1
|
Li R, Wang Q, Li S, Chen L, Cai N, Xu Y. Study on the growth characteristics of Pinus yunnanensis seedlings based on hormonal regulation and chlorophyll metabolism. Sci Rep 2025; 15:6195. [PMID: 39979445 PMCID: PMC11842716 DOI: 10.1038/s41598-025-90589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Pinus yunnanensis is an important coniferous species for both ecological and economic purposes in Southwest China. However, its seedlings grow slowly and show low productivity, with notable trait variability under the same cultivation conditions. These characteristics limit its extensive use in reforestation and forest management. Photosynthesis is the foundational process for plant growth and biomass accumulation. Chlorophyll, as the essential pigment in photosynthesis, directly impacts the synthesis of organic materials and the increase in biomass. In this study, the seedlings of P. yunnanensis were classified into three grades (I, II, and III) using the mean value ± 1/2 standard deviation method (H ± 1/2σ). Various growth traits, such as the number of branches, plant height, stem thickness, needle length, root characteristics, and biomass, were measured at multiple time points. The content of photosynthetic pigments was determined using spectrophotometry, endogenous hormone levels were analyzed by LC-MS/MS, and the expression of genes related to chlorophyll metabolism was detected through qRT-PCR. Pearson correlation analysis was employed to quantify the associations between hormone content, gene expression, and the seedlings' morphological characteristics. The results indicate that Grade I significantly outperform Grades II and III in terms of above-ground growth metrics. During the rapid growth period in March, Grade I seedlings had the highest chlorophyll content, potentially enhancing photosynthetic efficiency and increasing biomass allocation. Hormonal analysis revealed that compared to other grades, Grade I seedlings exhibited higher levels of ABA, JAs, and ACC, while Auxins and SAs were lower; there was no significant difference in CTK content between Grade I and Grade II, both of which were lower than in Grade III. qRT-PCR analysis confirmed that the expression of genes related to chlorophyll synthesis was significantly upregulated in Grade I seedlings. In contrast, the expression of genes associated with chlorophyll degradation was more active in Grade III seedlings. Correlation analysis further emphasized the strong link between hormone levels, gene expression, and growth traits. This study delves into the intrinsic mechanisms of morphological differentiation in P. yunnanensis seedlings by examining the synergistic effects of chlorophyll metabolism and endogenous hormone regulation. These findings can provide valuable references for cultivating high-quality seedlings, optimizing seed source selection, and improving afforestation techniques.
Collapse
Affiliation(s)
- Ruilian Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, 650224, Yunnan, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, 650224, Yunnan, China
| | - Qibo Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, 650224, Yunnan, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, 650224, Yunnan, China
| | - Sunling Li
- Yunnan Academy of Forestry and Grassland, Kunming, 650224, Yunnan, China
| | - Lin Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, 650224, Yunnan, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, 650224, Yunnan, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, 650224, Yunnan, China.
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, 650224, Yunnan, China.
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, 650224, Yunnan, China.
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, 650224, Yunnan, China.
| |
Collapse
|
2
|
Li Y, Fan Y, Jiao Y, Wu J, Zhang Z, Yu X, Ma Y. Transcriptome profiling of yellow leafy head development during the heading stage in Chinese cabbage (Brassica rapa subsp. pekinensis). PHYSIOLOGIA PLANTARUM 2019; 165:800-813. [PMID: 29900559 DOI: 10.1111/ppl.12784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/31/2018] [Accepted: 06/10/2018] [Indexed: 05/16/2023]
Abstract
The yellow leafy head of Brassica rapa is known to be tasty and nutritional. Therefore, the heading stage of leaf development is critical to realize high yield and economic benefits. A widely planted commercial cultivar of B. rapa ('Qiubao', deep yellow leafy head) was used to conduct transcriptome analysis. The results showed that the yellowing of the inner leaf was likely induced by the predominant β-carotene biosynthesis pathway due to the upregulated gene geranylgeranyl diphosphate and phytoene synthase, and the downregulated gene CrtL-e, NCED4 and DWARF-27. Some genes related to chlorophyll synthesis were also found to be downregulated, such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and protochlorophyllide reductase A. Transcript profiling also revealed strong changes in expression levels of hormonal genes related to auxin, cytokinin, ethylene, abscisic acid, gibberellin and brassinosteroids, suggesting the crucial role that hormones play in heading stage. Examination of carbohydrate and sucrose metabolism pathways revealed that sucrose biosynthesis is probably regulated by 6-phosphofructokinase and sucrose synthase 1 (SUS1/SuSy1) branch, instead of the sucrose-phosphate synthase branch. Several cold-response genes were induced in the late-heading stage, but the results suggest that the common C-repeat binding factor responsive pathway may not be involved in cold adaption. We also identified a series of upregulated transcription factors-AP2/ERF, MYB, bHLH, NAC and WRKY were found to be predominant. The transcripts analysis provides a preliminary genetic resource to unravel key genes and molecular mechanisms responsible for leafy head development in B. rapa, therefore, improving leafy head quality and yield through genetic means in future.
Collapse
Affiliation(s)
- Yuefei Li
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Yong Fan
- Liaoning Research Institute of Cash Crops, Liaoyang 111000, China
| | - Yang Jiao
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Jie Wu
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhen Zhang
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Xiaolei Yu
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Ying Ma
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
3
|
Kianianmomeni A. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri. BMC Genomics 2014; 15:764. [PMID: 25194509 PMCID: PMC4167131 DOI: 10.1186/1471-2164-15-764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. RESULTS In response to different light qualities, distinct changes in transcript accumulation of genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, circadian clock and cell cycle control were observed. Namely, blue light tends to be effective to accumulate transcripts in the somatic cells; while red light leads to accumulate transcripts predominantly in the reproductive cells. Blue light also induced marked accumulation of two components of circadian rhythms only in the somatic cells, indicating that these clock-relevant components are affected by blue light in a cell-type specific manner. Further, we show that photosynthetic associated genes are regulated distinctly among cell types by different light qualities. CONCLUSION Our results suggest that Volvox uses different sophisticated cell-type specific light signaling pathways to modulate expression of genes involved in various cellular and metabolic pathways including circadian rhythms and photosynthesis in response to environmental light.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr, 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
4
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
5
|
|
6
|
Im CS, Eberhard S, Huang K, Beck CF, Grossman AR. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:1-16. [PMID: 16972865 DOI: 10.1111/j.1365-313x.2006.02852.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phototropin (PHOT) is a photoreceptor involved in a variety of blue-light-elicited physiological processes including phototropism, chloroplast movement and stomatal opening in plants. The work presented here tests whether PHOT is involved in expression of light-regulated genes in Chlamydomonas reinhardtii. When C. reinhardtii was transferred from the dark to very low-fluence rate white light, there was a substantial increase in the level of transcripts encoding glutamate-1-semialdehyde aminotransferase (GSAT), phytoene desaturase (PDS) and light-harvesting polypeptides (e.g. LHCBM6). Increased levels of these transcripts were also elicited by low-intensity blue light, and this blue-light stimulation was suppressed in three different RNAi strains that synthesize low levels of PHOT. The levels of GSAT and LHCBM6 transcripts also increased following exposure of algal cells to low-intensity red light (RL). The red-light-dependent increase in transcript abundance was not affected by the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, implying that the influence of RL on transcript accumulation was not controlled by cytoplasmic redox conditions, and that a red-light photoreceptor(s) may be involved in regulating the levels of transcripts from specific photosynthesis-related genes in C. reinhardtii. Interestingly, elevated GSAT and LHCBM6 transcript levels in RL were significantly reduced in the PHOT RNAi strains, which raises the possibility of co-action between blue and RL signaling pathways. Microarray experiments indicated that the levels of several transcripts for photosystem (PS) I and II polypeptides were also modulated by PHOT. These data suggest that, in C. reinhardtii, (i) PHOT is involved in blue-light-mediated changes in transcript accumulation, (ii) synchronization of the synthesis of chlorophylls (Chl), carotenoids, Chl-binding proteins and other components of the photosynthetic apparatus is achieved, at least in part, through PHOT-mediated signaling, and (iii) a red-light photoreceptor can also influence levels of certain transcripts associated with photosynthetic function, although its action requires normal levels of PHOT.
Collapse
Affiliation(s)
- Chung-Soon Im
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94306, USA.
| | | | | | | | | |
Collapse
|
7
|
Shao N, Vallon O, Dent R, Niyogi KK, Beck CF. Defects in the cytochrome b6/f complex prevent light-induced expression of nuclear genes involved in chlorophyll biosynthesis. PLANT PHYSIOLOGY 2006; 141:1128-37. [PMID: 16679422 PMCID: PMC1489919 DOI: 10.1104/pp.106.081059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 05/09/2023]
Abstract
Mutants with defects in the cytochrome (cyt) b6/f complex were analyzed for their effect on the expression of a subgroup of nuclear genes encoding plastid-localized enzymes participating in chlorophyll biosynthesis. Their defects ranged from complete loss of the cytb6/f complex to point mutations affecting specifically the quinone-binding QO site. In these seven mutants, light induction of the tetrapyrrole biosynthetic genes was either abolished or strongly reduced. In contrast, a normal induction of chlorophyll biosynthesis genes was observed in mutants with defects in photosystem II, photosystem I, or plastocyanin, or in wild-type cells treated with 3-(3'4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl benzoquinone. We conclude that the redox state of the plastoquinone pool does not control light induction of these chlorophyll biosynthetic genes. The signal that affects expression of the nuclear genes appears to solely depend on the integrity of the cytb6/f complex QO site. Since light induction of these genes in Chlamydomonas has recently been shown to involve the blue light receptor phototropin, the results suggest that cytb6/f activity regulates a plastid-derived factor required for their expression. This signaling pathway differs from that which regulates state transitions, since mutant stt7, lacking a protein kinase involved in phosphorylation of the light-harvesting complex II, was not altered in the expression of the chlorophyll biosynthetic genes.
Collapse
Affiliation(s)
- Ning Shao
- Institut fuer Biologie III, Universitaet Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Atteia A, van Lis R, Beale SI. Enzymes of the heme biosynthetic pathway in the nonphotosynthetic alga Polytomella sp. EUKARYOTIC CELL 2005; 4:2087-97. [PMID: 16339726 PMCID: PMC1317499 DOI: 10.1128/ec.4.12.2087-2097.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/25/2005] [Indexed: 11/20/2022]
Abstract
Heme biosynthesis involves a number of enzymatic steps which in eukaryotes take place in different cell compartments. Enzyme compartmentalization differs between photosynthetic and nonphotosynthetic eukaryotes. Here we investigated the structures and subcellular localizations of three enzymes involved in the heme pathway in Polytomella sp., a colorless alga evolutionarily related to the green alga Chlamydomonas reinhardtii. Functional complementation of Escherichia coli mutant strains was used to isolate cDNAs encoding three heme biosynthetic enzymes, glutamate-1-semialdehyde aminotransferase, protoporphyrinogen IX oxidase, and ferrochelatase. All three proteins show highest similarity to their counterparts in photosynthetic organisms, including C. reinhardtii. All three proteins have N-terminal extensions suggestive of intracellular targeting, and immunoblot studies indicate their enrichment in a dense cell fraction that is enriched in amyloplasts. These results suggest that even though the plastids of Polytomella sp. are not photosynthetically active, they are the major site of heme biosynthesis. The presence of a gene for glutamate-1-semialdehyde aminotransferase suggests that Polytomella sp. uses the five-carbon pathway for synthesis of the heme precursor 5-aminolevulinic acid.
Collapse
Affiliation(s)
- Ariane Atteia
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
9
|
Nogaj LA, Srivastava A, van Lis R, Beale SI. Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 139:389-96. [PMID: 16126849 PMCID: PMC1203387 DOI: 10.1104/pp.105.067009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
5-Aminolevulinic acid (ALA) is the first committed universal precursor in the tetrapyrrole biosynthesis pathway. In plants, algae, and most bacteria, ALA is generated from glutamate. First, glutamyl-tRNA synthetase activates glutamate by ligating it to tRNA(Glu). Activated glutamate is then converted to glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR). Finally, GSA is rearranged to ALA by GSA aminotransferase (GSAT). In the unicellular green alga Chlamydomonas reinhardtii, GTR and GSAT were found in the chloroplasts and were not detected in the mitochondria by immunoblotting. The levels of both proteins (assayed by immunoblotting) and their mRNAs (assayed by RNA blotting) were approximately equally abundant in cells growing in continuous dark or continuous light (fluorescent tubes, 80 micromol photons s(-1) m(-2)), consistent with the ability of the cells to form chlorophyll under both conditions. In cells synchronized to a 12-h-light/12-h-dark cycle, chlorophyll accumulated only during the light phase. However, GTR and GSAT were present at all phases of the cycle. The GTR mRNA level increased in the light and peaked about 2-fold at 2 h into the light phase, and GTR protein levels also increased and peaked 2-fold at 4 to 6 h into the light phase. In contrast, although the GSAT mRNA level increased severalfold at 2 h into the light phase, the level of GSAT protein remained approximately constant in the light and dark phases. Under all growth conditions, the cells contained significantly more GSAT than GTR on a molar basis. Our results indicate that the rate of chlorophyll synthesis in C. reinhardtii is not directly controlled by the expression levels of the mRNAs for GTR or GSAT, or by the cellular abundance of these enzyme proteins.
Collapse
Affiliation(s)
- Luiza A Nogaj
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
10
|
Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme. PLANT MOLECULAR BIOLOGY 2005; 58:643-58. [PMID: 16158240 DOI: 10.1007/s11103-005-6803-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/29/2005] [Indexed: 05/04/2023]
Abstract
Plants, algae, cyanobacteria and many other bacteria synthesize the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate by means of a tRNAGlu-mediated pathway. The enzyme glutamyl-tRNA reductase (GTR) catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. Chlamydomonas reinhardtii mRNA encoding gtr was sequenced from a cDNA and genomic libraries. The 3179-bp gtr cDNA contains a 1566-bp open reading frame that encodes a 522-amino acid polypeptide. After removal of the predicted transit peptide, the mature 480-residue GTR has a calculated molecular weight of 52,502. The deduced C. reinhardtii mature GTR amino acid sequence has more than 55% identity to a GTR sequence of Arabidopsis thaliana, and significant similarity to GTR proteins of other plants and prokaryotes. Southern blot analysis of C. reinhardtii genomic DNA indicates that C. reinhardtii has only one gtr gene. Genomic DNA sequencing revealed the presence of a small intron near the putative transit peptide cleavage site. Expression constructs for the full-length initial gtr translation product, the mature protein after transit peptide removal, and the coding sequence of the second exon were cloned into expression vector that also introduced a C-terminal His6 tag. All of these constructs were expressed in E. coli, and both the mature protein and the exon 2 translation product complemented a hemA mutation. The expressed proteins were purified by Ni-affinity column chromatography to yield active GTR. Purified mature GTR was not inhibited by heme, but heme inhibition was restored upon addition of C. reinhardtii soluble proteins.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, 02912, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
11
|
Nogaj LA, Beale SI. Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 2005; 280:24301-7. [PMID: 15890644 DOI: 10.1074/jbc.m502483200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, algae, and most bacteria, the heme and chlorophyll precursor 5-aminolevulinic acid (ALA) is formed from glutamate in a three-step process. First, glutamate is ligated to its cognate tRNA by glutamyl-tRNA synthetase. Activated glutamate is then converted to a glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR) in an NADPH-dependent reaction. Subsequently, GSA is rearranged to ALA by glutamate-1-semialdehyde aminotransferase (GSAT). The intermediate GSA is highly unstable under physiological conditions. We have used purified recombinant GTR and GSAT from the unicellular alga Chlamydomonas reinhardtii to show that GTR and GSAT form a physical and functional complex that allows channeling of GSA between the enzymes. Co-immunoprecipitation and sucrose gradient ultracentrifugation results indicate that recombinant GTR and GSAT enzymes specifically interact. In vivo cross-linking results support the in vitro results and demonstrate that GTR and GSAT are components of a high molecular mass complex in C. reinhardtii cells. In a coupled enzyme assay containing GTR and wild-type GSAT, addition of inactive mutant GSAT inhibited ALA formation from glutamyl-tRNA. Mutant GSAT did not inhibit ALA formation from GSA by wild-type GSAT. These results suggest that there is competition between wild-type and mutant GSAT for binding to GTR and channeling GSA from GTR to GSAT. Further evidence supporting kinetic interaction of GTR and GSAT is the observation that both wild-type and mutant GSAT stimulate glutamyl-tRNA-dependent NADPH oxidation by GTR.
Collapse
Affiliation(s)
- Luiza A Nogaj
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
12
|
Lohr M, Im CS, Grossman AR. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 138:490-515. [PMID: 15849308 PMCID: PMC1104202 DOI: 10.1104/pp.104.056069] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 05/19/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
13
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
14
|
Bougri OV, Korzun VN, Grimm B. Chromosomal Assignment of the Genes Encoding Glutamyl-tRNA Reductase in Barley, Wheat, and Rye and Their Organization in the Barley Genome. Hereditas 2004. [DOI: 10.1111/j.1601-5223.1996.00001.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Reisdorph NA, Small GD. The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis. PLANT PHYSIOLOGY 2004; 134:1546-54. [PMID: 15064387 PMCID: PMC419830 DOI: 10.1104/pp.103.031930] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 10/26/2003] [Accepted: 01/21/2004] [Indexed: 05/19/2023]
Abstract
Cryptochromes are proteins related to DNA photolyases and have been shown to function as blue-light photoreceptors and to play important roles in circadian rhythms in both plants and animals. The CPH1 gene from Chlamydomonas reinhardtii was originally predicted to encode a putative cryptochrome protein of 867 amino acids with a predicted molecular mass of 91 kD (Small et al., 1995). However, western blotting with antibodies specific to the CPH1 protein revealed the presence of two proteins that migrate at apparent molecular mass of approximately 126 and 143 kD. A reexamination of the assigned intron-exon boundaries has shown that the previously assigned intron 7 is in fact part of exon 7 which leads to a predicted protein of 1,007 amino acids corresponding to a size of 104.6 kD. The two forms of CPH1 that migrate slower on SDS-PAGE presumably result from unknown posttranslational modifications. In C. reinhardtii cells synchronized by light to dark cycles, the two slow migrating forms of CPH1 protein accumulate in the dark and disappear rapidly in the light. Both red and blue light are effective at inducing the degradation of the CPH1 proteins. Proteasomes are implicated because degradation is inhibited by MG132, a proteasome inhibitor. Studies with deletion mutants indicate that the C-terminal region is important for both the posttranslational modification and the protein's stability under both light and dark conditions.
Collapse
Affiliation(s)
- Nichole A Reisdorph
- Cellular and Molecular Biology Group, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
16
|
Vasileuskaya Z, Oster U, Beck CF. Involvement of tetrapyrroles in inter-organellar signaling in plants and algae. PHOTOSYNTHESIS RESEARCH 2004; 82:289-99. [PMID: 16143841 DOI: 10.1007/s11120-004-2160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 07/21/2004] [Indexed: 05/04/2023]
Abstract
For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg-porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg-rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg-tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.
Collapse
Affiliation(s)
- Zinaida Vasileuskaya
- Institut fuer Biologie III, Albert-Ludwigs-Universitaet, Schaenzlestrasse 1, 79104, Freiburg, Germany,
| | | | | |
Collapse
|
17
|
Tsang EWT, Hu Z, Chang Q, McGregor DI, Keller WA. Expression of a Brassic napus glutamate 1-semialdehyde aminotransferase in Escherichia coli and characterization of the recombinant protein. Protein Expr Purif 2003; 29:193-201. [PMID: 12767809 DOI: 10.1016/s1046-5928(03)00010-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate 1-semialdehyde aminotransferase (GSA-AT) is a key regulatory enzyme, which converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA) in chlorophyll biosynthesis. ALA is the universal precursor for the synthesis of chlorophyll, heme, and other tetrapyrroles. To study the regulation of chlorophyll biosynthesis in Brassica napus, two cDNA clones of GSA-AT were isolated for genetic manipulation. A SalI-XbaI fragment from one of the two cDNA clones of GSA-AT was used for recombinant protein expression by inserting it at the 3' end of a calmodulin-binding-peptide (CBP) tag of the pCaln vector. The CBP tagged recombinant protein, expressed in Escherichia coli, was purified to apparent homogeneity in a one step purification process using a calmodulin affinity column. The purified CBP tagged GSA-AT is biologically active and has a specific activity of 16.6 nmol/min/mg. Cleavage of the CBP tag from the recombinant protein with thrombin resulted in 9.2% loss of specific activity. However, removal of the cleaved CBP tag from the recombinant protein solution resulted in 60% loss of specific activity, suggesting possible interactions between the recombinant protein and the CBP tag. The enzyme activity of the CBP tagless recombinant protein, referred as TR-GSA-AT hereafter, was not affected by the addition of pyridoxamine 5' phosphate (PMP). Addition of glutamate and pyridoxal 5' phosphate (PLP) to the TR-GSA-AT enhanced the enzyme activity by 3-fold and 3.6-fold, respectively. Addition of both glutamate and PLP increased the enzyme activity by 4.6-fold. Similar to the GSA-AT of B. napus, the active TR-GSA-AT is a dimeric protein of 88 kDa with 45.5 kDa subunits. As the SalI-XbaI fragment encodes a biologically active GSA-AT that has the same molecular mass as the native GSA-AT, it is concluded that the SalI-XbaI fragment is the coding sequence of GSA-AT. The highly active polyclonal antibodies generated from TR-GSA-AT were used for the detection of GSA-AT of B. napus.
Collapse
Affiliation(s)
- Edward W T Tsang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9.
| | | | | | | | | |
Collapse
|
18
|
Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD. Molecular map of the Chlamydomonas reinhardtii nuclear genome. EUKARYOTIC CELL 2003; 2:362-79. [PMID: 12684385 PMCID: PMC154841 DOI: 10.1128/ec.2.2.362-379.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022]
Abstract
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.
Collapse
Affiliation(s)
- Pushpa Kathir
- Department of Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bohne F, Linden H. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1579:26-34. [PMID: 12401216 DOI: 10.1016/s0167-4781(02)00500-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carotenoids are ubiquitous and essential components of photosynthetic tissues in plants, algae and cyanobacteria. They participate in the light harvesting process and prevent photooxidative damage of the photosynthetic apparatus. Although de-etiolation and growth under different light conditions were reported to have pronounced effects on carotenoid contents in higher plants and algae, very little is known about the light regulation of carotenogenesis on a molecular level. In the present study, we chose the unicellular green alga Chlamydomonas reinhardtii to investigate the regulation of carotenoid biosynthesis genes in response to light. The carotenoid genes phytoene synthase and phytoene desaturase were selected for gene expression studies. Both phytoene synthase and phytoene desaturase revealed a fast up-regulation in response to light, which seemed to be due to transcriptional control. Only blue light was effective whereas illumination with red light did not lead to elevated transcript levels of phytoene synthase and phytoene desaturase. The inhibition of photosynthesis did not abolish the light induction of carotenoid genes. Comparison with published results showed that the carotenoid genes are simultaneously expressed with other genes involved in chlorophyll biosynthesis and light harvesting. This simultaneous expression may represent one mechanism for the coordinated biosynthesis of carotenoids, chlorophylls and the proteins of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Felix Bohne
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-78434 Constance, Germany
| | | |
Collapse
|
20
|
Drazic G, Bogdanovic M. Gabaculine does not inhibit cytokinin-stimulated biosynthesis of chlorophyll in Pinus nigra seedlings in the dark. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:23-29. [PMID: 10725555 DOI: 10.1016/s0168-9452(99)00236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chlorophyll (Chl) accumulation was monitored during black pine (Pinus nigra L.) seed germination for 14 days in the light and in the dark in the presence of gabaculine (GAB) and cytokinin in order to elucidate the regulation of gymnosperm seedling greening in the dark, primarily at the level of aminolevulinic acid formation. In the light, GAB inhibited chlorophyll accumulation in a manner dependent on concentration and developmental stage, and in the dark it showed no effect. Cytokinin, 10(-5) M benzyl adenine (BA) partly overcame GAB-induced inhibition in the light, mainly during earlier developmental stages. In the seedlings grown in the dark, an equal quantity of Chl accumulated in the presence of cytokinin with and without GAB and it was approximately 20-40% higher than in the control seedlings or in the seedlings grown only in the presence of GAB. 5-Amino-levulinic acid (ALA) synthesis was equal in the light and in the dark in seedlings of the same age and seedlings treated with GAB grown in the dark. In the light, GAB inhibited ALA synthetic activity. The results indicate that ALA synthesis is not a rate-limiting step within Chl biosynthesis in pine seedlings grown in the dark.
Collapse
Affiliation(s)
- G Drazic
- Institute for the Application of Nuclear Energy, Banatska 31b, 11080, Zemun, Yugoslavia
| | | |
Collapse
|
21
|
Quinn JM, Nakamoto SS, Merchant S. Induction of coproporphyrinogen oxidase in Chlamydomonas chloroplasts occurs via transcriptional regulation of Cpx1 mediated by copper response elements and increased translation from a copper deficiency-specific form of the transcript. J Biol Chem 1999; 274:14444-54. [PMID: 10318870 DOI: 10.1074/jbc.274.20.14444] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coproporphyrinogen III oxidase, encoded by a single nuclear gene in Chlamydomonas reinhardtii, produces three distinct transcripts. One of these transcripts is greatly induced in copper-deficient cells by transcriptional activation, whereas the other forms are copper-insensitive. The induced form of the transcript was expressed coordinately with the cytochrome c6-encoding (Cyc6) gene, which is known to be transcriptionally regulated in copper-deficient cells. The sequence GTAC, which forms the core of a copper response element associated with the Cyc6 gene, is also essential for induction of the Cpx1 gene, suggesting that both are targets of the same signal transduction pathway. The constitutive and induced Cpx1 transcripts have the same half-lives in vivo, and all encode the same polypeptide with a chloroplast-targeting transit sequence, but the shortest one representing the induced form is a 2-4-fold better template for translation than are either of the constitutive forms. The enzyme remains localized to a soluble compartment in the chloroplast even in induced cells, and its abundance is not affected when the tetrapyrrole pathway is manipulated either genetically or by gabaculine treatment.
Collapse
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
22
|
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:323-43. [PMID: 8647070 DOI: 10.1111/j.1432-1033.1996.00323.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
All living organisms contain tetrapyrroles. In plants, chlorophyll (chlorophyll a plus chlorophyll b) is the most abundant and probably most important tetrapyrrole. It is involved in light absorption and energy transduction during photosynthesis. Chlorophyll is synthesized from the intact carbon skeleton of glutamate via the C5 pathway. This pathway takes place in the chloroplast. It is the aim of this review to summarize the current knowledge on the biochemistry and molecular biology of the C5-pathway enzymes, their regulated expression in response to light, and the impact of chlorophyll biosynthesis on chloroplast development. Particular emphasis will be placed on the key regulatory steps of chlorophyll biosynthesis in higher plants, such as 5-aminolevulinic acid formation, the production of Mg(2+)-protoporphyrin IX, and light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), Switzerland
| | | |
Collapse
|
23
|
Kumar AM, Csankovszki G, Söll D. A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1996; 30:419-426. [PMID: 8605295 DOI: 10.1007/bf00049321] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
5-Aminolevulinic acid (ALA) is the universal precursor of tetrapyrroles (e.g., chlorophylls and hemes). In the chloroplasts of plants and in several eubacterial species ALA is formed in a two-step process known as the C5 pathway. In the first step, glutamyl-tRNA reductase (GluTR), converts glutamate of glutamyl-tRNA to glutamate 1-semialdehyde (GSA) which is rearranged to ALA by glutamate 1-semialdehyde-2,1-aminomutase (GSA-A) in the second step. Since ALA formation is a limiting step in chlorophyll biosynthesis, GluTR, which is encoded by the HEMA gene in Arabidopsis thaliana plays a vital role in that biosynthesis. Here we report the occurrence of a second functional HEMA gene (HEMA2) in A. thaliana. This gene was isolated by screening a genomic library with a probe from HEMA1. The nucleotide sequence of the cDNA and the corresponding genomic DNA indicates that the Arabidopsis HEMA2 gene contains two short introns (285 bp and 159 bp). The deduced amino acid sequence predicts a HEMA2 protein of 530 amino acids with 79% identity to the HEMA1-encoded GluTR. The 5'-flanking sequence of the HEMA2 gene includes several motifs (e.g., GT-1 boxes, GATA motifs) similar to light-responsive regulatory elements found in light-inducible genes. Unlike the HEMA1 transcript, which is present in all parts of the plant, HEMA2 is expressed in low levels in roots and flowers. The presence of a second functional HEMA gene in Arabidopsis raises the possibility that two C5 pathways exist in chloroplasts.
Collapse
Affiliation(s)
- A M Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8114, USA
| | | | | |
Collapse
|
24
|
Li J, Timko MP. The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. PLANT MOLECULAR BIOLOGY 1996; 30:15-37. [PMID: 8616232 DOI: 10.1007/bf00017800] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The pc-1 mutant of Chlamydomonas reinhardtii has been shown to be incapable of protochlorophyllide photoconversion in vivo and is thought to be defective in light-dependent NADPH:protochlorophyllide oxidoreductase activity. We have isolated and characterized the nuclear genes encoding this enzyme from wild-type and pc-1 mutant Chlamydomonas cells. The wild-type CRlpcr-1 gene encodes a 397 amino acid polypeptide of which the N-terminal 57 residues comprise the chloroplast transit sequence. The Chlamydomonas protochlorophyllide reductase has 66-70% identity (79-82% similarity) to the higher plant enzymes. Transcripts encoding protochlorophyllide reductase are abundant in dark-grown wild-type cells, but absent or at very low levels in cells grown in the light. Similarly, immunoreactive protochlorophyllide reductase protein is also present to a greater extent in dark- versus light-grown wild-type cells. Both pc-1 and pc-1 y-7 cells lack CRlpcr-1 mRNA and the major (36 kDa) immunodetectable form of protochlorophyllide reductase consistent with their inability to photoreduce protochlorophyllide. DNA sequence analysis revealed that the lpcr gene in pc-1 y-7 cells contains a two-nucleotide deletion within the fourth and fifth codons of the protochlorophyllide reductase precursor that causes a shift in the reading frame and results in premature termination of translation. The absence of protochlorophyllide reductase message in pc-1 and pc-1 y-7 cells is likely the consequence of this frameshift mutation in the lpcr gene. Introduction of the CRlpcr-1 gene into pc-1 y-7 cells by nuclear transformation was sufficient to restore the wild-type phenotype. Transformants contained both protochlorophyllide reductase mRNA and immunodetectable enzyme protein. These studies demonstrate that pc-1 was in fact a defect in protochlorophyllide reductase activity and provide the first in vivo molecular evidence that the lpcr gene product is essential for light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- J Li
- Department of Biology, University of Virginia, Charlottesville, 22903, USA
| | | |
Collapse
|
25
|
Hungerer C, Troup B, Römling U, Jahn D. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:375-80. [PMID: 7565600 DOI: 10.1007/bf02191605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rate-limiting step in the biosynthesis of tetrapyrroles is the formation of 5-aminolevulinic acid (ALA). In Pseudomonas aeruginosa ALA is synthesized via a two-step reaction from aminoacylated tRNA(Glu) by the action of glutamyl-tRNA reductase and glutamate-1-semialdehyde-2,1-amino mutase. To initiate an investigation of the regulation of the second step in ALA formation, the hemL gene was cloned from P. aeruginosa by complementation of an Escherichia coli hemL mutant. An open reading frame of 1284 bp encoding a protein of 427 amino acids with a calculated molecular mass of 45,404 Da was identified. The hemL gene was mapped to the SpeI fragment Z and the DpnI fragment J1 of the P. aeruginosa chromosome corresponding approximately to min 0.3-0.9. One transcription start site was located 280 bp upstream of the translational start site of the hemL gene. No classical sigma 70-dependent promoter was detected. Oxygen stress induced by the addition of H2O2 to the growth medium led to an approximately 3.5-fold increase in hemL expression as determined by mRNA dot blot assays. Anaerobic denitrifying growth led to a 2-fold stimulation of hemL transcription. Two additional open reading frames were detected downstream of the hemL gene. One open reading frame (orf1) of 549 bp encodes a protein of 182 amino acids with a calculated molecular mass of 19,638 Da.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Small GD, Min B, Lefebvre PA. Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family. PLANT MOLECULAR BIOLOGY 1995; 28:443-454. [PMID: 7632915 DOI: 10.1007/bf00020393] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The organization and nucleotide sequence of a gene from Chlamydomonas reinhardtii encoding a member of the DNA photolyase/blue light photoreceptor protein family is reported. A region of over 7 kb encompassing the gene was sequenced. Northern analysis detected a single 4.2 kb mRNA. The gene consists of eight exons and seven introns, and encodes a predicted protein of 867 amino acids. The first 500 amino acids exhibit significant homology with previously sequenced DNA photolyases, showing the closest relationship to mustard (Sinapis alba) photolyase (43% identity). An even higher identity, 49%, is obtained when the Chlamydomonas gene product is compared to the putative blue-light photoreceptor (HY4) from Arabidopsis thaliana. Both the Chlamydomonas and the Arabidopsis proteins differ from the well characterized DNA photolyases in that they contain a carboxyl terminal extension of 367 and 181 amino acids, respectively. However, there is very little homology between the carboxyl terminal domains of the two proteins. A previously isolated Chlamydomonas mutant, phr1, which is deficient in DNA photolyase activity, especially in the nucleus, was shown by RFLP analysis not to be linked to the gene we have isolated. We propose this gene encodes a candidate Chlamydomonas blue light photoreceptor.
Collapse
Affiliation(s)
- G D Small
- Department of Biochemistry and Molecular Biology, University of South Dakota, Vermillion 57069, USA
| | | | | |
Collapse
|
27
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
28
|
Frustaci JM, Sangwan I, O'Brian MR. gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element. J Biol Chem 1995; 270:7387-93. [PMID: 7706283 DOI: 10.1074/jbc.270.13.7387] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of plant tetrapyrroles is high in photosynthetic tissues and in legume root nodules in the form of chlorophyll and heme, respectively. The universal tetrapyrrole precursor delta-aminolevulinic acid (ALA) is synthesized from glutamate 1-semialdehyde (GSA) by GSA aminotransferase in plants, which is encoded by gsa. Immunoblot analysis showed that GSA aminotransferase was expressed in soybean leaves and nodules, but not in roots, and that protein correlated with enzyme activity. These observations indicate that GSA aminotransferase expression is controlled in tetrapyrrole formation and argue against significant activity of an enzyme other than the well described aminotransferase for GSA-dependent ALA formation. gas mRNA and protein were induced in soybean nodules, and their activation was temporally intermediate between those of the respective early and late genes endo2 and lb. A GSA aminotransferase gene, designated gsa1, was isolated and appears to be one of two gsa genes in the soybean genome. gsa1 mRNA accumulated to high levels in leaves and nodules, but not in uninfected roots as discerned with a gsa1-specific probe. Message levels were higher in leaves from etiolated plantlets than in mature plants, and expression in the former was slightly elevated by light. The expression pattern of gsa1 mRNA was qualitatively similar to that of total gsa. The data strongly suggest that gsa1 is a universal tetrapyrrole synthesis gene and that a gsa gene specific for a tissue, tetrapyrrole, or light condition is unlikely. The gsa1 promoter contained a genetic element found in numerous Drosophila melanogaster genes; the so-called GAGA element displayed single-stranded character in vitro and formed a complex with nuclear factors from nodules and leaves but not from roots. From these observations we infer that the GAGA element is involved in the transcriptional control of gsa1.
Collapse
Affiliation(s)
- J M Frustaci
- Department of Biochemistry, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
29
|
Matters GL, Beale SI. Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, delta-aminolevulinic acid dehydratase (porphobilinogen synthase). PLANT MOLECULAR BIOLOGY 1995; 27:607-617. [PMID: 7894023 DOI: 10.1007/bf00019326] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
cDNA clones for the alad gene encoding the chlorophyll biosynthetic enzyme ALA dehydratase (ALAD) from Chlamydomonas reinhardtii were isolated by complementation of an Escherichia coli ALAD mutant (hemB). The C. reinhardtii alad gene encodes a protein that has 50 to 60% sequence identity with higher plant ALADs, and includes a putative Mg(2+)-binding domain characteristic of plant ALADs. Multiple classes of ALAD cDNAs were identified which varied in the length of their 3'-untranslated region. Genomic Southern analysis, using an ALAD cDNA as a probe, indicates that it is a single-copy gene. This suggests that the differently sized ALAD cDNAS are not the products of separate genes, but that a primary ALAD transcript is polyadenylated at multiple sites. A time course determination of ALAD mRNA levels in 12-h light:12-h dark synchronized cultures shows a 7-fold increase in ALAD mRNA at 2 h into the light phase. The ALAD mRNA level gradually declines but continues to be detectable up to the beginning of the dark phase. ALAD enzyme activity increases 3-fold by 6 h into the light phase and remains high through 10 h. Thus, there is an increase in both ALAD mRNA level and ALAD enzyme activity during the light phase, corresponding to the previously observed increase in the rate of chlorophyll accumulation.
Collapse
Affiliation(s)
- G L Matters
- Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | | |
Collapse
|