1
|
Deficiency in flavodiiron protein Flv3 promotes cyclic electron flow and state transition under high light in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148318. [PMID: 32979345 DOI: 10.1016/j.bbabio.2020.148318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
Abstract
Photosynthetic organisms adjust their activity to changes in irradiance by different ways, including the operation of cyclic electron flow around photosystem I (PSI) and state transitions that redistribute amounts of light energy absorbed by PSI and PSII. In dark-acclimated wild type cells of Synechocystis PCC 6803, linear electron transport was activated after the first 500 ms of illumination, while cyclic electron flow around PSI was long predominant in the mutant deficient in flavodiiron protein Flv3. Chlorophyll P700 oxidation associated with activation of linear electron flow extended in the Flv3- mutant to several tens of seconds and included a P700+ re-reduction phase. Parallel monitoring of chlorophyll fluorescence and the redox state of P700 indicated that, at low light intensity both in wild type and in the Flv3- mutant, the transient re-reduction step coincided in time with S-M fluorescence rise, which reflected state 2-state 1 transition (Kaňa et al., 2012). Despite variations in the initial redox state of plastoquinone pool, the oxidases-deficient mutant, succinate dehydrogenase-deficient mutant, and wild type cells did not show the S-M rise under high-intensity light until additional Flv3- mutation was introduced in these strains. Thus, the lack of available electron acceptor for PSI was the main cause for the appearance of S-M fluorescence rise under high light. It is concluded that the lack of Flv3 protein promotes cyclic electron flow around PSI and facilitates the subsequent state 2-state 1 transition in the absence of strict relation to the dark-operated pathways of plastoquinone reduction or oxidation.
Collapse
|
2
|
Allen JF. Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. PHYSIOLOGIA PLANTARUM 2017; 161:28-44. [PMID: 28393369 DOI: 10.1111/ppl.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
In oxygenic photosynthesis there are two 'light states' - adaptations of the photosynthetic apparatus to spectral composition that otherwise favours either photosystem I or photosystem II. In chloroplasts of green plants the transition to light state 2 depends on phosphorylation of apoproteins of a membrane-intrinsic antenna, the chlorophyll-a/b-binding, light-harvesting complex II (LHC II), and on the resulting redistribution of absorbed excitation energy from photosystem II to photosystem I. The transition to light state 1 reverses these events and requires a phospho-LHC II phosphatase. Current structures of LHC II reveal little about possible steric effects of phosphorylation. The surface-exposed N-terminal domain of an LHC II polypeptide contains its phosphorylation site and is disordered in its unphosphorylated form. A molecular recognition hypothesis proposes that state transitions are a consequence of movement of LHC II between binding sites on photosystems I and II. In state 1, LHC II forms part of the antenna of photosystem II. In state 2, a unique but as yet unidentified 3-D structure of phospho-LHC II may attach it instead to photosystem I. One possibility is that the LHC II N-terminus becomes ordered upon phosphorylation, adopting a local alpha-helical secondary structure that initiates changes in LHC II tertiary and quaternary structure that sever contact with photosystem II while securing contact with photosystem I. In order to understand redistribution of absorbed excitation energy in photosynthesis we need to know the structure of LHC II in its phosphorylated form, and in its complex with photosystem I.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
3
|
Ünlü C, Polukhina I, van Amerongen H. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:209-17. [PMID: 26518693 DOI: 10.1007/s00249-015-1087-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460-3465, 2014).
Collapse
Affiliation(s)
- Caner Ünlü
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Iryna Polukhina
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands. .,MicroSpectroscopy Centre, Wageningen University, 6703 HA, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Demmig-Adams B, Muller O, Stewart JJ, Cohu CM, Adams WW. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:357-66. [PMID: 25843771 DOI: 10.1016/j.jphotobiol.2015.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
In nature, photosynthetic organisms cope with highly variable light environments--intensities varying over orders of magnitudes as well as rapid fluctuations over seconds-to-minutes--by alternating between (a) highly effective absorption and photochemical conversion of light levels limiting to photosynthesis and (b) powerful photoprotective thermal dissipation of potentially damaging light levels exceeding those that can be utilized in photosynthesis. Adjustments of the photosynthetic apparatus to changes in light environment involve biophysical, biochemical, and structural adjustments. We used electron micrographs to assess overall thylakoid grana structure in evergreen species that exhibit much stronger maximal levels of thermal energy dissipation than the more commonly studied annual species. Our findings indicate an association between partial or complete unstacking of thylakoid grana structure and strong reversible thermal energy dissipation that, in contrast to what has been reported for annual species with much lower maximal levels of energy dissipation, is similar to what is seen under photoinhibitory conditions. For a tropical evergreen with tall grana stacks, a loosening, or vertical unstacking, of grana was seen in sun-grown plants exhibiting pronounced pH-dependent, rapidly reversible thermal energy dissipation as well as for sudden low-to-high-light transfer of shade-grown plants that responded with photoinhibition, characterized by strong dark-sustained, pH-independent thermal energy dissipation and photosystem II (PSII) inactivation. On the other hand, full-sun exposed subalpine confers with rather short grana stacks transitioned from autumn to winter via conversion of most thylakoids from granal to stromal lamellae concomitant with photoinhibitory photosynthetic inactivation and sustained thermal energy dissipation. We propose that these two types of changes (partial or complete unstacking of grana) in thylakoid arrangement are both associated with the strong non-photochemical quenching (NPQ) of chlorophyll fluorescence (a measure of photoprotective thermal energy dissipation) unique to evergreen species rather than with PSII inactivation per se.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | - Onno Muller
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Christopher M Cohu
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|
5
|
Nultsch W, Pfau J, Huppertz K. Photoinhibition of Photosynthetic Oxygen Production and its Recovery in the Subtidal Red AlgaPolyneura hilliae. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1990.tb00127.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Logan BA, Demmig-Adams B, Adams WW, Bilger W. Context, Quantification, and Measurement Guide for Non-Photochemical Quenching of Chlorophyll Fluorescence. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro EM. Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc Lond B Biol Sci 2013; 367:3486-93. [PMID: 23148275 DOI: 10.1098/rstb.2012.0067] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Grieco M, Tikkanen M, Paakkarinen V, Kangasjärvi S, Aro EM. Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. PLANT PHYSIOLOGY 2012; 160:1896-910. [PMID: 23033142 PMCID: PMC3510119 DOI: 10.1104/pp.112.206466] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/27/2012] [Indexed: 05/18/2023]
Abstract
According to the "state transitions" theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.
Collapse
|
9
|
Puthiyaveetil S, Ibrahim IM, Allen JF. Oxidation-reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts. PLANT, CELL & ENVIRONMENT 2012; 35:347-59. [PMID: 21554328 DOI: 10.1111/j.1365-3040.2011.02349.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
State transitions and photosystem stoichiometry adjustment are two oxidation-reduction (redox)-regulated acclimatory responses in photosynthesis. State transitions are short-term adaptations that, in chloroplasts, involve reversible post-translational modification by phosphorylation of light-harvesting complex II (LHC II). Photosystem stoichiometry adjustments are long-term responses involving transcriptional regulation of reaction centre genes. Both responses are initiated by changes in light quality and are regulated by the redox state of plastoquinone (PQ). The LHC II kinase involved in the state 2 transition is a serine/threonine kinase known as STT7 in Chlamydomonas, and as STN7 in Arabidopsis. The phospho-LHC II phosphatase that produces the state 1 transition is a PP2C-type protein phosphatase currently termed both TAP38 and PPH1. In plants and algae, photosystem stoichiometry adjustment is governed by a modified two-component sensor kinase of cyanobacterial origin - chloroplast sensor kinase (CSK). CSK is a sensor of the PQ redox state. Chloroplast sigma factor 1 (SIG1) and plastid transcription kinase (PTK) are the functional partners of CSK in chloroplast gene regulation. We suggest a signalling pathway for photosystem stoichiometry adjustment. The signalling pathways of state transitions and photosystem stoichiometry adjustments are proposed to be distinct, with the two pathways sensing PQ redox state independently of each other.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- Queen Mary, University of London, School of Biological and Chemical Sciences, London, UK
| | | | | |
Collapse
|
10
|
Cornic G, Baker NR. Electron Transport in Leaves: A Physiological Perspective. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Allen JF, Santabarbara S, Allen CA, Puthiyaveetil S. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription. PLoS One 2011; 6:e26372. [PMID: 22039472 PMCID: PMC3198397 DOI: 10.1371/journal.pone.0026372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/26/2011] [Indexed: 11/24/2022] Open
Abstract
In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK) is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II). Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32)P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Kirilovsky D, Kerfeld CA. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:158-66. [PMID: 21565162 DOI: 10.1016/j.bbabio.2011.04.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 11/29/2022]
Abstract
Photoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qE(cya)), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), France.
| | | |
Collapse
|
13
|
Papageorgiou GC, Govindjee. Photosystem II fluorescence: slow changes--scaling from the past. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:258-70. [PMID: 21530301 DOI: 10.1016/j.jphotobiol.2011.03.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/25/2022]
Abstract
With the advent of photoelectric devices (photocells, photomultipliers) in the 1930s, fluorometry of chlorophyll (Chl) a in vivo emerged as a major method in the science of photosynthesis. Early researchers employed fluorometry primarily for two tasks: to elucidate the role in photosynthesis, if any, of other plant pigments, such as Chl b, Chl c, carotenoids and phycobilins; and to use it as a convenient inverse measure of photosynthetic activity. In pursuing the latter task, it became apparent that Chl a fluorescence emission is influenced (i) by redox active Chl a molecules in the reaction center of photosystem (PS) II (photochemical quenching); (ii) by an electrochemical imbalance across the thylakoid membrane (high energy quenching); and (iii) by the size of the peripheral antennae of weakly fluorescent PSI and strongly fluorescent PSII in response to changes in the ambient light (state transitions). In this perspective we trace the historical evolution of our awareness of these concepts, particularly of the so-called 'State Transitions'.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center of Scientific Research Demokritos, Institute of Biology, Athens 15310, Greece.
| | | |
Collapse
|
14
|
Kirilovsky D. The photoactive orange carotenoid protein and photoprotection in cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:139-59. [PMID: 20532740 DOI: 10.1007/978-1-4419-1528-3_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoprotective mechanisms have been evolved by photosynthetic organisms to cope with fluctuating high light conditions. One of these mechanisms downregulates photosynthesis by increasing thermal dissipation of the energy absorbed by the photosystem II antenna. While this process has been well studied in plants, the equivalent process in cyanobacteria was only recently discovered. In this chapter we describe the results leading to its discovery and the more recent advances in the elucidation of this mechanism. The light activation of a soluble carotenoid protein, the orange carotenoid protein (OCP), binding hydroxyechinenone, is the key inducer of this photoprotective mechanism. Light causes structural changes within both the carotenoid and the protein, leading to the conversion of an orange inactive form into a red active form. The activated red form induces an increase of energy dissipation leading to a decrease in the fluorescence of the phycobilisomes, the cyanobacterial antenna, and thus of the energy arriving to the reaction centers. The OCP, which senses light and triggers photoprotection, is a unique example of a photoactive protein containing a carotenoid as the photoresponsive chromophore.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS) and Centre National de la Recherche Scientifique (CNRS), 91191, Gif sur Yvette, France.
| |
Collapse
|
15
|
Thaipratum R, Melis A, Svasti J, Yokthongwattana K. Analysis of non-photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin. JOURNAL OF PLANT RESEARCH 2009; 122:465-476. [PMID: 19333687 DOI: 10.1007/s10265-009-0229-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/28/2009] [Indexed: 05/27/2023]
Abstract
Generally there is a correlation between the amount of zeaxanthin accumulated within the chloroplast of oxygenic photosynthetic organisms and the degree of non-photochemical quenching (NPQ). Although constitutive accumulation of zeaxanthin can help protect plants from photo-oxidative stress, organisms with such a phenotype have been reported to have altered rates of NPQ induction. In this study, basic fluorescence principles and the routinely used NPQ analysis technique were employed to investigate excitation energy quenching in the unicellular green alga Dunaliella salina, in both wild type (WT) and a mutant, zea1, constitutively accumulating zeaxanthin under all growth conditions. The results showed that, in D. salina, NPQ is a multi-component process consisting of energy- or DeltapH-dependent quenching (qE), state-transition quenching (qT), and photoinhibition quenching (qI). Despite the vast difference in the amount of zeaxanthin in WT and the zea1 mutant grown under low light, the overall kinetics of NPQ induction were almost the same. Only a slight difference in the relative contribution of each quenching component could be detected. Of all the NPQ subcomponents, qE seemed to be the primary NPQ operating in this alga in response to short-term exposure to excessive irradiance. Whenever qE could not operate, i.e., in the presence of nigericin, or under conditions where the level of photon flux is beyond its quenching power, qT and/or qI could adequately compensate its photoprotective function.
Collapse
Affiliation(s)
- Rutanachai Thaipratum
- Department of Biochemistry, Faculty of Science, Center for Excellence in Protein Structure and Function, Mahidol University, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
16
|
Stadnichuk IN, Lukashev EP, Elanskaya IV. Fluorescence changes accompanying short-term light adaptations in photosystem I and photosystem II of the cyanobacterium Synechocystis sp. PCC 6803 and phycobiliprotein-impaired mutants: State 1/State 2 transitions and carotenoid-induced quenching of phycobilisomes. PHOTOSYNTHESIS RESEARCH 2009; 99:227-41. [PMID: 19169839 DOI: 10.1007/s11120-009-9402-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 01/05/2009] [Indexed: 05/09/2023]
Abstract
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue-green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- A.N. Bakh Institute of Biochemistry Russian Academy of Sciences, Leninski Prospekt 33, Moscow, Russia.
| | | | | |
Collapse
|
17
|
Boulay C, Abasova L, Six C, Vass I, Kirilovsky D. Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1344-54. [DOI: 10.1016/j.bbabio.2008.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
18
|
Hydrogen ions directly regulating the oligomerization state of Photosystem I in intact Spirulina platensis cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0064-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Zhang R, Li H, Xie J, Zhao J. Estimation of relative contribution of "mobile phycobilisome" and "energy spillover" in the light-dark induced state transition in Spirulina platensis. PHOTOSYNTHESIS RESEARCH 2007; 94:315-320. [PMID: 17952696 DOI: 10.1007/s11120-007-9272-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/04/2007] [Indexed: 05/25/2023]
Abstract
Previously, it was clarified that phycobilisome (PBS) mobility and energy spillover were both involved in light-to-dark induced state transitions of intact Spirulina platensis cells. In this work, by taking advantage of the characteristic fluorescence spectra of photosystem I (PSI) trimers and monomers as indicators, the relative contributions for the "mobile PBS" and "energy spillover" are quantitatively estimated by separating the fluorescence contribution of PBS mobility from that of PSI oligomeric change. Above the phase transition temperature (TPT) of the membrane lipids, the relative proportion of the contributions is invariable with 65% of "mobile PBS" and 35% of "energy spillover". Below TPT, the proportion for the "mobile PBS" becomes larger under lowering temperature even reaching 95% with 5% "energy spillover" at 0 degrees C. It is known that lower temperature leads to a further light state due to a more reduced or oxidized PQ pool. Based on the current result, it can be deduced that disequilibrium of the redox state of the PQ pool will trigger PBS movement instead of change in the PSI oligomeric state.
Collapse
Affiliation(s)
- Rui Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, P.O. Box 101, No. 2, 1st North Street, Beijing 100080, PR China
| | | | | | | |
Collapse
|
20
|
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. PHOTOSYNTHESIS RESEARCH 2007; 94:275-90. [PMID: 17665151 DOI: 10.1007/s11120-007-9193-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, 153 10, Greece.
| | | | | |
Collapse
|
21
|
Stamatakis K, Tsimilli-Michael M, Papageorgiou GC. Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: Analysis of the slow fluorescence transient. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:766-72. [PMID: 17448439 DOI: 10.1016/j.bbabio.2007.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 11/22/2022]
Abstract
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at approximately 0.2-1 and M at approximately 100-500 s, with a minimum S at approximately 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS-->Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS-->PS I excitation transfer. Blocking the PBS-->PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobacterial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P-->T fluorescence decay, reminiscent of the typical P-->T fluorescence decay of higher plants and algae. A similar P-->T decay was also displayed by DCMU-treated Synechococcus cells at 2 degrees C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2-->1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P-->T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1-->2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS-->PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.
Collapse
Affiliation(s)
- Kostas Stamatakis
- Institute of Biology, NCSR Demokritos, Aghia Paraskevi, Attikis 15310, Greece.
| | | | | |
Collapse
|
22
|
Li H, Li D, Yang S, Xie J, Zhao J. The state transition mechanism—simply depending on light-on and -off in Spirulina platensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1512-9. [PMID: 17014821 DOI: 10.1016/j.bbabio.2006.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/20/2022]
Abstract
The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by "mobile phycobilisome (PBS)" or "energy spillover" has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the "mobile PBS" but also an "energy spillover". Secondly, the "energy spillover" is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H(+) concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the "energy spillover". Thus, it can be concluded that the "mobile PBS" is a common rule for light-induced state transition while the "energy spillover" is only a special case when dark condition is involved.
Collapse
Affiliation(s)
- Heng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Photochemistry Laboratory, P. O. Box 101, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Beijing, 100080, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Hill R, Ralph PJ. Photosystem II Heterogeneity of in hospite Zooxanthellae in Scleractinian Corals Exposed to Bleaching Conditions. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09814.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Hill R, PeterJ R. Photosystem II Heterogeneity of in hospite Zooxanthellae in Scleractinian Corals Exposed to Bleaching Conditions. Photochem Photobiol 2006; 82:1577-85. [PMID: 16961432 DOI: 10.1562/2006-04-13-ra-871] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased ocean temperatures are thought to be triggering mass coral bleaching events around the world. The intracellular symbiotic zooxanthellae (genus Symbiodinium) are expelled from the coral host, which is believed to be a response to photosynthetic damage within these symbionts. Several sites of impact have been proposed, and here we probe the functional heterogeneity of Photosystem II (PSII) in three coral species exposed to bleaching conditions. As length of exposure to bleaching conditions (32 degrees C and 350 micromol photons m(-2) s(-1)) increased, the QA- reoxidation kinetics showed a rise in the proportion of inactive PSII centers (PSIIx), where QB was unable to accept electrons. PSIIx contributed up to 20% of the total PSII centers in Pocillopora damicornis, 35% in Acropora nobilis and 14% in Cyphastrea serailia. Changes in Fv/Fm and amplitude of the J step along fast induction curves were found to be highly dependent upon the proportion of PSIIx centers within the total pool of PSII reaction centers. Determination of PSII antenna size revealed that under control conditions in the three coral species up to 60% of PSII centers were lacking peripheral light-harvesting complexes (PSIIbeta). In P. damicornis, the proportion of PSIIbeta increased under bleaching conditions and this could be a photoprotective mechanism in response to excess light. The rapid increases in PSIIx and PSIIbeta observed in these corals under bleaching conditions indicates these physiological processes are involved in the initial photochemical damage to zooxanthellae.
Collapse
Affiliation(s)
- Ross Hill
- Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | | |
Collapse
|
25
|
Dai J, Gao H, Dai Y, Zou Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:171-177. [PMID: 15045668 DOI: 10.1055/s-2004-817845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Excitation energy dissipation, including the xanthophyll cycle, during senescence in wheat flag leaves grown in the field was investigated at midday and in the morning. With progress of senescence, photosynthesis (Pn) and actual PSII photochemical efficiency (PhiPSII) decreased markedly at midday. The decrease in extent of Pn was greater than that of PhiPSII. However, there was no significant decline in Pn and PhiPSII observed in the morning, except in leaves 60 days after anthesis. The kinetics of xanthophyll cycle activity, thermal dissipation (NPQ), and q (f) observed at midday during senescence exhibited two distinct phases. The first phase was characterized by an increase of xanthophyll cycle activity, NPQ, and q (f) during the first 45 days after anthesis. The second phase took place 45 days after anthesis, characterized by a dramatic decline in the above parameters. However, the qI, observed both at midday and in the morning, always increased along with senescence. A larger proportion of NPQ insensitive to DTT (an inhibitor of the de-epoxidation of V to Z) was also observed in severely senescent leaves. In the morning, only severely senescent leaves showed higher xanthophyll cycle activity, NPQ, q (f), and qI. It was demonstrated that, at the beginning of senescence or under low light, wheat leaves were able to dissipate excess light energy via NPQ, depending on the xanthophyll cycle. However, the xanthophyll cycle was insufficient to protect leaves against photodamage under high light, when leaves became severely senescent. The ratio of (Fj - Fo)/(Fp - Fo) increased gradually during the first 45 days after anthesis, but dramatically increased 45 days after anthesis. We propose that another photoprotection mechanism might exist around reaction centres, activated in severely senescent leaves to protect leaves from photodamage.
Collapse
Affiliation(s)
- J Dai
- Department of Plant Science, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | | | | | | |
Collapse
|
26
|
Li D, Xie J, Zhao J, Xia A, Li D, Gong Y. Light-induced excitation energy redistribution in Spirulina platensis cells: “spillover” or “mobile PBSs”? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:114-21. [PMID: 14871488 DOI: 10.1016/j.bbabio.2003.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022]
Abstract
State transitions induced by light and redox were investigated by observing the 77 K fluorescence spectra for the intact cells of Spirulina platensis. To clarify if phycobilisomes (PBSs) take part in the state transition, the contributions of PBSs to light-induced state transition were studied in untreated cells and the cells treated by betaine which fixed PBSs firmly on the thylakoid membranes. It was observed that the betaine-treated cells did not show any light-induced state transition. This result definitely confirmed that the light-induced excitation energy regulation between the two photosystems is mainly dependent on a spatial movement of PBSs on the thylakoid membranes, which makes PBS cores partially decoupled from photosystem II (PSII) while PBS rods more strongly coupled with photosystem I (PSI) during the transition from state 1 to state 2. On the other hand, an energy exchange between the two photosystems was observed in both untreated and betaine-treated cells during redox-induced state transition. These observations suggested that two different mechanisms were involved in the light-induced state transition and the redox-induced one. The former involves only a physical movement of PBSs, while the latter involves not only the movement of PBS but also energy spillover from PSII to PSI. A model for light-induced state transition was proposed based on the current results as well as well known knowledge.
Collapse
Affiliation(s)
- Donghui Li
- Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Academy of Chinese Sciences, Beijing 100080, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Beutler M, Wiltshire KH, Arp M, Kruse J, Reineke C, Moldaenke C, Hansen UP. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:33-46. [PMID: 12686419 DOI: 10.1016/s0005-2728(03)00022-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorometric determination of the chlorophyll (Chl) content of cyanobacteria is impeded by the unique structure of their photosynthetic apparatus, i.e., the phycobilisomes (PBSs) in the light-harvesting antennae. The problems are caused by the variations in the ratio of the pigment PC to Chl a resulting from adaptation to varying environmental conditions. In order to include cyanobacteria in fluorometric analysis of algae, a simplified energy distribution model describing energy pathways in the cyanobacterial photosynthetic apparatus was conceptualized. Two sets of mathematical equations were derived from this model and tested. Fluorescence of cyanobacteria was measured with a new fluorometer at seven excitation wavelength ranges and at three detection channels (650, 685 and 720 nm) in vivo. By employing a new fit procedure, we were able to correct for variations in the cyanobacterial fluorescence excitation spectra and to account for other phytoplankton signals. The effect of energy-state transitions on the PC fluorescence emission of PBSs was documented. The additional use of the PC fluorescence signal in combination with our recently developed mathematical approach for phytoplankton analysis based on Chl fluorescence spectroscopy allows a more detailed study of cyanobacteria and other phytoplankton in vivo and in situ.
Collapse
Affiliation(s)
- M Beutler
- Max-Planck-Institut (MPI) für Limnologie, Plön, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Turpin DH, Bruce D. Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(90)80714-t] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Stamatakis K, Papageorgiou GC. The osmolality of the cell suspension regulates phycobilisome-to-photosystem I excitation transfers in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:172-81. [PMID: 11779550 DOI: 10.1016/s0005-2728(01)00192-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chlorophyll a (Chla) fluorescence of cyanobacteria, which at physiological temperature originates from photosystem (PS) II holochromes, is suppressed in hyperosmotic suspension, and enhanced in hypo-osmotic suspension (G.C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4). We investigated the mechanism of this phenomenon by comparing Synechococcus sp. PCC 7942 cells that had been treated with N-ethylmaleimide (NEM) in order to inhibit electronic excitation transfers from phycobilisomes (PBS) to Chlas of PSI (A.N. Glazer, Y.M. Gindt, C.F. Chan, K. Sauer, Photosynth. Res. 40 (1994) 167-173) with untreated control cells. The NEM-treated cells were indistinguishable from the control cells with regard to PSII-dependent oxygen evolution, reduction of post-PSII oxidants, and osmotically induced volume changes, but differed in the following properties: (i) they could not photoreduce post-PSI electron acceptors; (ii) they diverted more PBS excitation to PSII; (iii) the rise of Chla fluorescence upon light acclimation of darkened (state 2) cells was smaller; and (iv) the Chla fluorescence of light-acclimated (state 1) cells was insensitive to the cell suspension osmolality. These properties suggest that osmolality regulates the core-mediated excitation coupling between PBS and PSI, possibly by influencing mutual orientation and/or distance between core holochromes (ApcE, ApcD) and PSI holochromes. Thus, in hyper-osmotic suspension, PBS deliver more excitation to PSI (hence less to PSII); in hypo-osmotic cell suspension they deliver less excitation to PSI (hence more to PSII).
Collapse
Affiliation(s)
- K Stamatakis
- National Center for Scientific Research Demokritos, Institute of Biology, Athens 15310, Greece
| | | |
Collapse
|
31
|
Mullineaux CW, Holzwarth AR. A proportion of photosystem II core complexes are decoupled from the phycobilisome in light-state 2 in the cyanobacterium Synechococcus
6301. FEBS Lett 2001. [DOI: 10.1016/0014-5793(90)80114-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Forti G, Vianelli A. Influence of thylakoid protein phosphorylation on photosystem I photochemistry. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80709-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Caron L, Remy R, Berkaloff C. Polypeptide composition of light-harvesting complexes from some brown algae and diatoms. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80787-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
El Bissati K, Kirilovsky D. Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. PLANT PHYSIOLOGY 2001; 125:1988-2000. [PMID: 11299378 PMCID: PMC88854 DOI: 10.1104/pp.125.4.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 11/30/2000] [Accepted: 01/03/2001] [Indexed: 05/17/2023]
Abstract
We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.
Collapse
Affiliation(s)
- K El Bissati
- Unité Mixte de Recherche 8543, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris, France
| | | |
Collapse
|
35
|
Excitation energy transfer from phycobilisomes to photosystems: a phenomenon associated with the temporal separation of photosynthesis and nitrogen fixation in a cyanobacterium, Plectonema boryanum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2000. [DOI: 10.1016/s0005-2728(00)00123-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
El Bissati K, Delphin E, Murata N, Etienne A, Kirilovsky D. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:229-42. [PMID: 10773167 DOI: 10.1016/s0005-2728(00)00104-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural changes associated to non-photochemical quenching in cyanobacteria is still a matter of discussion. The role of phycobilisome and/or photosystem mobility in this mechanism is a point of interest to be elucidated. Changes in photosystem II fluorescence induced by different quality of illumination (state transitions) or by strong light were characterized at different temperatures in wild-type and mutant cells, that lacked polyunsaturated fatty acids, of the cyanobacterium Synechocystis PCC 6803. The amplitude and the rate of state transitions decreased by lowering temperature in both strains. Our results support the hypothesis that a movement of membrane complexes and/or changes in the oligomerization state of these complexes are involved in the mechanism of state transitions. The quenching induced by strong blue light which was not associated to D1 damage and photoinhibition, did not depend on temperature or on the membrane state. Thus, the mechanism involved in the formation of this type of quenching seems to be unrelated to the movement of membrane complexes. Our results strongly support the idea that the mechanism involved in the fluorescence quenching induced by light 2 is different from that involved in strong blue light induced quenching.
Collapse
Affiliation(s)
- K El Bissati
- URA 1810, CNRS, ENS, 46 rue d'Ulm, 75230, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Montane MH, Tardy F, Kloppstech K, Havaux M. Differential control of xanthophylls and light-induced stress proteins, as opposed to light-harvesting chlorophyll a/b proteins, during photosynthetic acclimation of barley leaves to light irradiance. PLANT PHYSIOLOGY 1998; 118:227-35. [PMID: 9733542 PMCID: PMC34860 DOI: 10.1104/pp.118.1.227] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/1998] [Accepted: 05/29/1998] [Indexed: 05/19/2023]
Abstract
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 &mgr;mol m-2 s-1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.
Collapse
Affiliation(s)
- MH Montane
- Commissariat a l'Energie Atomique/Cadarache, Departement d'Ecophysiologie Vegetale et de Microbiologie, Laboratoire de Radiobiologie Vegetale (M.-H.M.)
| | | | | | | |
Collapse
|
38
|
Hoefnagel MH, Atkin OK, Wiskich JT. Interdependence between chloroplasts and mitochondria in the light and the dark. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1998. [DOI: 10.1016/s0005-2728(98)00126-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Delphin E, Duval JC, Etienne AL, Kirilovsky D. DeltapH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae. PLANT PHYSIOLOGY 1998; 118:103-13. [PMID: 9733530 PMCID: PMC34847 DOI: 10.1104/pp.118.1.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Accepted: 05/29/1998] [Indexed: 05/20/2023]
Abstract
We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a DeltapH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the DeltapH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the DeltapH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1'-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N, N'-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of DeltapH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.
Collapse
Affiliation(s)
- E Delphin
- Photoregulation et Dynamique des Membranes Vegetales, Unite de Recherche Associee 1810, Centre National de la Recherche Scientifique, Ecole Normale Superieure, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | | | | | | |
Collapse
|
40
|
Elich TD, Edelman M, Mattoo AK. Evidence for light-dependent and light-independent protein dephosphorylation in chloroplasts. FEBS Lett 1997; 411:236-8. [PMID: 9271212 DOI: 10.1016/s0014-5793(97)00698-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of photosystem II (PSII) associated proteins, including core proteins D1, D2 and CP43, and several proteins of the LHCII complex, are phosphorylated by a thylakoid-bound, redox-regulated kinase(s). We demonstrate here that the compound propyl gallate is an effective inhibitor of LHCII phosphorylation in vivo while having little effect on PSII core protein phosphorylation. Using this inhibitor, we demonstrate that LHCII dephosphorylation is insensitive to light in vivo. Taken together with our previous conclusion (Elich et al., EMBO J. 12 (1993) 4857-4862) that PSII core protein dephosphorylation is light-stimulated, our data suggest the presence of multiple phosphatases responsible for thylakoid protein dephosphorylation in vivo.
Collapse
Affiliation(s)
- T D Elich
- Beltsville Agricultural Research Center-West, USDA/ARS, MD 20705-2350, USA
| | | | | |
Collapse
|
41
|
|
42
|
Bukhov NG, Wiese C, Neimanis S, Heber U. Control of Photosystem II in spinach leaves by continuous light and by light pulses given in the dark. PHOTOSYNTHESIS RESEARCH 1996; 50:181-191. [PMID: 24271935 DOI: 10.1007/bf00014888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1996] [Accepted: 11/05/1996] [Indexed: 06/02/2023]
Abstract
The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach.After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This 'fast' component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid ΔpH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions.Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF.We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.
Collapse
Affiliation(s)
- N G Bukhov
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082, Würzburg, Germany
| | | | | | | |
Collapse
|
43
|
Miller AG, Espie GS, Bruce D. Characterization of the non-photochemical quenching of chlorophyll fluorescence that occurs during the active accumulation of inorganic carbon in the cyanobacterium Synechococcus PCC 7942. PHOTOSYNTHESIS RESEARCH 1996; 49:251-262. [PMID: 24271703 DOI: 10.1007/bf00034786] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/1996] [Accepted: 07/24/1996] [Indexed: 06/02/2023]
Abstract
Previous work has shown that the maximum fluorescence yield from PS 2 of Synechococcus PCC 7942 occurs when the cells are at the CO2 compensation point. The addition of inorganic carbon (Ci), as CO2 or HCO3 (-), causes a lowering of the fluorescence yield due to both photochemical (qp) and non-photochemical (qN) quenching. In this paper, we characterize the qN that is induced by Ci addition to cells grown at high light intensities (500 μmol photons m(-2) s(-1)). The Ci-induced qN was considerably greater in these cells than in cells grown at low light intensities (50 μmol photons m(-2) s(-1)), when assayed at a white light (WL) intensity of 250 μmol photons m(-2) s(-1). In high-light grown cells we measured qN values as high as 70%, while in low-light grown cells the qN was about 16%. The qN was relieved when cells regained the CO2 compensation point, when cells were illuminated by supplemental far-red light (FRL) absorbed mainly by PS 1, or when cells were illuminated with increased WL intensities. These characteristics indicate that the qN was not a form of energy quenching (qE). Supplemental FRL illumination caused significant enhancement of photosynthetic O2 evolution that could be correlated with the changes in qp and qN. The increases in qp induced by Ci addition represent increases in the effective quantum yield of PS 2 due to increased levels of oxidized QA. The increase in qN induced by Ci represents a decrease in PS 2 activity related to decreases in the potential quantum yield. The lack of diagnostic changes in the 77 K fluorescence emission spectrum argue against qN being related to classical state transitions, in which the decrease in potential quantum yield of PS 2 is due either to a decrease in absorption cross-section or by increased 'spill-over' of excitation energy to PS 1. Both the Ci-induced qp (t 0.5<0.5 s) and qN (t 0.5≃1.6 s) were rapidly relieved by the addition of DCMU. The two time constants give further support for two separate quenching mechanisms. We have thus characterized a novel form of qN in cyanobacteria, not related to state transitions or energy quenching, which is induced by the addition of Ci to cells at the CO2-compensation point.
Collapse
Affiliation(s)
- A G Miller
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, B2G 2W5, Antigonish, Nova Scotia, Canada
| | | | | |
Collapse
|
44
|
Delphin E, Duval JC, Etienne AL, Kirilovsky D. State transitions or delta pH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 1996; 35:9435-45. [PMID: 8755722 DOI: 10.1021/bi960528+] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fluorescence changes attributed to state transitions have been shown to exist in phycobilisome-containing organisms. Contradictory conclusions have been derived from studies about the mechanism of state transitions carried out either in cyanobacteria or in red algae. In this paper, fluorescence changes induced by light 1 and light 2 are reinvestigated in a unicellular red alga, Rhodella violacea, by performing 77 K fluorescence spectra and fluorescence yield measurements at room temperature in the presence of uncouplers and inhibitors of the electron transfer. We show that transfer of light 1-adapted cells to light 2 (green light) induces a large quenching of photosystem II which is suppressed by subsequent incubation in light 1 (far-red or blue light). The level of the photosystem I-related fluorescence does not change during these transfers. We demonstrate that the large quenching of photosystem II induced by low intensities of green light is completely suppressed by addition of NH4Cl, an uncoupler that inhibits ATP synthesis by canceling the delta pH across the membrane. DCCD, which is an inhibitor of the ATPase that swells the delta pH, maintains the quenched state even under light 1 illumination. The opposite effects of DCMU and DBMIB on state transitions are demonstrated to be due to a suppression (by DCMU) or maintenance (by DBMIB) of the delta pH and not to change in the redox state of the plastoquinone. We conclude that, in R. violacea, the fluorescence change commonly associated with state 2 transition is in fact a delta pH-dependent quenching. This type of quenching has always been associated with near-saturating light intensities. Here, we show that very low intensities of a light that activates only the photosystem II induce a delta pH across the membrane that is not dissipated since the ATPase is not activated. The delta pH is dissipated only under conditions in which the photosystem I turns, confirming that the thioredoxin must be reduced to activate the ATPase. We suggest that the fluorescence changes, induced by various light conditions, in cyanobacteria and red algae could be associated with different phenomena.
Collapse
Affiliation(s)
- E Delphin
- Photorégulation et dynamique des membranes végétales, URA 1810, CNRS, Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|
45
|
Structure, Composition, Functional Organization and Dynamic Properties of Thylakoid Membranes. OXYGENIC PHOTOSYNTHESIS: THE LIGHT REACTIONS 1996. [DOI: 10.1007/0-306-48127-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Gans P, Wollman FA. The effect of cyanide on state transitions in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00159-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Ibelings BW, Kroon BMA, Mur LR. Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. THE NEW PHYTOLOGIST 1994; 128:407-424. [PMID: 33874577 DOI: 10.1111/j.1469-8137.1994.tb02987.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoacclimation of Scenedesmus protuberans Fritsch and Microcystis aeruginosa Kützing emend. Elenkin to high and fluctuating PPFD was studied in continuous cultures with computer-controlled variable light regimes. The aim of the work was to provide a better understanding of species-specific acclimation to high PPFD (as encountered by cyanobacteria in surface waterblooms), and of suppression of the growth of colony-forming cyanobacteria during periods of prolonged mixing in lakes. The dynamics of a set of variables was followed during the light period, including pigment composition, maximum rate, efficiency and minimum quantum requirement of photosynthesis, PS II cross-sections, and fluorescence variables. Both the green alga and the cyanobacterium displayed strong photo-inhibition of photosynthesis in the sinusoidal light regime, which simulated a natural light regime in the absence of mixing. Pmax , α, QR and the ratio of variable to maximum fluorescence declined, and the number of inactive PS II centres and PS IIβ centres increased towards midday. Introduction of oscillations in the diurnal light regime, simulating different intensities of wind-induced mixing in lakes, mitigated photo-inhibition. Microcystis showed a prompt non-photochemical quenching of fluorescence in all light regimes, even at low to moderate PPFD. The sustained presence of zeaxanthin in Microcystis possibly induced instant, thermal dissipation of excitation energy from the antenna. Microcystis also exhibited a more reluctant acclimation to fluctuating PPFD. Growth rate of Scenedesmus was higher in all light regimes. This implied that if (known) differences in loss processes were ignored, Scenedesmus would outcompete Microcystis in lakes. The results underlined the importance of buoyancy regulation in increasing the daily light dose of cyanobacteria (but at the same time preventing over-excitation), and ultimately in the success in Microcystis in stable lakes.
Collapse
Affiliation(s)
- Bas W Ibelings
- Laboratory for Microbiology, University of Amsterdam, Nieuwe Achtergracht 127 1018 WS Amsterdam, The Netherlands
| | - Bernd M A Kroon
- Laboratory for Microbiology, University of Amsterdam, Nieuwe Achtergracht 127 1018 WS Amsterdam, The Netherlands
| | - Luuc R Mur
- Laboratory for Microbiology, University of Amsterdam, Nieuwe Achtergracht 127 1018 WS Amsterdam, The Netherlands
| |
Collapse
|
48
|
Homer-Dixon JA, Gantt E, Bruce D. Pigment orientation changes accompanying the light state transition in Synechococcus sp. PCC 6301. PHOTOSYNTHESIS RESEARCH 1994; 40:35-44. [PMID: 24311212 DOI: 10.1007/bf00019043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/1993] [Accepted: 11/27/1993] [Indexed: 06/02/2023]
Abstract
Low temperature (77 K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. PCC 6301 and those accompanying chromatic acclimation in Porphyridium cruentum in samples stabilized by glutaraldehyde fixation. In light state 2 compared to light state 1 intact cells of Synechococcus showed an increased alignment of allophycocyanin parallel to the cells' long axis whereas the phycobilisomethylakoid membrane fragments exhibited an increased allophycocyanin alignment parallel to the membrane plane. The phycobilisome-thylakoid membrane fragments showed less alignment of a short wave-length chlorophyll a (Chl a) Qy transition dipole parallel to the membrane plane in state 2 relative to state 1.To aid identification of the observed Chl a orientation changes in Synechococcus, linear dichroism spectra were obtained from phycobilisome-thylakoid membrane fragments isolated from red light-grown (increased number of PS II centres) and green light-grown (increased number of PS I centres) cells of the red alga Porphyridium cruentum. An increased contribution of short wavelength Chl a Qy transition dipoles parallel to the long axis of the membrane plane was directly correlated with increased levels of PS II centres in red light-grown P. cruentum.Our results indicate that the transition to state 2 in cyanobacteria is accompanied by an increase in the orientation of allophycocyanin and a decrease in the orientation of Chl a associated with PS II with respect to the thylakoid membrane plane.
Collapse
Affiliation(s)
- J A Homer-Dixon
- Department of Biological Sciences, Brock University, L2S 3A1, St. Catharines, Ontario, Canada
| | | | | |
Collapse
|
49
|
Post AF, Bullerjahn GS. The photosynthetic machinery in prochlorophytes: Structural properties and ecological significance. FEMS Microbiol Rev 1994. [DOI: 10.1111/j.1574-6976.1994.tb00059.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Andersson B, Barber J. Composition, Organization, and Dynamics of Thylakoid Membranes. MOLECULAR PROCESSES OF PHOTOSYNTHESIS 1994. [DOI: 10.1016/s1569-2558(08)60394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|