1
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Tóth Z. Analysis of Plant Physiological Parameters and Gene Transcriptional Changes Under the Influence of Humic Acid and Humic Acid-Amino Acid Combinations in Maize. Int J Mol Sci 2024; 25:13280. [PMID: 39769045 PMCID: PMC11676358 DOI: 10.3390/ijms252413280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The study investigated the application of humic acids (HAs) and a combination of humic acids and amino acids (HA+AA) in maize under field conditions. Based on preliminary data in the literature, the aim was to investigate the effects of the two plant conditioning compounds on plant physiological parameters. In addition to measuring plant physiological parameters in the field, a complete transcriptome analysis was performed to determine exactly which genes were expressed after the treatments and in which physiological processes they play a role. Maize plants showed significant positive yield changes after two priming treatments. Genome-wide transcriptomic analysis revealed the activation of photosynthetic and cellular respiration processes, as well as protein synthesis pathways, which explains the increased yield even under extreme precipitation conditions. The results show that the HA treatment helped in water management and increased the chlorophyll content, while the HA+AA treatment led to higher protein and dry matter contents. The post-harvest tests also show that the HA+AA treatment resulted in the highest yield parameters. Functional annotation of the maize super transcriptome revealed genes related to translation processes, photosynthesis, and cellular respiration. The combined pathway analysis showed that the HA and combined treatments activated genes related to photosynthesis, carbon fixation, and cellular respiration, providing valuable in-depth insight into the usefulness of the HA and HA+AA treatments in priming. Based on the studies, we believe that the use of natural-based humic acid plant conditioners may provide a beneficial opportunity to promote renewable, regenerative agriculture.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Zoltán Tóth
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
| |
Collapse
|
2
|
Bečková M, Sobotka R, Komenda J. Photosystem II antenna modules CP43 and CP47 do not form a stable 'no reaction centre complex' in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2022; 152:363-371. [PMID: 35015206 PMCID: PMC9458580 DOI: 10.1007/s11120-022-00896-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
The repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.
Collapse
Affiliation(s)
- Martina Bečková
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Roman Sobotka
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic.
| |
Collapse
|
3
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
4
|
Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc Natl Acad Sci U S A 2021; 118:2018053118. [PMID: 33495333 DOI: 10.1073/pnas.2018053118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyzes light-driven water oxidation, leading to the conversion of light energy into chemical energy and the release of molecular oxygen. Psb27 is a small thylakoid lumen-localized protein known to serve as an assembly factor for the biogenesis and repair of the PSII complex. The exact location and binding fashion of Psb27 in the intermediate PSII remain elusive. Here, we report the structure of a dimeric Psb27-PSII complex purified from a psbV deletion mutant (ΔPsbV) of the cyanobacterium Thermosynechococcus vulcanus, solved by cryo-electron microscopy. Our structure showed that Psb27 is associated with CP43 at the luminal side, with specific interactions formed between Helix 2 and Helix 3 of Psb27 and a loop region between Helix 3 and Helix 4 of CP43 (loop C) as well as the large, lumen-exposed and hydrophilic E-loop of CP43. The binding of Psb27 imposes some conflicts with the N-terminal region of PsbO and also induces some conformational changes in CP43, CP47, and D2. This makes PsbO unable to bind in the Psb27-PSII. Conformational changes also occurred in D1, PsbE, PsbF, and PsbZ; this, together with the conformational changes occurred in CP43, CP47, and D2, may prevent the binding of PsbU and induce dissociation of PsbJ. This structural information provides important insights into the regulation mechanism of Psb27 in the biogenesis and repair of PSII.
Collapse
|
5
|
Morris JN, Kovács S, Vass I, Summerfield TC, Eaton-Rye JJ. Environmental pH and a Glu364 to Gln mutation in the chlorophyll-binding CP47 protein affect redox-active TyrD and charge recombination in Photosystem II. FEBS Lett 2018; 593:163-174. [PMID: 30485416 DOI: 10.1002/1873-3468.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
In Photosystem II, loop E of the chlorophyll-binding CP47 protein is located near a redox-active tyrosine, YD , forming a symmetrical analog to loop E in CP43, which provides a ligand to the oxygen-evolving complex (OEC). A Glu364 to Gln substitution in CP47, near YD , does not affect growth in the cyanobacterium Synechocystis sp. PCC 6803; however, deletion of the extrinsic protein PsbV in this mutant leads to a strain displaying a pH-sensitive phenotype. Using thermoluminescence, chlorophyll fluorescence, and flash-induced oxygen evolution analyses, we demonstrate that Glu364 influences the stability of YD and the redox state of the OEC, and highlight the effects of external pH on photosynthetic electron transfer in intact cyanobacterial cells.
Collapse
Affiliation(s)
- Jaz N Morris
- Department of Botany, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | |
Collapse
|
6
|
Shukla MK, Llansola-Portoles MJ, Tichý M, Pascal AA, Robert B, Sobotka R. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. PHOTOSYNTHESIS RESEARCH 2018; 137:29-39. [PMID: 29280045 DOI: 10.1007/s11120-017-0475-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 05/07/2023]
Abstract
Cyanobacteria possess a family of one-helix high-light-inducible proteins (HLIPs) that are widely viewed as ancestors of the light-harvesting antenna of plants and algae. HLIPs are essential for viability under various stress conditions, although their exact role is not fully understood. The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains four HLIPs named HliA-D, and HliD has recently been isolated in a small protein complex and shown to bind chlorophyll and β-carotene. However, no HLIP has been isolated and characterized in a pure form up to now. We have developed a protocol to purify large quantities of His-tagged HliC from an engineered Synechocystis strain. Purified His-HliC is a pigmented homo-oligomer and is associated with chlorophyll and β-carotene with a 2:1 ratio. This differs from the 3:1 ratio reported for HliD. Comparison of these two HLIPs by resonance Raman spectroscopy revealed a similar conformation for their bound β-carotenes, but clear differences in their chlorophylls. We present and discuss a structural model of HliC, in which a dimeric protein binds four chlorophyll molecules and two β-carotenes.
Collapse
Affiliation(s)
- Mahendra Kumar Shukla
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 01, České Budějovice, Czech Republic
| | - Manuel J Llansola-Portoles
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Martin Tichý
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic
| | - Andrew A Pascal
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia, 370 01, České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Knoppová J, Yu J, Konik P, Nixon PJ, Komenda J. CyanoP is Involved in the Early Steps of Photosystem II Assembly in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:1921-31. [PMID: 27388341 DOI: 10.1093/pcp/pcw115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 05/07/2023]
Abstract
Although the PSII complex is highly conserved in cyanobacteria and chloroplasts, the PsbU and PsbV subunits stabilizing the oxygen-evolving Mn4CaO5 cluster in cyanobacteria are absent in chloroplasts and have been replaced by the PsbP and PsbQ subunits. There is, however, a distant cyanobacterial homolog of PsbP, termed CyanoP, of unknown function. Here we show that CyanoP plays a role in the early stages of PSII biogenesis in Synechocystis sp. PCC 6803. CyanoP is present in the PSII reaction center assembly complex (RCII) lacking both the CP47 and CP43 modules and binds to the smaller D2 module. A small amount of larger PSII core complexes co-purifying with FLAG-tagged CyanoP indicates that CyanoP can accompany PSII on most of its assembly pathway. A role in biogenesis is supported by the accumulation of unassembled D1 precursor and impaired formation of RCII in a mutant lacking CyanoP. Interestingly, the pull-down preparations of CyanoP-FLAG from a strain lacking CP47 also contained PsbO, indicating engagement of this protein with PSII at a much earlier stage in assembly than previously assumed.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| |
Collapse
|
8
|
Rast A, Rengstl B, Heinz S, Klingl A, Nickelsen J. The Role of Slr0151, a Tetratricopeptide Repeat Protein from Synechocystis sp. PCC 6803, during Photosystem II Assembly and Repair. FRONTIERS IN PLANT SCIENCE 2016; 7:605. [PMID: 27200072 PMCID: PMC4853703 DOI: 10.3389/fpls.2016.00605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 05/29/2023]
Abstract
The assembly and repair of photosystem II (PSII) is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR) protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis) has previously been assigned a repair function under high light conditions (Yang et al., 2014). Here, we show that inactivation of slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.
Collapse
Affiliation(s)
- Anna Rast
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Birgit Rengstl
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Steffen Heinz
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Jörg Nickelsen
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| |
Collapse
|
9
|
Selão TT, Zhang L, Knoppová J, Komenda J, Norling B. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2016; 57:95-104. [PMID: 26578692 DOI: 10.1093/pcp/pcv178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/09/2015] [Indexed: 05/09/2023]
Abstract
Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis.
Collapse
Affiliation(s)
- Tiago T Selão
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lifang Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jana Knoppová
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
10
|
Krynická V, Shao S, Nixon PJ, Komenda J. Accessibility controls selective degradation of photosystem II subunits by FtsH protease. NATURE PLANTS 2015; 1:15168. [PMID: 27251713 DOI: 10.1038/nplants.2015.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/07/2015] [Indexed: 05/21/2023]
Abstract
The oxygen-evolving photosystem II (PSII) complex located in chloroplasts and cyanobacteria is sensitive to light-induced damage(1) that unless repaired causes reduction in photosynthetic capacity and growth. Although a potential target for crop improvement, the mechanism of PSII repair remains unclear. The D1 reaction center protein is the main target for photodamage(2), with repair involving the selective degradation of the damaged protein by FtsH protease(3). How a single damaged PSII subunit is recognized for replacement is unknown. Here, we have tested the dark stability of PSII subunits in strains of the cyanobacterium Synechocystis PCC 6803 blocked at specific stages of assembly. We have found that when D1, which is normally shielded by the CP43 subunit, becomes exposed in a photochemically active PSII complex lacking CP43, it is selectively degraded by FtsH even in the dark. Removal of the CP47 subunit, which increases accessibility of FtsH to the D2 subunit, induced dark degradation of D2 at a faster rate than that of D1. In contrast, CP47 and CP43 are resistant to degradation in the dark. Our results indicate that protease accessibility induced by PSII disassembly is an important determinant in the selection of the D1 and D2 subunits to be degraded by FtsH.
Collapse
Affiliation(s)
- Vendula Krynická
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Center Algatech, Opatovický mlýn, Třeboň 379 81, Czech Republic
| | - Shengxi Shao
- Sir Ernst Chain Building, Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building, Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington campus, London SW7 2AZ, UK
| | - Josef Komenda
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Center Algatech, Opatovický mlýn, Třeboň 379 81, Czech Republic
| |
Collapse
|
11
|
Abstract
Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ∼ 250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlap with well-conserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA(Leu), which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.
Collapse
|
12
|
Knoppová J, Sobotka R, Tichý M, Yu J, Konik P, Halada P, Nixon PJ, Komenda J. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. THE PLANT CELL 2014; 26:1200-12. [PMID: 24681620 PMCID: PMC4001378 DOI: 10.1105/tpc.114.123919] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Martin Tichý
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter Konik
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences, 14220 Praha 4-Krč, Czech Republic
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London SW7 2AZ, United Kingdom
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Address correspondence to
| |
Collapse
|
13
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
14
|
Summerfield TC, Crawford TS, Young RD, Chua JPS, Macdonald RL, Sherman LA, Eaton-Rye JJ. Environmental pH affects photoautotrophic growth of Synechocystis sp. PCC 6803 strains carrying mutations in the lumenal proteins of PSII. PLANT & CELL PHYSIOLOGY 2013; 54:859-74. [PMID: 23444302 DOI: 10.1093/pcp/pct036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.0, but not pH 7.5. We investigated the basis of this pH effect and observed no pH-specific change in variable fluorescence yield from PSII centers of the wild type or the pH-dependent ΔPsbO:ΔPsbU and ΔPsbV:ΔCyanoQ strains; however, 77 K fluorescence emission spectra indicated increased coupling of the phycobilisome (PBS) antenna at pH 10.0 in all mutants. DNA microarray data showed a cell-wide response to transfer from pH 10.0 to pH 7.5, including decreased mRNA levels of a number of oxidative stress-responsive transcripts. We hypothesize that this transcriptional response led to increased tolerance against reactive oxygen species and in particular singlet oxygen. This response enabled photoautotrophic growth of the PSII mutants at pH 10.0. This hypothesis was supported by increased resistance of all strains to rose bengal at pH 10.0 compared with pH 7.5.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
15
|
Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ. The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2012; 158:476-86. [PMID: 22086423 PMCID: PMC3252115 DOI: 10.1104/pp.111.184184] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 05/20/2023]
Abstract
We have investigated the location of the Psb27 protein and its role in photosystem (PS) II biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. Native gel electrophoresis revealed that Psb27 was present mainly in monomeric PSII core complexes but also in smaller amounts in dimeric PSII core complexes, in large PSII supercomplexes, and in the unassembled protein fraction. We conclude from analysis of assembly mutants and isolated histidine-tagged PSII subcomplexes that Psb27 associates with the "unassembled" CP43 complex, as well as with larger complexes containing CP43, possibly in the vicinity of the large lumenal loop connecting transmembrane helices 5 and 6 of CP43. A functional role for Psb27 in the biogenesis of CP43 is supported by the decreased accumulation and enhanced fragmentation of unassembled CP43 after inactivation of the psb27 gene in a mutant lacking CP47. Unexpectedly, in strains unable to assemble PSII, a small amount of Psb27 comigrated with monomeric and trimeric PSI complexes upon native gel electrophoresis, and Psb27 could be copurified with histidine-tagged PSI isolated from the wild type. Yeast two-hybrid assays suggested an interaction of Psb27 with the PsaB protein of PSI. Pull-down experiments also supported an interaction between CP43 and PSI. Deletion of psb27 did not have drastic effects on PSII assembly and repair but did compromise short-term acclimation to high light. The tentative interaction of Psb27 and CP43 with PSI raises the possibility that PSI might play a previously unrecognized role in the biogenesis/repair of PSII.
Collapse
Affiliation(s)
- Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences, 37981 Trebon, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rengstl B, Oster U, Stengel A, Nickelsen J. An intermediate membrane subfraction in cyanobacteria is involved in an assembly network for Photosystem II biogenesis. J Biol Chem 2011; 286:21944-51. [PMID: 21531723 DOI: 10.1074/jbc.m111.237867] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early steps in the biogenesis of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 are thought to occur in a specialized membrane fraction that is characterized by the specific accumulation of the PSII assembly factor PratA and its interaction partner pD1, the precursor of the D1 protein of PSII. Here, we report the molecular characterization of this membrane fraction, called the PratA-defined membrane (PDM), with regard to its lipid and pigment composition and its association with PSII assembly factors, including YCF48, Slr1471, Sll0933, and Pitt. We demonstrate that YCF48 and Slr1471 are present and that the chlorophyll precursor chlorophyllide a accumulates in the PDM. Analysis of PDMs from various mutant lines suggests a central role for PratA in the spatial organization of PSII biogenesis. Moreover, quantitative immunoblot analyses revealed a network of interdependences between several PSII assembly factors and chlorophyll synthesis. In addition, formation of complexes containing both YCF48 and Sll0933 was substantiated by co-immunoprecipitation experiments. The findings are integrated into a refined model for PSII biogenesis in Synechocystis 6803.
Collapse
Affiliation(s)
- Birgit Rengstl
- Molekulare Pflanzenwissenschaften, Biozentrum, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
17
|
Fagerlund RD, Eaton-Rye JJ. The lipoproteins of cyanobacterial photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:191-203. [PMID: 21349737 DOI: 10.1016/j.jphotobiol.2011.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
Abstract
Photosystem II (PSII) complexes from cyanobacteria and plants perform water splitting and plastoquinone reduction and yet have a different complement of lumenal extrinsic proteins. Whereas PSII from all organisms has the PsbO extrinsic protein, crystal structures of PSII from cyanobacteria have PsbV and PsbU while green algae and higher plants instead contain the extrinsic PsbP and PsbQ subunits. Proteomic studies in Synechocystis sp. PCC 6803 identified three further extrinsic proteins in the thylakoid lumen that are associated with cyanobacterial PSII and these are predicted to attach to the thylakoid membrane via a lipidated N-terminus. These proteins are cyanobacterial homologues to the PsbP and PsbQ subunits as well as to Psb27, an additional extrinsic protein associated with "inactive" photosystems that lack the other extrinsic polypeptides. The PsbQ homologue is not present in Prochlorococcus species but otherwise these proteins have been identified in most cyanobacteria although our phylogenetic analyses identified some strains that lack an apparent motif for lipidation in one or other of these subunits. Over the past decade the physiological function of these additional lipoproteins has been investigated in several cyanobacterial strains and recently the structures for each have been solved. This review will evaluate the physiological and structural results obtained for these lipid-attached extrinsic proteins and in silico protein docking of these proteins to PSII centers will be presented.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
18
|
Eaton-Rye JJ. Construction of gene interruptions and gene deletions in the cyanobacterium Synechocystis sp. strain PCC 6803. Methods Mol Biol 2011; 684:295-312. [PMID: 20960137 DOI: 10.1007/978-1-60761-925-3_22] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of protocols are presented for the storage, growth, transformation, and characterization of wild type and mutant strains of Synechocystis sp. strain PCC 6803. These protocols include the isolation of genomic DNA and the strategies required for the construction of specific gene interruptions or deletions in this organism. This cyanobacterium has been used widely as a model for photosynthesis research, and the sequence of its genome is available at CyanoBase (http://genome.kazusa.or.jp/cyanobase/). The details provided in this chapter do not assume any previous experience in working with cyanobacteria and are intended to enable new investigators to take advantage of a wide range of gene modification and mutation mapping techniques that have been adapted for use in this system.
Collapse
|
19
|
Burut-Archanai S, Incharoensakdi A, Eaton-Rye JJ. The extended N-terminal region of SphS is required for detection of external phosphate levels in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2008; 378:383-8. [PMID: 19013133 DOI: 10.1016/j.bbrc.2008.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/06/2008] [Indexed: 11/17/2022]
Abstract
A novel 47 amino acid extension at the N-terminus of the SphS histidine kinase has been identified in the cyanobacterium Synechocystis sp. PCC 6803. Here, we demonstrate this region is required for activation of the SphS-SphR phosphate-sensing two-component system under phosphate-limiting conditions and mutants lacking this extension do not show constitutive alkaline phosphatase activity when the negative regulator SphU is inactivated. We have also identified a putative membrane-associated domain within this region involved in control of the Pho regulon. In addition, there are two high-affinity ABC-type phosphate uptake systems in this organism. Our results demonstrate that the Pst1 system, but not the Pst2 system, is required for suppression of the Pho regulon under phosphate-sufficient conditions. Deletion of the pst1 operon and disruption of the membrane-spanning domain may both target the same control mechanism since constitutive alkaline phosphatase activity is similar in the double and single mutants.
Collapse
|
20
|
Shimada Y, Tsuchiya T, Akimoto S, Tomo T, Fukuya M, Tanaka K, Mimuro M. Spectral properties of the CP43-deletion mutant of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2008; 98:303-314. [PMID: 18777104 DOI: 10.1007/s11120-008-9350-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 08/03/2008] [Indexed: 05/26/2023]
Abstract
Spectral properties, particularly fluorescence spectra and their time-dependent behavior, were investigated for a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the 43 kDa chlorophyll-protein (CP43, PsbC). Lack of CP43 was confirmed by a size shift of the corresponding gene and by Western blotting. The CP43-deletion mutant grown under heterotrophic conditions accumulated a small amount of photosystem (PS) II, but virtually no PS II fluorescence was observed. A 686-nm fluorescence band was clearly observed by phycocyanin excitation, coming from the terminal pigments of phycobilisomes. In contrast, no PS I fluorescence was detected by phycocyanin excitation when accumulation of PS II components was not proved by a fluorescence excitation spectrum, indicating that energy transfer to PS I chlorophyll a was mediated by PS II chlorophyll a. Direct connection of phycobilisomes with PS I was not suggested. Based on these fluorescence properties, the energy flow in the CP43-deletion mutant cells is discussed.
Collapse
Affiliation(s)
- Yuichiro Shimada
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Sobotka R, Dühring U, Komenda J, Peter E, Gardian Z, Tichy M, Grimm B, Wilde A. Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J Biol Chem 2008; 283:25794-802. [PMID: 18625715 DOI: 10.1074/jbc.m803787200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gun4 is a porphyrin-binding protein that activates magnesium chelatase, a multimeric enzyme catalyzing the first committed step in chlorophyll biosynthesis. In plants, GUN4 has been implicated in plastid-to-nucleus retrograde signaling processes that coordinate both photosystem II and photosystem I nuclear gene expression with chloroplast function. In this work we present the functional analysis of Gun4 from the cyanobacterium Synechocystis sp. PCC 6803. Affinity co-purification of the FLAG-tagged Gun4 with the ChlH subunit of the magnesium chelatase confirmed the association of Gun4 with the enzyme in cyanobacteria. Inactivation of the gun4 gene abolished photoautotrophic growth of the resulting gun4 mutant strain that exhibited a decreased activity of magnesium chelatase. Consequently, the cellular content of chlorophyll-binding proteins was highly inadequate, especially that of proteins of photosystem II. Immunoblot analyses, blue native polyacrylamide gel electrophoresis, and radiolabeling of the membrane protein complexes suggested that the availability of the photosystem II antenna protein CP47 is a limiting factor for the photosystem II assembly in the gun4 mutant.
Collapse
Affiliation(s)
- Roman Sobotka
- Institute of Physical Biology, University of South Bohemia, 37333 Nove Hrady, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Komenda J, Nickelsen J, Tichý M, Prásil O, Eichacker LA, Nixon PJ. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 2008; 283:22390-9. [PMID: 18550538 DOI: 10.1074/jbc.m801917200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the slr2034 (ycf48) gene product in the assembly and repair of photosystem II (PSII) has been studied in the cyanobacterium Synechocystis PCC 6803. YCF48 (HCF136) is involved in the assembly of Arabidopsis thaliana PSII reaction center (RC) complexes but its mode of action is unclear. We show here that YCF48 is a component of two cyanobacterial PSII RC-like complexes in vivo and is absent in larger PSII core complexes. Interruption of ycf48 slowed the formation of PSII complexes in wild type, as judged from pulse-labeling experiments, and caused a decrease in the final level of PSII core complexes in wild type and a marked reduction in the levels of PSII assembly complexes in strains lacking either CP43 or CP47. Absence of YCF48 also led to a dramatic decrease in the levels of the COOH-terminal precursor (pD1) and the partially processed form, iD1, in a variety of PSII mutants and only low levels of unassembled mature D1 were observed. Yeast two-hybrid analyses using the split ubiquitin system showed an interaction of YCF48 with unassembled pD1 and, to a lesser extent, unassembled iD1, but not with unassembled mature D1 or D2. Overall our results indicate a role for YCF48 in the stabilization of newly synthesized pD1 and in its subsequent binding to a D2-cytochrome b559 pre-complex, also identified in this study. Besides a role in assembly, we show for the first time that YCF48 also functions in the selective replacement of photodamaged D1 during PSII repair.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, 37981 Trebon, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Kufryk G, Hernandez-Prieto MA, Kieselbach T, Miranda H, Vermaas W, Funk C. Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with Photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 95:135-45. [PMID: 17912610 DOI: 10.1007/s11120-007-9244-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 05/03/2023]
Abstract
The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of proteins belonging to the CAB family of light-harvesting complex proteins in plants. The SCP proteins are transiently expressed at high light intensity and other stress conditions but their exact function remains largely unknown. Recently we showed association of ScpD with light-stressed, monomeric Photosystem II in Synechocystis sp. PCC 6803 (Yao et al. J Biol Chem 282:267-276, 2007). Here we show that ScpB associates with Photosystem II at normal growth conditions. Moreover, upon introduction of a construct into Synechocystis so that ScpB is expressed continuously under normal growth conditions, ScpE was detected under non-stressed conditions as well, and was copurified with tagged ScpB and Photosystem II. We also report on a one-helix protein, Slr1544, that is somewhat similar to the SCPs and whose gene is cotranscribed with that of ScpD; Slr1544 is another member of the extended light-harvesting-like (Lil) protein family, and we propose to name it LilA.
Collapse
Affiliation(s)
- Galyna Kufryk
- Department of Chemistry, Umeå University, Umeå, 901 87, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Dobáková M, Tichy M, Komenda J. Role of the PsbI protein in photosystem II assembly and repair in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2007; 145:1681-91. [PMID: 17921338 PMCID: PMC2151680 DOI: 10.1104/pp.107.107805] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 09/26/2007] [Indexed: 05/20/2023]
Abstract
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.
Collapse
Affiliation(s)
- Marika Dobáková
- Institute of Microbiology, Academy of Sciences, 37981 Trebon, Czech Republic
| | | | | |
Collapse
|
25
|
Popelková H, Yocum CF. Current status of the role of Cl(-) ion in the oxygen-evolving complex. PHOTOSYNTHESIS RESEARCH 2007; 93:111-21. [PMID: 17200880 DOI: 10.1007/s11120-006-9121-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/04/2006] [Indexed: 05/07/2023]
Abstract
This minireview summarizes the current state of knowledge concerning the role of Cl(-) in the oxygen-evolving complex (OEC) of photosystem II (PSII). The model that proposes that Cl(-) is a Mn ligand is discussed in light of more recent work. Studies of Cl(-) specificity, stoichiometry, kinetics, and retention by extrinsic polypeptides are discussed, as are the results that fail to detect Cl(-) ligation to Mn and results that show a lack of a requirement for Cl(-) in PSII-catalyzed H(2)O oxidation. Mutagenesis experiments in cyanobacteria and higher plants that produce evidence for a correlation between Cl(-) retention and stable interactions among intrinsic and extrinsic polypeptides are summarized, and spectroscopic data on the interaction between PSII and Cl(-) are discussed. Lastly, the question of the site of Cl(-) action in PSII is discussed in connection with the current crystal structures of the enzyme.
Collapse
Affiliation(s)
- Hana Popelková
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
26
|
Juntarajumnong W, Incharoensakdi A, Eaton-Rye JJ. Identification of the start codon for sphS encoding the phosphate-sensing histidine kinase in Synechocystis sp. PCC 6803. Curr Microbiol 2007; 55:142-6. [PMID: 17570013 DOI: 10.1007/s00284-007-0057-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
In Synechocystis sp. PCC 6803 extracellular phosphate levels are relayed to the pho regulon via the SphS histidine kinase. In this cyanobacterium, the start codon of sphS has been assigned as a GUG, thereby predicting SphS to be a cytosolic protein lacking a putative N-terminal region found in the PhoR orthologue from Escherichia coli. Inspection upstream of sphS located an in-frame AUG positioned 47 codons in front of the putative GUG start. Alterations at either of the putative AUG or GUG start codons did not prevent transcription of sphS; however, up-regulation of alkaline phosphatase mRNA, or alkaline phosphatase activity, was not detected in response to phosphate-limiting conditions when the AUG was mutated. Alkaline phosphatase expression and activity serve as phenotypic markers for activation of the pho regulon. Therefore, the pho regulon had not been induced in these cells, whereas normal up-regulation was observed in strains carrying mutations at the GUG. These results show that the AUG codon, not the GUG codon, is the initiation site for sphS translation in Synechocystis sp. PCC 6803.
Collapse
|
27
|
Juntarajumnong W, Hirani TA, Simpson JM, Incharoensakdi A, Eaton-Rye JJ. Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS-SphR two-component regulatory system. Arch Microbiol 2007; 188:389-402. [PMID: 17541776 DOI: 10.1007/s00203-007-0259-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 05/03/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
The Pho regulon is controlled by the histidine kinase-response regulator pair SphS-SphR in many cyanobacteria and up-regulation of the Pho regulon can be monitored by measuring alkaline phosphatase activity. However, the mechanism regulating signal transduction between SphS and SphR has not been described. We have created a cyanobacterial strain allowing the introduction of mutations into the transmitter domain of SphS. Mutations at Thr-167, adjacent to the H motif of SphS, introduce elevated alkaline phosphatase activity in the presence of phosphate and an enhancement of alkaline phosphatase activity, when compared to the control strain, in phosphate-limiting media. SphU acts as a negative regulator of the SphS-SphR system in Synechocystis sp. PCC 6803 and we show that constitutive alkaline phosphatase activity in the absence of SphU requires signal transduction through SphS and SphR. However, constitutive activity in the absence of SphU is severely attenuated in the DeltaSphU:SphS-T167N mutant. Our data suggest that Thr-167 contributes to the mechanism underlying regulation by SphU. We have also assembled a deletion mutant system allowing the introduction of mutations into SphR and show that Gly-225 and Trp-236, which are both conserved in SphR from cyanobacteria, are essential for activation of the Pho regulon under phosphate-limiting conditions.
Collapse
|
28
|
Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 2006; 281:32705-13. [PMID: 16923804 DOI: 10.1074/jbc.m606360200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.
Collapse
Affiliation(s)
- Kamoltip Promnares
- Faculty of Biological Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
29
|
Sobotka R, Komenda J, Bumba L, Tichy M. Photosystem II Assembly in CP47 Mutant of Synechocystis sp. PCC 6803 Is Dependent on the Level of Chlorophyll Precursors Regulated by Ferrochelatase. J Biol Chem 2005; 280:31595-602. [PMID: 16027152 DOI: 10.1074/jbc.m505976200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accumulation of chlorophyll and expression of the chlorophyll (Chl)-binding CP47 protein that serves as the core antenna of photosystem II are indispensable for the assembly of a functional photosystem II. We have characterized the CP47 mutant with an impaired photosystem II assembly and its two spontaneous pseudorevertants with their much improved photoautotrophic growth. The complementing mutations in these pseudorevertants were previously mapped to the ferrochelatase gene (1). We demonstrated that complementing mutations dramatically decrease ferrochelatase activity in pseudorevertants and that this decrease is responsible for their improved photoautotrophic growth. Photoautotrophic growth of the CP47 mutant was also restored by in vivo inhibition of ferrochelatase by a specific inhibitor. The decrease in ferrochelatase activity in pseudorevertants was followed by increased steady-state levels of Chl precursors and Chl, leading to CP47 accumulation and photosystem II assembly. Similarly, supplementation of the CP47 mutant with the Chl precursor Mg-protoporphyrin IX increased the number of active photosystem-II centers, suggesting that synthesis of the mutated CP47 protein is enhanced by an increased Chl availability in the cell. The probable role of ferrochelatase in the regulation of Chl biosynthesis is discussed.
Collapse
Affiliation(s)
- Roman Sobotka
- Institute of Physical Biology, University of South Bohemia, 373 33 Nove Hrady, Czech Republic
| | | | | | | |
Collapse
|
30
|
Eaton-Rye JJ. Requirements for different combinations of the extrinsic proteins in specific cyanobacterial photosystem II mutants. PHOTOSYNTHESIS RESEARCH 2005; 84:275-81. [PMID: 16049786 DOI: 10.1007/s11120-005-0748-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 01/17/2005] [Indexed: 05/03/2023]
Abstract
The crystallographic data available for Photosystem II (PS II) in cyanobacteria has now provided complete structures for loop E from CP43 and CP47 as well as the extrinsic subunits PsbO, PsbU and PsbV. Protein interactions between these subunits are essential for stable water splitting and there is evidence that the binding of PsbU facilitates optimal energy transfer from the phycobilisome. Interactions between PsbO and CP47 may also play a role in dimer stabilization while loop E of CP43 contributes directly to the water-splitting reaction. Recent evidence also suggests that homologs of PsbP and PsbQ play key roles in cyanobacterial PS II, and under nutrient-deficient conditions PsbQ appears essential for photoautotrophic growth.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
31
|
Eaton-Rye JJ, Shand JA, Nicoll WS. pH-dependent photoautotrophic growth of specific photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803. FEBS Lett 2003; 543:148-53. [PMID: 12753923 DOI: 10.1016/s0014-5793(03)00432-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The removal of either the PsbU or PsbV protein has been investigated in a cyanobacterial DeltaPsbO strain and in mutants carrying deletions or substitutions in lumen-exposed domains of CP47. These experiments have demonstrated a functional interaction between the PsbU protein and photosystem II (PSII) in the absence of the PsbO subunit. The control:DeltaPsbO:DeltaPsbU strain assembled PSII centers at pH 7.5 but did not evolve oxygen; however, photoautotrophic growth was restored at pH 10.0. In addition, several CP47 mutants, lacking extrinsic proteins, were obligate photoheterotrophs at pH 7.5 but photoautotrophic at pH 10.0, whereas other strains remained photoheterotrophs at alkaline pH.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
32
|
Teuber M, Rögner M, Berry S. Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:31-46. [PMID: 11418095 DOI: 10.1016/s0005-2728(01)00178-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescent DeltapH and DeltaPsi indicators have been screened for the non-invasive monitoring of bioenergetic processes in whole cells of the cyanobacterium Synechocystis sp. PCC 6803. Acridine yellow and Acridine orange proved to be the best DeltapH indicators for the investigation of thylakoid and cytoplasmic membrane energization: While Acridine yellow indicated only cytosolic energization, Acridine orange showed signals from both the thylakoid lumen and the cytosol that could be separated kinetically. Both indicators were applied successfully to monitor cellular energetics, such as the interplay of linear and cyclic photosynthetic electron transport, osmotic adaptation and solute transport across the cytoplasmic membrane. In contrast, useful membrane potential indicators were more difficult to find, with Di-4-ANEPPS and Brilliant cresyl blue being the only promising candidates for further studies. Finally, Acridine yellow and Acridine orange could also be applied successfully for the thermophilic cyanobacterium Synechococcus elongatus. Different from Synechocystis sp. PCC 6803, where both respiration and ATP hydrolysis could be utilized for cytoplasmic membrane energization, proton extrusion at the cytoplasmic membrane in Synechococcus elongatus was preferentially driven by ATP hydrolysis.
Collapse
Affiliation(s)
- M Teuber
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | | | | |
Collapse
|
33
|
Debus RJ. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:164-86. [PMID: 11115632 DOI: 10.1016/s0005-2728(00)00221-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
34
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Affiliation(s)
- W F Vermaas
- Department of Plant Biology, Arizona State University, Tempe 85287-1601, USA
| |
Collapse
|
36
|
Putnam-Evans C, Wu J, Bricker TM. Site-directed mutagenesis of the CP 47 protein of photosystem II: alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop E. PLANT MOLECULAR BIOLOGY 1996; 32:1191-1195. [PMID: 9002620 DOI: 10.1007/bf00041405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. The large extrinsic loop E of this protein has been shown to interact with the oxygen-evolving site. Previously, Vermaas and coworkers have produced a number of deletions within loop E which yielded mutants which were unable to grow photoautotrophically and which could not evolve oxygen at normal rates. During the course of our site-directed mutagenesis program in Synechocystis 6803, we have altered all of the conserved charged residues which were present within six of these deletions. All ten of these mutants were photoautotrophic and evolved oxygen at normal rates. We speculate that the severe phenotypes of the deletion mutants observed by Vermaas and coworkers is due to large structural perturbations in the extrinsic loop E of CP 47.
Collapse
Affiliation(s)
- C Putnam-Evans
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- A Seidler
- Séction de Bioénergétique (CNRS URA 1290), Département de Biologie Cellulaire et Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Chiesa MD, Deák Z, Vass I, Barber J, Nixon PJ. The lumenal loop connecting transmembrane helices I and II of the D1 polypeptide is important for assembly of the photosystem two complex. PHOTOSYNTHESIS RESEARCH 1996; 50:79-91. [PMID: 24271824 DOI: 10.1007/bf00018223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/1996] [Accepted: 09/23/1996] [Indexed: 06/02/2023]
Abstract
Current structural models indicate that the D1 and D2 polypeptides of the Photosystem two reaction center complex (PS II RC) each span the thylakoid membrane five times. In order to assess the importance of the lumenal extrinsic loop that connects transmembrane helices I and II of D1 we have constructed five deletion mutants and two double mutants in the cyanobaterium Synechocystic sp. PCC 6803. Four of the deletion mutants (Δ59-65, Δ69-74, Δ79-86 and Δ109-110) are obligate photoheterotrophs unable to accumulate D1 in the membrane as assayed by immunoblotting experiments or pulse-labelling experiments using [(35)S]-methionine. In contrast deletion mutant Δ100 which lacks A100 behaved very similarly to the WT control strain in terms of photoautotrophic growth rate, saturated rates of oxygen evolution, flash-induced oxygen evolution, fluorescence induction and decay, and thermoluminescence. Δ100 is the first example of an internal deletion on the lumenal side of the D1 polypeptide that is benign to photosystem two function. Double mutant D103G/E104A also behaves similarly to the WT control strain leading to the conclusion that residues D103 and E104 are unlikely to be involved in ligating the metal ions Mn or Ca(2+), which are needed for photosynthetic oxygen evolution. Double mutant, G109A/G110A, was constructed to assess the significance of this GlyGly motif which is also conserved in the L subunit of purple bacterial reaction centres. The G109A/G110A mutant is able to evolve oxygen at approximately 50-70% of WT rates but is unable to grow phatoautotrophically apparently because of an enhanced sensitivity to photoinactivation than the WT control strain. A photoautotropic revertant was isolated from this strain and shown to result from a mutation that restored the WT codon at position 109. Pulse-chase experiments in cells using [(35)S]-methionine showed that resistance to photoinhibition in the revertant correlated with an enhanced rate of incorporation of D1 into the membrane compared to mutant G109A/G110A. The sensitivity to photoinhibition shown by the G109A/G110A mutant is therefore consistent with a perturbation to the D1 repair cycle possibly at the level of D1 synthesis or incorporation of D1 into the PS II complex.
Collapse
Affiliation(s)
- M D Chiesa
- Photosynthesis Research Group, Wolfson Laboratories, Biochemistry Department, Imperial College of Science, Technology and Medicine, SW7 2AY, London, UK
| | | | | | | | | |
Collapse
|
39
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WF, Renger G. Involvement of the CP47 protein in stabilization and photoactivation of a functional water-oxidizing complex in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 1995; 34:6847-56. [PMID: 7756315 DOI: 10.1021/bi00020a031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oscillation patterns of the oxygen yield per flash induced by a train of single-turnover flashes were measured as a function of dark incubation and different pre-illumination conditions in several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions within the large, lumen-exposed hydrophilic region (loop E) of the chlorophyll a-binding photosystem II protein CP47. A physiological and biochemical characterization of these mutant strains has been presented previously [Eaton-Rye, J. J., & Vermaas, W. F. J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J. J., Renger, G., & Vermaas, W. F. J. (1993) Biochemistry 32, 4444-4454], and some functional properties were described recently [Gleiter, H. M., Haag, E., Shen, J.-R., Eaton-Rye, J. J., Inoue, Y., Vermaas, W. F. J., & Renger, G. (1994) Biochemistry 33, 12063-12071]. The present study shows that in several mutants the water-oxidizing complex (WOC) became inactivated during prolonged dark incubation, whereas the WOC of the wild-type strain remained active. The rate and extent of the inactivation in the mutants depend on the domain of loop E, where 3-8 amino acid residues were deleted. The most pronounced effects are observed in mutants delta(A373-D380) and delta(R384-V392). A competent WOC can be restored from the fully inactivated state by illumination with short saturating flashes. The number of flashes required for this process strongly depends on the site at which a deletion has been introduced into loop E. Again, the most prominent effects were found in mutants delta(A373-D380) and delta(R384-V392). Interestingly, the number of flashes required for activation was reduced by more than an order of magnitude in both mutants by the addition of 10 mM CaCl2 to the cell suspension. On the basis of a model for photoactivation proposed by Tamura and Cheniae (1987) [Biochim. Biophys. Acta 890, 179-194], a scheme is presented for the processes of dark inactivation and photoactivation in these mutants. The results presented here corroborate an important role of the large hydrophilic domain (loop E) of CP47 in a functional and stable WOC.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer-Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Inoue Y, Vermaas WF, Renger G. Functional characterization of mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in photosystem II. Biochemistry 1994; 33:12063-71. [PMID: 7918426 DOI: 10.1021/bi00206a008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions or a single-site mutation within the large, lumen-exposed loop (loop E) of the chlorophyll a-binding photosystem II core protein, CP47, are analyzed for their functional properties by measuring the flash-induced pattern of thermoluminescence, oxygen yield, and fluorescence quantum yield. A physiological and biochemical characterization of these mutant strains has been given in two previous reports [Eaton-Rye, J.J., & Vermaas, W.F.J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J.J., Renger, G., & Vermaas, S. F.J. (1993) Biochemistry 32, 4444-4454]. The results of the present study show that deletion of charged and conserved amino acids in a region roughly located between residues 370 and 390 decreases the binding affinity of the extrinsic PS II-O protein to photosystem II. Marked differences with PSII-O deletion mutants are observed with respect to Ca2+ requirement and the flash-induced pattern of oxygen evolution. Under conditions where a sufficient light activation is provided, the psbB mutants assayed in this study reveal normal S-state parameters and lifetimes. The results bear two basic implications: (i) the manganese involved in water oxidation can still be bound in a functionally normal or only slightly distorted manner, and (ii) the binding of the extrinsic PS II-O protein to photosystem II is impaired in mutants carrying a deletion in the domain between residues 370 and 390, but the presence of the PS II-O protein is still of functional relevance for the PS II complex, e.g., for maintenance of a high-affinity binding site for Ca2+ and/or involvement during the process of photoactivation.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Molecular-genetic approaches to study photosynthetic and respiratory electron transport in thylakoids from cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90107-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Werner-Grüne S, Gunkel D, Schumann J, Strotmann H. Insertion of a "chloroplast-like" regulatory segment responsible for thiol modulation into gamma-subunit of F0F1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:144-50. [PMID: 8052233 DOI: 10.1007/bf00283515] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A regulatory sequence in the gamma subunit of the F0F1-ATPase complex of higher plant chloroplasts, responsible for so-called thiol modulation, is absent in the corresponding polypeptides of the cyanobacterial complexes analysed so far. We have modified the atpC gene encoding this gamma subunit in Synechocystis 6803 by site-directed mutagenesis. A segment was introduced coding for nine additional amino acids, including the two functional cysteines, which constitutes the sequence of the respective element in the chloroplast gamma subunit. The growth rate as well as the rate of photosynthesis of the transformant was comparable to that of the wild-type, but the transitory increase in respiration observed immediately after a period of illumination was significantly lower in the mutant than in the wild-type. The F1 subcomplex solubilized from thylakoid membranes of both the wild-type and the transformant can be activated by trypsin to yield Ca(2+)-dependent ATPase activity, but only the F1 from the transformant can be activated by the thiol reagent dithiothreitol.
Collapse
Affiliation(s)
- S Werner-Grüne
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
43
|
Shen G, Vermaas W. Chlorophyll in a Synechocystis sp. PCC 6803 mutant without photosystem I and photosystem II core complexes. Evidence for peripheral antenna chlorophylls in cyanobacteria. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36733-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Mullineaux CW. Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterial mutant lacking Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90155-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
|
46
|
Kuhn MG, Vermaas WF. Deletion mutations in a long hydrophilic loop in the photosystem II chlorophyll-binding protein CP43 in the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1993; 23:123-133. [PMID: 8219045 DOI: 10.1007/bf00021425] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In order to investigate the role and function of the hydrophilic region between transmembrane regions V and CI in the photosystem II core antenna protein CP43, we introduced eight different deletions in psbC of Synechocystis sp; PCC 6803 resulting in a loss of 7-11 codons in evolutionary conserved domains in this region. All deletions resulted in an obligate photoheterotrophic phenotype (requirement of glucose for cell growth) and the absence of any detectable oxygen evolution activity. The various deletion mutations showed a different impact on the amount of CP43 in the thylakoid, ranging from wild-type levels of (a now slightly smaller) CP43 to no detectable CP43 at all. All deletions led to a decrease in the amount of the D1 and D2 proteins in the thylakoids with a larger effect on D2 than on D1. CP47, the other major chlorophyll-binding protein, was present in reduced but significant amounts in the thylakoid. Herbicide binding (diuron) was lost in all but one mutant indicating the PSII components are not assembled into functionally intact complexes. Fluorescence-emission spectra confirmed this notion. This indicates that the large hydrophilic loop of CP43 plays an important role in photosystem II, and even though a shortened CP43 is present in thylakoids of most mutants, functional characteristics resembled that of a mutant with interrupted psbC.
Collapse
Affiliation(s)
- M G Kuhn
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | |
Collapse
|
47
|
Carpenter SD, Ohad I, Vermaas WF. Analysis of chimeric spinach/cyanobacterial CP43 mutants of Synechocystis sp. PCC 6803: the chlorophyll-protein CP43 affects the water-splitting system of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:204-12. [PMID: 8369339 DOI: 10.1016/0005-2728(93)90174-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutants of the cyanobacterium Synechocystis sp. PCC 6803 have been generated in which parts of psbC (the gene encoding the Photosystem II chlorophyll-protein CP43) have been replaced with the homologous gene fragment from spinach. Upon the replacement of all but the 3' 84 bp of the cyanobacterial psbC gene with the homologous fragment from spinach, an obligate photoheterotrophic mutant was generated. Two photoautotrophic derivatives of this mutant were made reincorporating 3' cyanobacterial sequences back into the spinach psbC gene of the mutant. These two mutants are similar to each other, carrying a chimeric CP43 with the N-terminal half from spinach. These mutants are photosynthetically active at a rate of about half that of wild type, which correlates with a decreased Photosystem II/chlorophyll ratio in these mutants. Thylakoids from the chimeric mutants contain a CP43 protein which migrates slightly more slowly on SDS-polyacrylmide gels than the native Synechocystis CP43. Interestingly, these mutants show significant shifts in thermoluminescence peaks, reflecting altered thermodynamic properties of the back reaction between the acceptor side and the water-splitting system. On the basis of the oscillations of these shifts with number of flashes, we conclude that S2 is stabilized and S3 is destabilized in these mutants. This represents evidence for an involvement of CP43 in events associated with water splitting.
Collapse
Affiliation(s)
- S D Carpenter
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|
48
|
Ermakova SY, Elanskaya IV, Kallies KU, Weihe A, Börner T, Shestakov SV. Cloning and sequencing of mutantpsbB genes of the cyanobacteriumSynechocystis PCC 6803. PHOTOSYNTHESIS RESEARCH 1993; 37:139-146. [PMID: 24317710 DOI: 10.1007/bf02187472] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/1992] [Accepted: 05/19/1993] [Indexed: 06/02/2023]
Abstract
Ten strains from a collection of mutants ofSynechocystis 6803 defective in Photosystem II (PS II) function were transformed with chromosomal DNA of wild-type and mutant cells. Cross hybridization data allowed to identify four groups of PS II-mutants. Highly efficient transformation was observed between different mutant groups, but not within the groups. Restoration of photosynthetic activity of the mutant cells was also achieved by transformation with different parts of a 5.6 kbBam HI fragment of wild typeSynechocystis DNA containing thepsbB gene. Each group of mutants was transformed to photoautotrophic growth by specific subfragments of thepsbB gene. DNA fragments of four selected mutant strains hybridizing with thepsbB gene were isolated and sequenced. The mutations were identified as a single nucleotide insertion or substitution leading to stop codon formation in two of the mutants, as a deletion of 12 nucleotides, or as a nucleotide substitution resulting in an amino acid substitution in the other two mutants. Deletion of 12 nucleotides in mutant strain PMB1 and stop codon formation in strain NF16 affect membrane-spanning regions of the gene product, the CP 47 protein.
Collapse
Affiliation(s)
- S Y Ermakova
- Department of Genetics, Moscow State University, 119899, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
49
|
Mohanty P, Hayashi H, Papageorgiou G, Murata N. Stabilization of the Mn-cluster of the oxygen-evolving complex by glycinebetaine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90035-e] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Shen G, Eaton-Rye JJ, Vermaas WF. Mutation of histidine residues in CP47 leads to destabilization of the photosystem II complex and to impairment of light energy transfer. Biochemistry 1993; 32:5109-15. [PMID: 8494886 DOI: 10.1021/bi00070a019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Site-directed mutagenesis has been used to change conserved histidine residues in hydrophobic regions of the photosystem II chlorophyll-binding protein CP47 in the cyanobacterium Synechocystis sp. PCC 6803. Nine mutants with one, four mutants with two, and four mutants with three His mutations in CP47 have been generated and characterized. Mutation of any one of seven different His residues to Tyr leads to slower photoautotrophic growth and apparent destabilization of the PS II complex. Mutations introduced into multiple His residues in one mutant exhibited a cumulative effect. Replacing His by Asn leads to a much smaller effect than observed upon mutation to Tyr. This is consistent with the hypothesis that the mutated His residues are chlorophyll ligands: Asn can substitute as chlorophyll ligand, whereas Tyr cannot. Further evidence supporting a role of the mutated His residues in chlorophyll binding comes from measurements of the light intensity needed to half-saturate oxygen evolution. All His mutants with impaired PS II function needed higher light intensities for half-saturation than wild type. A possible explanation for this decrease in antenna efficiency in the mutants is a loss of the Mg in the chlorophyll due to a loss of the fifth ligand, and thus the formation of a pheophytin molecule in the antenna. We conclude that conserved His residues in hydrophobic regions of CP47 indeed are chlorophyll ligands and that these ligands are important for PS II stability as well as efficient antenna function.
Collapse
Affiliation(s)
- G Shen
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|