1
|
Li SY, Hussain SB, Vincent C. Response of carbon fixation, allocation, and growth to source-sink manipulation by defoliation in vegetative citrus trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14304. [PMID: 38686664 DOI: 10.1111/ppl.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Source-sink balance in plants determines carbon distribution, and altering it can impact carbon fixation, transport, and allocation. We aimed to investigate the effect of altered source-sink ratios on carbon fixation, transport, and distribution in 'Valencia' sweet orange (Citrus x sinensis) by various defoliation treatments (0%, 33%, 66%, and 83% leaf removal). Gas exchange parameters were measured on 0 and 10 days after defoliation using A/Ci response curves, and leaf export was measured two days after defoliation using radioisotope tracer techniques. Greater defoliation increased the maximum rate of carboxylation (Vcmax), electron transport rate (J1200), and triose-phosphate utilization rate (TPU). Leaf export was unaffected by defoliation but increased in leaves closer to the shoot apex. Basipetal translocation velocity in the trunk remained unaltered, indicating that more photosynthates remained in the shoot rather than being transported directly to the root sink. Defoliated plants initiated more new flush shoots but accumulated less shoot biomass per plant after 8 weeks. Carbon allocation to fine roots was smaller in defoliated plants, suggesting defoliation led to retention of carbohydrates in aboveground organs such as the trunk and other shoots from previous growing cycles. In conclusion, the low source-sink ratio increased carbon fixation without impacting individual leaf export in citrus. The results suggest that intermediate sinks such as the aboveground perennial organs play a role in mediating the translocation velocity. Further research is necessary to better understand the dynamics of source-sink regulation in citrus trees.
Collapse
Affiliation(s)
- Sheng-Yang Li
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Syed Bilal Hussain
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Christopher Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
2
|
Comparative and Correlation Analysis of Young and Mature Kaffir Lime (Citrus hystrix DC) Leaf Characteristics. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kaffir lime is leaf-oriented minor citrus that required extra attention to study. This study aimed to (i) comparatively analyze the young and mature leaf morpho-ecophysiological characters; and (ii) perform a correlation analysis for revealing the relationship among the physiological characters. Plants were ten one-year-old kaffir lime trees cultured under full sun condition. Leaf size was measured by using a specific allometric model. The Li-6400XT portable photosynthesis system was used to observe the leaf ecophysiological characters. The statistical analysis revealed significant differences in leaf size and physiology as the effect of leaf age. A significant size enlargement in mature leaves was noticed, especially in terms of leaf length, area, and weight, of about 77%, 177%, and 196%, respectively. Young leaves experienced a significant improvement in photosynthetic rate and actual water use efficiency for about 39% and 53%, respectively. Additionally, a strong, significant, and positive correlation between leaf chlorophyll, carotenoid content, and photosynthetic rate was found in the present study. Further studies using a multi-omics approach may enrich the science between kaffir lime leaf maturation as the basis of agricultural modification practice.
Collapse
|
3
|
Fu X, Zhang J, Zhou L, Mo W, Wang H, Huang X. Characterizing the development of photosynthetic capacity in relation to chloroplast structure and mineral nutrition in leaves of three woody fruit species. TREE PHYSIOLOGY 2022; 42:989-1001. [PMID: 35029686 DOI: 10.1093/treephys/tpab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants have evolved different developmental patterns of photosynthetic capacity to better adapt to changing environmental conditions. Natural variation in photosynthetic development offers great potential for improving crop productivity. In this study, leaf developmental patterns were characterized in three woody fruit tree species with distinct photosynthetic capacity and growth habits. Changes in the photosynthetic rate, photosystem II (PSII) efficiency, chloroplast ultrastructure, activities of photosynthetic enzymes, and contents of carbohydrates and mineral nutrients were examined at five developmental stages to explore the interspecific variation in photosynthetic development. Rapid development of photosynthetic machinery and high photosynthetic capacity were found in Indian jujube (Ziziphus mauritiana) and apple (Malus domestica), whose net CO2 assimilation rate (A) peaked at full leaf expansion (FLE). Litchi (Litchi chinensis), a delayed-greening species, showed slow development of photosynthetic competence, with A peaked after FLE. The low photosynthetic capacity of litchi during early leaf expansion was associated with its delayed chloroplast development, low accumulation of starch, and low activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and NADP-glyceraldehyde-3-phosphate dehydrogenase. Correlations between mineral contents and A across leaf stages and species identified manganese as the rate-limiting nutrients in photosynthetic development in new leaves. Foliar spray of MnSO4 solution (1 g l-1) induced a short-term increase in photosynthesis in young leaves of litchi. These findings suggest that a better understanding of interspecific variation in photosynthetic development facilitates the development of new strategies for improving the photosynthetic efficiency of woody fruit trees.
Collapse
Affiliation(s)
- Xinyu Fu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jingyi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Linyao Zhou
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Weiping Mo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Huicong Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Guo Y, Wang T, Fu FF, El-Kassaby YA, Wang G. Metabolome and Transcriptome Analyses Reveal the Regulatory Mechanisms of Photosynthesis in Developing Ginkgo biloba Leaves. Int J Mol Sci 2021; 22:ijms22052601. [PMID: 33807564 PMCID: PMC7961846 DOI: 10.3390/ijms22052601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/09/2023] Open
Abstract
Ginkgo (Ginkgo biloba L.) is a deciduous tree species with high timber, medicinal, ecological, ornamental, and scientific values, and is widely cultivated worldwide. However, for such an important tree species, the regulatory mechanisms involved in the photosynthesis of developing leaves remain largely unknown. Here, we observed variations in light response curves (LRCs) and photosynthetic parameters (photosynthetic capacity (Pnmax) and dark respiration rate (Rd)) of leaves across different developmental stages. We found the divergence in the abundance of compounds (such as 3-phospho-d-glyceroyl phosphate, sedoheptulose-1,7-bisphosphate, and malate) involved in photosynthetic carbon metabolism. Additionally, a co-expression network was constructed to reveal 242 correlations between transcription factors (TFs) and photosynthesis-related genes (p < 0.05, |r| > 0.8). We found that the genes involved in the photosynthetic light reaction pathway were regulated by multiple TFs, such as bHLH, WRKY, ARF, IDD, and TFIIIA. Our analysis allowed the identification of candidate genes that most likely regulate photosynthesis, primary carbon metabolism, and plant development and as such, provide a theoretical basis for improving the photosynthetic capacity and yield of ginkgo trees.
Collapse
Affiliation(s)
- Ying Guo
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (F.-F.F.)
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Fang-Fang Fu
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (F.-F.F.)
- Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Correspondence: (Y.A.E.-K.); (G.W.)
| | - Guibin Wang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (F.-F.F.)
- Forestry College, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.A.E.-K.); (G.W.)
| |
Collapse
|
5
|
Abstract
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.
Collapse
|
6
|
A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.). Int J Mol Sci 2015; 16:14007-38. [PMID: 26096006 PMCID: PMC4490536 DOI: 10.3390/ijms160614007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 01/24/2023] Open
Abstract
Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants.
Collapse
|
7
|
Kölling K, George GM, Künzli R, Flütsch P, Zeeman SC. A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species. PLANT METHODS 2015; 11:48. [PMID: 26478739 PMCID: PMC4609071 DOI: 10.1186/s13007-015-0089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/29/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Photosynthetic assimilation of carbon is a defining feature of the plant kingdom. The fixation of large amounts of carbon dioxide supports the synthesis of carbohydrates, which make up the bulk of plant biomass. Exact measurements of carbon assimilation rates are therefore crucial due to their impact on the plants metabolism, growth and reproductive success. Commercially available single-leaf cuvettes allow the detailed analysis of many photosynthetic parameters, including gas exchange, of a selected leaf area. However, these cuvettes can be difficult to use with small herbaceous plants such as Arabidopsis thaliana or plants having delicate or textured leaves. Furthermore, data from single leaves can be difficult to scale-up for a plant shoot with a complex architecture and tissues in different physiological states. Therefore, we constructed a versatile system-EGES-1-to simultaneously measure gas exchange in the whole shoots of multiple individual plants. Our system was designed to be able record data continuously over several days. RESULTS The EGES-1 system yielded comparable measurements for eight plants for up to 6 days in stable, physiologically realistic conditions. The chambers seals have negligible permeability to carbon dioxide and the system is designed so as to detect any bulk-flow air leaks. We show that the system can be used to monitor plant responses to changing environmental conditions, such as changes in illumination or stress treatments, and to compare plants with phenotypically severe mutations. By incorporating interchangeable lids, the system could be used to measure photosynthetic gas exchange in several genera such as Arabidopsis, Nicotiana, Pisum, Lotus and Mesembryanthemum. CONCLUSION EGES-1 can be introduced into a variety of growth facilities and measure gas exchange in the shoots diverse plant species grown in different growth media. It is ideal for comparing photosynthetic carbon assimilation of wild-type and mutant plants and/or plants undergoing selected experimental treatments. The system can deliver valuable data for whole-plant growth studies and help understanding mutant phenotypes. Overall, the EGES-1 is complementary to the readily-available single leaf systems that focus more on the photosynthetic process in within the leaf lamina.
Collapse
Affiliation(s)
- Katharina Kölling
- />Department of Biology, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gavin M. George
- />Department of Biology, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Roland Künzli
- />DMP Ltd, Allmendstrasse 9, 8320 Fehraltorf, Switzerland
| | - Patrick Flütsch
- />Department of Biology, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Samuel C. Zeeman
- />Department of Biology, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Rasulov B, Bichele I, Laisk A, Niinemets Ü. Competition between isoprene emission and pigment synthesis during leaf development in aspen. PLANT, CELL & ENVIRONMENT 2014; 37:724-41. [PMID: 24033429 PMCID: PMC4411569 DOI: 10.1111/pce.12190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 05/18/2023]
Abstract
In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post-illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1- to 5-day-old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis-Menten constant (Km ) values obtained were 265 nmol m(-2) (20 μm) for DMADP-consuming prenyltransferase reactions and 2560 nmol m(-2) (190 μm) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Irina Bichele
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Agu Laisk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
9
|
Rapaport T, Hochberg U, Rachmilevitch S, Karnieli A. The effect of differential growth rates across plants on spectral predictions of physiological parameters. PLoS One 2014; 9:e88930. [PMID: 24523946 PMCID: PMC3921250 DOI: 10.1371/journal.pone.0088930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/13/2014] [Indexed: 11/18/2022] Open
Abstract
Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic factors may form distinctions in growth, future precision agriculture studies should consider its spectral effect on physiological predictions.
Collapse
Affiliation(s)
- Tal Rapaport
- The Remote Sensing Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Hochberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Arnon Karnieli
- The Remote Sensing Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Bohler S, Sergeant K, Lefèvre I, Jolivet Y, Hoffmann L, Renaut J, Dizengremel P, Hausman JF. Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. TREE PHYSIOLOGY 2010; 30:1415-32. [PMID: 21030406 DOI: 10.1093/treephys/tpq082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Populus tremula L. × Populus alba L. (Populus ×c anescens (Aiton) Smith) - clone INRA 717-1-B4 saplings (50 cm apex to base and carrying 19 leaves on average) - were followed for 28 days. Half of the trees were grown in charcoal-filtered air while the other half were exposed to 120 ppb ozone for 11 h a day during the light period. The expanding leaf number 4 was tagged at the beginning of the experiment and finished expansion between 7 and 14 days. These leaves were harvested weekly for biochemical and proteome analyses using quantitative bidimensional electrophoresis (DiGE). Independent of the ozone treatment, all the analyses allowed a distinction between expanding and adult leaves. The results indicate that during the expansion phase (Days 0-7) the enzymatic machinery of the leaves is set up, and remains dynamically stable in the adult leaves (Days 14-28). Although ozone had no apparent effect on expanding leaves, the metabolic stability in fully expanded leaves observed in ozone-free plants was disturbed after 2 weeks of exposure and a stress-induced response became apparent.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of Environment and Agro-biotechnologies, CRP-Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, GD Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
11
|
González-Rodríguez AM, Peters J. Strategies of leaf expansion in Ficus carica under semiarid conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:469-474. [PMID: 20522183 DOI: 10.1111/j.1438-8677.2009.00220.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.
Collapse
Affiliation(s)
- A M González-Rodríguez
- Departamento de Fruticultura Tropical, Instituto Canario de Investigaciones Agrarias (ICIA), La Laguna, Tenerife, Spain.
| | | |
Collapse
|
12
|
Maayan I, Shaya F, Ratner K, Mani Y, Lavee S, Avidan B, Shahak Y, Ostersetzer-Biran O. Photosynthetic activity during olive (Olea europaea) leaf development correlates with plastid biogenesis and Rubisco levels. PHYSIOLOGIA PLANTARUM 2008; 134:547-58. [PMID: 18636989 DOI: 10.1111/j.1399-3054.2008.01150.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Olive leaves are known to mature slowly, reaching their maximum photosynthetic activity only after full leaf expansion. Poor assimilation rates, typical to young olive leaves, were previously associated with low stomata conductance. Yet, very little is known about chloroplast biogenesis throughout olive leaf development. Here, the photosynthetic activity and plastids development throughout leaf maturation is characterized by biochemical and ultrastructural analyses. Although demonstrated only low photosynthetic activity, the plastids found in young leaves accumulated both photosynthetic pigments and proteins required for photophosphorylation and carbon fixation. However, Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase), which catalyzes the first major step of carbon fixation and one of the most abundant proteins in plants, could not be detected in the young leaves and only slowly accumulated throughout development. In fact, Rubisco levels seemed tightly correlated with the observed photosynthetic activities. Unlike Rubisco, numerous proteins accumulated in the young olive leaves. These included the early light induced proteins, which may be required to reduce the risk of photodamage, because of light absorption by photosynthetic pigments. Also, high levels of ribosomal L11 subunit, transcription factor elF-5A, Histones H2B and H4 were observed in the apical leaves, and in particular a plastidic-like aldolase, which accounted for approximately 30% of the total proteins. These proteins may upregulate in their levels to accommodate the high demand for metabolic energy in the young developing plant tissue, further demonstrating the complex sink-to-source relationship between young and photosynthetically active mature leaves.
Collapse
Affiliation(s)
- Inbar Maayan
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li P, Cheng L. The shaded side of apple fruit becomes more sensitive to photoinhibition with fruit development. PHYSIOLOGIA PLANTARUM 2008; 134:282-92. [PMID: 18494860 DOI: 10.1111/j.1399-3054.2008.01131.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Developmental changes of photochemical and non-photochemical processes and the antioxidant system in the shaded peel vs the sun-exposed peel of 'Gala' apple and their responses to sudden exposure of high light were determined to understand the susceptibility of the shaded peel to high light damage with fruit development. As fruit developed, actual PSII efficiency of the shaded peel decreased, whereas non-photochemical quenching (mainly the slow component) increased at any given PFD. Photochemical quenching coefficient of the shaded peel decreased at any given PFD with fruit development. As fruit developed, the activity of superoxide dismutase, ascorbate peroxidase and dehydroascorbate reductase and the level of reduced ascorbate and total ascorbate decreased; the activity of monodehydroascorbate reductase and glutathione reductase remained low, whereas catalase activity and the level of reduced glutathione and total glutathione increased in the shaded peel. Exposure to high light (1500 micromol m(-2) s(-1)) for 2 h significantly decreased the maximum quantum efficiency of PSII (F(V)/F(M)) in the shaded peel at each developmental stage, with the decrease being larger with fruit development. The F(V)/F(M) of the sun-exposed peel was also decreased by the high light treatment, but the decrease was much smaller than that in the shaded peel at each developmental stage. We conclude that the shaded peel of apple fruit becomes more sensitive to photoinhibition with fruit development, and this increased sensitivity is apparently related to the decease in the overall capacity for photosynthesis and photoprotection of the shaded peel with fruit development.
Collapse
Affiliation(s)
- Pengmin Li
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
14
|
Wullschleger SD, Oosterhuis DM. Photosynthesis of individual field-grown cotton leaves during ontogeny. PHOTOSYNTHESIS RESEARCH 1990; 23:163-70. [PMID: 24421058 DOI: 10.1007/bf00035007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/1988] [Accepted: 03/03/1989] [Indexed: 05/24/2023]
Abstract
Photosynthetic characteristics of field-grown cotton (Gossypium hirsutum L.) leaves were determined at several insertion levels within the canopy during the growing season. Single-leaf measurements of net photosynthesis (Pn), stomatal conductance to CO2 (gs·CO2), substomatal CO2, leaf area expansion, leaf nitrogen, and light intensity (PPFD) were recorded for undisturbed leaves within the crop canopy at 3-4 day intervals during the development of all leaves at main-stem nodes 8, 10, and 12. Patterns of Pn during leaf ontogeny exhibited three distinct phases; a rapid increase to maximum at 16-20 days after leaf unfolding, a relatively short plateau, and a period of linear decline to negligible Pn at 60-65 days. Analysis of the parameters which contributed to the rise and fall pattern of Pn with leaf age indicated the primary involvement of leaf area expansion, leaf nitrogen, PPFD, and gs·CO2 in this process. The response of Pn and gs·CO2 to incident PPFD conditions during canopy development was highly age dependent. For leaves less than 16 days old, the patterns of Pn and gs·CO2 were largely controlled by non-PPFD factors, while for older leaves Pn and gs·CO2 were more closely coupled to PPFD-mediated processes. Maximum values of Pn were not significantly different for any of the leaves monitored in this study, however, those leaves at main-stem node 8 did possess a significantly diminished photosynthetic capacity with age compared to upper canopy leaves. This accelerated decline in Pn could not be explained by age-related variations in gs·CO2 since all leaves showed similar changes in gs·CO2 with leaf age.
Collapse
Affiliation(s)
- S D Wullschleger
- Altheimer Laboratory, Department of Agronomy, University of Arkansas, 72703, Fayetteville, AR, U.S.A
| | | |
Collapse
|