS RESEARCH 1994; 41:285-294. [PMID: 24310035 DOI: 10.1007/bf02184169] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/1994] [Accepted: 03/10/1994] [Indexed: 06/02/2023]
Abstract
The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein shows rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.
Collapse
Affiliation(s)
- W F Vermaas
- Department of Botany, Arizona State University, 85287-1601, Tempe, AZ, USA
| |
Collapse
|
32
|
Marraccini P, Cassier-Chauvat C, Bulteau S, Chavez S, Chauvat F. Light-regulated promoters from Synechocystis PCC6803 share a consensus motif involved in photoregulation. Mol Microbiol 1994; 12:1005-12. [PMID: 7934892 DOI: 10.1111/j.1365-2958.1994.tb01088.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A library of Synechocystis PCC6803 (S.6803) DNA cloned in front of the promoterless cat reporter gene of the plasmid pFF11 was used to transform S.6803 to high light-dependent resistance to chloramphenicol. In five clones harbouring a stably replicating pFF11-derived plasmid, this phenotype occurred independently of the photosystem II electron transport and resulted from the correlated increase of CAT activity level and cat mRNA accumulation. The five promoter inserts contained no Escherichia coli sigma 70 promoter element, in agreement with their lack of activity in this organism, but shared two conserved motifs. Two secondary mutations, which restored light-regulated promoter activity to an inactive mutant of the smallest insert, mapped within one of the common motifs, emphasizing the probable involvement of this element in photoregulation.
Collapse
Affiliation(s)
- P Marraccini
- Service de Biochemie et Génétique Moléculaire, CEA Saclay, Gif Sur Yvette, France
| | | | | | | | | |
Collapse
|
33
|
Woolf VM, Wittmershaus BP, Vermaas WF, Tran TD. Resolution of low-energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 at 77 and 295 K through fluorescence excitation anisotropy. PHOTOSYNTHESIS RESEARCH 1994; 40:21-34. [PMID: 24311211 DOI: 10.1007/bf00019042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/1992] [Accepted: 11/08/1993] [Indexed: 06/02/2023]
Abstract
Fluorescence excitation spectra of highly anisotropic emission from Photosystem I (PS I) were measured at 295 and 77 K on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). When PS I was excited with light at wavelengths greater than 715 nm, fluorescence observed at 745 nm was highly polarized with anisotropies of 0.32 and 0.20 at 77 and 295 K, respectively. Upon excitation at shorter wavelengths, the 745-nm fluorescence had low anisotropy. The highly anisotropic emission observed at both 77 and 295 K is interpreted as evidence for low-energy chlorophylls (Chls) in cyanobacteria at room temperature. This indicates that low-energy Chls, defined as Chls with first excited singlet-state energy levels below or near that of the reaction center, P700, are not artifacts of low-temperature measurements.If the low-energy Chls are a distinct subset of Chls and a simple two-pool model describes the excitation transfer network adequately, one can take advantage of the low-energy Chls' high anisotropy to approximate their fluorescence excitation spectra. Maxima at 703 and 708 nm were calculated from 295 and 77 K data, respectively. Upper limits for the number of low-energy Chls per P700 in PS I from S. 6803 were calculated to be 8 (295 K) and 11 (77 K).
Collapse
Affiliation(s)
- V M Woolf
- Department of Physics and Astronomy, Arizona State University, 85287, Tempe, AZ, USA
| | | | | | | |
Collapse
|
34
|
Sayre RT, Wrobel-Boerner EA. Molecular topology of the Photosystem II chlorophyll a binding protein, CP 43: Topology of a thylakoid membrane protein. PHOTOSYNTHESIS RESEARCH 1994; 40:11-19. [PMID: 24311210 DOI: 10.1007/bf00019041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/1993] [Accepted: 11/07/1993] [Indexed: 06/02/2023]
Abstract
We have used antibodies generated against synthetic peptides to determine the topology of the 43 kD chlorophyll a binding protein (CP 43) of Photosystem II. Based on the pattern of proteolytic fragments detected (on western blots) by peptide specific antibodies, a six transmembrane span topological model, with the amino and carboxyl termini located on the stromal membrane surface, is predicted. This structure is similar to that predicted for CP 47, a PS II chlorophyll a binding protein (Bricker T (1990) Photosynth Res 24: 1-13). The model is discussed in reference to the possible location of chlorophyll binding sites.
Collapse
Affiliation(s)
- R T Sayre
- Department of Plant Biology, Ohio State University, 2021 Coffey Road, 43210, Columbus, OH, USA
| | | |
Collapse
|
35
|
Kuhn MG, Vermaas WF. Deletion mutations in a long hydrophilic loop in the photosystem II chlorophyll-binding protein CP43 in the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1993; 23:123-133. [PMID: 8219045 DOI: 10.1007/bf00021425] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In order to investigate the role and function of the hydrophilic region between transmembrane regions V and CI in the photosystem II core antenna protein CP43, we introduced eight different deletions in psbC of Synechocystis sp; PCC 6803 resulting in a loss of 7-11 codons in evolutionary conserved domains in this region. All deletions resulted in an obligate photoheterotrophic phenotype (requirement of glucose for cell growth) and the absence of any detectable oxygen evolution activity. The various deletion mutations showed a different impact on the amount of CP43 in the thylakoid, ranging from wild-type levels of (a now slightly smaller) CP43 to no detectable CP43 at all. All deletions led to a decrease in the amount of the D1 and D2 proteins in the thylakoids with a larger effect on D2 than on D1. CP47, the other major chlorophyll-binding protein, was present in reduced but significant amounts in the thylakoid. Herbicide binding (diuron) was lost in all but one mutant indicating the PSII components are not assembled into functionally intact complexes. Fluorescence-emission spectra confirmed this notion. This indicates that the large hydrophilic loop of CP43 plays an important role in photosystem II, and even though a shortened CP43 is present in thylakoids of most mutants, functional characteristics resembled that of a mutant with interrupted psbC.
Collapse
Affiliation(s)
- M G Kuhn
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | |
Collapse
|
36
|
Carpenter SD, Ohad I, Vermaas WF. Analysis of chimeric spinach/cyanobacterial CP43 mutants of Synechocystis sp. PCC 6803: the chlorophyll-protein CP43 affects the water-splitting system of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:204-12. [PMID: 8369339 DOI: 10.1016/0005-2728(93)90174-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutants of the cyanobacterium Synechocystis sp. PCC 6803 have been generated in which parts of psbC (the gene encoding the Photosystem II chlorophyll-protein CP43) have been replaced with the homologous gene fragment from spinach. Upon the replacement of all but the 3' 84 bp of the cyanobacterial psbC gene with the homologous fragment from spinach, an obligate photoheterotrophic mutant was generated. Two photoautotrophic derivatives of this mutant were made reincorporating 3' cyanobacterial sequences back into the spinach psbC gene of the mutant. These two mutants are similar to each other, carrying a chimeric CP43 with the N-terminal half from spinach. These mutants are photosynthetically active at a rate of about half that of wild type, which correlates with a decreased Photosystem II/chlorophyll ratio in these mutants. Thylakoids from the chimeric mutants contain a CP43 protein which migrates slightly more slowly on SDS-polyacrylmide gels than the native Synechocystis CP43. Interestingly, these mutants show significant shifts in thermoluminescence peaks, reflecting altered thermodynamic properties of the back reaction between the acceptor side and the water-splitting system. On the basis of the oscillations of these shifts with number of flashes, we conclude that S2 is stabilized and S3 is destabilized in these mutants. This represents evidence for an involvement of CP43 in events associated with water splitting.
Collapse
Affiliation(s)
- S D Carpenter
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|
37
|
Ermakova SY, Elanskaya IV, Kallies KU, Weihe A, Börner T, Shestakov SV. Cloning and sequencing of mutantpsbB genes of the cyanobacteriumSynechocystis PCC 6803. PHOTOSYNTHESIS RESEARCH 1993; 37:139-146. [PMID: 24317710 DOI: 10.1007/bf02187472] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/1992] [Accepted: 05/19/1993] [Indexed: 06/02/2023]
Abstract
Ten strains from a collection of mutants ofSynechocystis 6803 defective in Photosystem II (PS II) function were transformed with chromosomal DNA of wild-type and mutant cells. Cross hybridization data allowed to identify four groups of PS II-mutants. Highly efficient transformation was observed between different mutant groups, but not within the groups. Restoration of photosynthetic activity of the mutant cells was also achieved by transformation with different parts of a 5.6 kbBam HI fragment of wild typeSynechocystis DNA containing thepsbB gene. Each group of mutants was transformed to photoautotrophic growth by specific subfragments of thepsbB gene. DNA fragments of four selected mutant strains hybridizing with thepsbB gene were isolated and sequenced. The mutations were identified as a single nucleotide insertion or substitution leading to stop codon formation in two of the mutants, as a deletion of 12 nucleotides, or as a nucleotide substitution resulting in an amino acid substitution in the other two mutants. Deletion of 12 nucleotides in mutant strain PMB1 and stop codon formation in strain NF16 affect membrane-spanning regions of the gene product, the CP 47 protein.
Collapse
Affiliation(s)
- S Y Ermakova
- Department of Genetics, Moscow State University, 119899, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
38
|
Kulkarni RD, Mueller UW, Golden SS. Nucleotide sequence of psbB from Synechococcus sp. strain PCC 7942. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:329-32. [PMID: 8318542 DOI: 10.1016/0167-4781(93)90132-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide sequence was determined for the Synechococcus sp. strain PCC 7942 psbB gene, which encodes the CP-47 protein of Photosystem II. The derived amino-acid sequence is highly conserved with those from other cyanobacterial and chloroplast psbB sequences. Transcript mapping experiments indicated two psbB transcription start sites in Synechococcus.
Collapse
Affiliation(s)
- R D Kulkarni
- Department of Biology, Texas A&M University, College Station 77843
| | | | | |
Collapse
|
39
|
Shen G, Eaton-Rye JJ, Vermaas WF. Mutation of histidine residues in CP47 leads to destabilization of the photosystem II complex and to impairment of light energy transfer. Biochemistry 1993; 32:5109-15. [PMID: 8494886 DOI: 10.1021/bi00070a019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Site-directed mutagenesis has been used to change conserved histidine residues in hydrophobic regions of the photosystem II chlorophyll-binding protein CP47 in the cyanobacterium Synechocystis sp. PCC 6803. Nine mutants with one, four mutants with two, and four mutants with three His mutations in CP47 have been generated and characterized. Mutation of any one of seven different His residues to Tyr leads to slower photoautotrophic growth and apparent destabilization of the PS II complex. Mutations introduced into multiple His residues in one mutant exhibited a cumulative effect. Replacing His by Asn leads to a much smaller effect than observed upon mutation to Tyr. This is consistent with the hypothesis that the mutated His residues are chlorophyll ligands: Asn can substitute as chlorophyll ligand, whereas Tyr cannot. Further evidence supporting a role of the mutated His residues in chlorophyll binding comes from measurements of the light intensity needed to half-saturate oxygen evolution. All His mutants with impaired PS II function needed higher light intensities for half-saturation than wild type. A possible explanation for this decrease in antenna efficiency in the mutants is a loss of the Mg in the chlorophyll due to a loss of the fifth ligand, and thus the formation of a pheophytin molecule in the antenna. We conclude that conserved His residues in hydrophobic regions of CP47 indeed are chlorophyll ligands and that these ligands are important for PS II stability as well as efficient antenna function.
Collapse
Affiliation(s)
- G Shen
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|
40
|
Synthesis and turnover of photosystem II reaction center polypeptides in cyanobacterial D2 mutants. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53189-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Mohamed A, Eriksson J, Osiewacz HD, Jansson C. Differential expression of the psbA genes in the cyanobacterium Synechocystis 6803. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:161-8. [PMID: 8479422 DOI: 10.1007/bf00279543] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 5' region and transcription initiation sites of the psbA-2 and psbA-3 genes of Synechocystis 6803 were determined. The otherwise highly homologous genes were shown to diverge significantly in the 5' noncoding regions. The transcription start site for the psbA-2 gene was mapped to position -49 upstream of the coding region and for the psbA-3 gene to position -88, i.e. 38 bp upstream of the psbA-2 transcription start point. Both genes exhibit promoter elements, which conform in sequence and position to Escherichia coli consensus motifs. The two genes share identical -35 sequences but differ in their -10 sequences. Primer extension analysis demonstrated that the psbA-2 and psbA-3 genes are differentially expressed, with > 90% of the total psbA transcripts being produced by the psbA-2 gene and the rest by the psbA-3 gene. Inactivation of the psbA-2 gene resulted in an eightfold up-regulation of the psbA-3 gene. The strikingly higher stability of the psbA transcripts in darkness compared to light, and the accumulation of a specific decay intermediate under dark conditions was reported previously. We show here that this dark-stability applies to both the psbA-2 and psbA-3 transcripts. The psbA-3 transcript did not appear to produce the processed intermediate, arguing for the involvement of the 5' non-coding region as a determinant in psbA transcript degradation.
Collapse
Affiliation(s)
- A Mohamed
- Department of Biochemistry, Arrhenius Laboratories, University of Stockholm, Sweden
| | | | | | | |
Collapse
|
42
|
Odom WR, Bricker TM. Interaction of CPa-1 with the manganese-stabilizing protein of photosystem II: identification of domains cross-linked by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Biochemistry 1992; 31:5616-20. [PMID: 1610808 DOI: 10.1021/bi00139a027] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural organization of photosystem II proteins has been investigated by use of the zero-length protein cross-linking reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and monoclonal and polyclonal antibody reagents. Photosystem II membranes were treated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide which cross-links amino groups to carboxyl groups which are in van der Waals contact. This treatment did not affect the oxygen evolution rates of these membranes and increased the retention of oxygen evolution after CaCl2 washing. Analysis of the proteins cross-linked by this treatment indicated that two cross-linked species with apparent molecular masses of 95 and 110 kDa were formed which cross-reacted with antibodies against both the 33-kDa manganese-stabilizing protein and the chlorophyll protein CPa-1. Cleavage of the 110-kDa cross-linked species with cyanogen bromide followed by N-terminal sequence analysis was used to identify the peptide fragments of CPa-1 and the manganese-stabilizing protein which were cross-linked. Two cyanogen bromide fragments were identified with apparent molecular masses of 50 and 25 kDa. N-Terminal sequence analysis of the 50-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa fragment of CPa-1 and the intact manganese-stabilizing protein. This strongly suggests that the manganese-stabilizing protein is cross-linked to the large extrinsic loop domain of CPa-1. N-Terminal analysis of the 25-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa peptide of CPa-1 and the N-terminal 8-kDa peptide of the manganese-stabilizing protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W R Odom
- Department of Botany, Louisiana State University, Baton Rouge 70803
| | | |
Collapse
|
43
|
Osiewacz HD. Construction of insertion mutants of Synechocystis sp. PCC 6803: evidence for an essential function of subunit IV of the cytochrome b6/f complex. Arch Microbiol 1992; 157:336-42. [PMID: 1590707 DOI: 10.1007/bf00248678] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene encoding subunit IV of the cytochrome b6/f complex (petD) has been isolated from a genomic library of the unicellular cyanobacterium Synechocystis sp. PCC 6803. The coding region consists of 480 nucleotides and can code for a polypeptide with a molecular weight of 17.5 kDa. The deduced amino acid sequence shows high identity with the corresponding sequences of both the photoautotrophic prokaryote Nostoc sp. PCC 7906 as well as of lower and higher photoautotrophic eukaryotes (e.g. Chlorella prototecoides, Nicotiana tabacum). Transformation of Synechocystis sp. PCC 6803 with a plasmid containing the cloned petD gene in which the coding sequence is interrupted by the aminoglycoside 3'-phosphotransferase gene (aph) from Tn903 resulted in the formation of km resistant transformants. The molecular analysis of independent transformants revealed that all clones were merodiploid containing both uninterrupted wild-type as well as interrupted mutant petD copies. Approaches to segregate these two genomes were unsuccessful implying an essential function of the petD gene product in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- H D Osiewacz
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität, Bochum, Federal Republik of Germany
| |
Collapse
|
44
|
Monod C, Goldschmidt-Clermont M, Rochaix JD. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1992; 231:449-59. [PMID: 1371579 DOI: 10.1007/bf00292715] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated and characterized a nuclear mutant, 222E, in Chlamydomonas reinhardtii, which is defective in photosystem II (PSII). Polypeptide P5, the product of psbB, is not produced in this mutant, leading to a destabilization of other PSII components. The mutant specifically fails to accumulate psbB transcripts and displays an altered transcription pattern downstream of psbB. Pulse-labelling experiments suggest that mRNA stability and/or processing are affected by the alteration of a nuclear gene product in this mutant. We show that the C. reinhardtii psbB gene is co-transcribed with a small open reading frame that is highly conserved in location and amino acid sequence in land plants. The 5' and 3' termini of the psbB transcript have been mapped to 35 bases upstream of the initiation codon and approximately 600 bases downstream of the stop codon. The 3' flanking region contains two potential stem-loops, of which the larger (with an estimated free energy of -46 kcal) is near the 3' terminus of the transcript.
Collapse
Affiliation(s)
- C Monod
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
45
|
van der Bolt F, Vermaas W. Photoinactivation of photosystem II as studied with site-directed D2 mutants of the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/s0005-2728(05)80343-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Eaton-Rye JJ, Vermaas WF. Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1991; 17:1165-1177. [PMID: 1932693 DOI: 10.1007/bf00028733] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutant strain of the cyanobacterium Synechocystis sp. PCC (Pasteur Culture Collection) 6803 has been developed in which psbB, the gene coding for the chlorophyl alpha-binding protein CP47 in Photosystem II (PSII), has been deleted. This deletion mutant can be used for the reintroduction of modified psbB into the cyanobacterium. To study the role of a large hydrophilic region in CP47, presumably located on the lumenal side of the thylakoid membrane between the fifth and sixth membrane-spanning regions, specific deletions have been introduced in psbB coding for regions within this domain. One psbB mutation leads to deletion of Gly-351 to Thr-365 in CP47, another psbB mutation was targeted towards deletion of Arg-384 to Val-392 in this protein. The deletion from Gly-351 to Thr-365 results in a loss of PSII activity and of photoautotrophic growth of the mutant, but the deletion between Arg-384 and Val-392 retains PSII activity and the ability to grow photoautotrophically. The mutant strain with the deletion from Gly-351 to Thr-365 does not assemble a stable PSII reaction center complex in its thylakoid membranes, and exhibits diminished levels of CP47 and of the reaction center proteins D1 and D2. In contrast to the Arg-384 to Val-392 portion of this domain, the region between Gly-351 and Thr-365 appears essential for the normal structure and function of photosystem II.
Collapse
Affiliation(s)
- J J Eaton-Rye
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | |
Collapse
|
47
|
Ikeuchi M, Eggers B, Shen G, Webber A, Yu J, Hirano A, Inoue Y, Vermaas W. Cloning of the psbK gene from Synechocystis sp. PCC 6803 and characterization of photosystem II in mutants lacking PSII-K. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99134-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Bassi R, Rigoni F, Giacometti GM. CHLOROPHYLL BINDING PROTEINS WITH ANTENNA FUNCTION IN HIGHER PLANTS and GREEN ALGAE. Photochem Photobiol 1990. [DOI: 10.1111/j.1751-1097.1990.tb08457.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Expression of the mosquitocidal-protein genes ofBacillus thuringiensis subsp.israelensis and the herbicide-resistance genebar inSynechocystis PCC6803. Curr Microbiol 1990. [DOI: 10.1007/bf02092092] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
A requirement for phosphoenolpyruvate carboxylase in the cyanobacterium Synechococcus PCC 7942. Arch Microbiol 1990. [DOI: 10.1007/bf00245230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|