1
|
Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians. Enzyme Microb Technol 2013; 53:136-42. [PMID: 23830452 DOI: 10.1016/j.enzmictec.2013.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/22/2022]
Abstract
In this study, thioredoxin h (Trxh) was isolated and characterized from the fresh water green alga Spirogyra varians, which was one amongst the pool of proteins induced upon gamma radiation treatment. cDNA clones encoding S. varians thioredoxin h were isolated from a pre-constructed S. varians cDNA library. Trxh had a molecular mass of 13.5kDa and contained the canonical WCGPC active site. Recombinant Trxh showed the disulfide reduction activity, and exhibited insulin reduction activity. Also, Trxh had higher 5,5'-dithiobis(2-nitrobenzoic acid) reduction activity with Arabidopsis thioredoxin reductase (TR) than with Escherichia coli TR. Specific expression of the Trxh gene was further analyzed at mRNA and protein levels and was found to increase by gamma irradiation upto the absorbed dose of 3kGy, suggesting that Trxh may have potential functions in protection of biomolecules from gamma irradiation.
Collapse
|
2
|
Huang DJ, Chen HJ, Hou WC, Lin CD, Lin YH. Active recombinant thioredoxin h protein with antioxidant activities from sweet potato (Ipomoea batatas [L.] Lam Tainong 57) storage roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:4720-4. [PMID: 15264905 DOI: 10.1021/jf0498618] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recombinant thioredoxin h (Trx2) overproduced in Escherichia coli (M15) was purified by Ni2+-chelated affinity chromatography. The molecular mass of Trx2 is approximately 1.4 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Total antioxidant status, 1,1-diphenyl-2-picrylhydrazyl (DPPH) staining, reducing power method, Fe2+-chelating ability, ferric thiocyanate (FTC) method, and protection of calf thymus DNA against hydroxyl radical-induced damage were studied. The thioredoxin h protein with a concentration of 12.5 mg/mL exhibited the highest activity (expressed as 0.37 +/- 0.012 mM ABTS* radical cation being cleared) in a total antioxidant status test. In the DPPH staining thioredoxin h appeared as white spots when it was diluted to 50 mg/mL (a final amount of 15 microg). Like the total antioxidant status, the reducing power, Fe2+-chelating ability, FTC activity, and protection against hydroxyl radical-induced calf thymus DNA damage were found with the thioredoxin h protein. It was suggested that thioredoxin h might contribute to its antioxidant activities against hydroxyl and peroxyl radicals.
Collapse
Affiliation(s)
- Dong-Jiann Huang
- Institute of Botany, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
3
|
Meyer Y, Vignols F, Reichheld JP. Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 2002; 347:394-402. [PMID: 11898430 DOI: 10.1016/s0076-6879(02)47039-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yves Meyer
- Laboratoire de Physiologie et Biologie Moléculaire des Plantes, Université UMR CNRS, 5096 Genome et Developpement des Plantes, 66860 Perpignan, France
| | | | | |
Collapse
|
4
|
Orsi A, Sparvoli F, Ceriotti A. Role of individual disulfide bonds in the structural maturation of a low molecular weight glutenin subunit. J Biol Chem 2001; 276:32322-9. [PMID: 11418605 DOI: 10.1074/jbc.m103833200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gliadins and glutenins are the major storage proteins that accumulate in wheat endosperm cells during seed development. Although gliadins are mainly monomeric, glutenins consist of very large disulfide-linked polymers made up of high molecular weight and low molecular weight subunits. These polymers are among the largest protein molecules known in nature and are the most important determinants of the viscoelastic properties of gluten. As a first step toward the elucidation of the folding and assembly pathways that lead to glutenin polymer formation, we have exploited an in vitro system composed of wheat germ extract and bean microsomes to examine the role of disulfide bonds in the structural maturation of a low molecular weight glutenin subunit. When conditions allowing the formation of disulfide bonds were established, the in vitro synthesized low molecular weight glutenin subunit was recovered in monomeric form containing intrachain disulfide bonds. Conversely, synthesis under conditions that did not favor the formation of disulfide bonds led to the production of large aggregates from which the polypeptides could not be rescued by the post-translational generation of a more oxidizing environment. These results indicate that disulfide bond formation is essential for the conformational maturation of the low molecular weight glutenin subunit and suggest that early folding steps may play an important role in this process, allowing the timely pairing of critical cysteine residues. To determine which cysteines were important to maintain the protein in monomeric form, we prepared a set of mutants containing selected cysteine to serine substitutions. Our results show that two conserved cysteine residues form a critical disulfide bond that is essential in preventing the exposure of adhesive domains and the consequent formation of aberrant aggregates.
Collapse
Affiliation(s)
- A Orsi
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy
| | | | | |
Collapse
|
5
|
Jacquot JP, Lancelin JM, Meyer Y. Thioredoxins: structure and function in plant cells. THE NEW PHYTOLOGIST 1997; 136:543-570. [PMID: 33863109 DOI: 10.1046/j.1469-8137.1997.00784.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thioredoxins are ubiquitous small-molecular-weight proteins (typically 100-120 amino-acid residues) containing an extremely reactive disulphide bridge with a highly conserved sequence -Cys-Gly(Ala/Pro)-Pro-Cys-. In bacteria and animal cells, thioredoxins participate in multiple reactions which require reduction of disulphide bonds on selected target proteins/ enzymes. There is now ample biochemical evidence that thioredoxins exert very specific functions in plants, the best documented being the redox regulation of chloroplast enzymes. Another area in which thioredoxins are believed to play a prominent role is in reserve protein mobilization during the process of germination. It has been discovered that thioredoxins constitute a large multigene family in plants with different-subcellular localizations, a unique feature in living cells so far. Evolutionary studies based on these molecules will be discussed, as well as the available biochemical and genetic evidence related to their functions in plant cells. Eukaryotic photosynthetic plant cells are also unique in that they possess two different reducing systems, one extrachloroplastic dependent on NADPH as an electron donor, and the other one chloroplastic, dependent on photoreduced ferredoxin. This review will examine in detail the latest progresses in the area of thioredoxin structural biology in plants, this protein being an excellent model for this purpose. The structural features of the reducing enzymes ferredoxin thioredoxin reductase and NADPH thioredoxin reductase will also be described. The properties of the target enzymes known so far in plants will be detailed with special emphasis on the structural features which make them redox regulatory. Based on sequence analysis, evidence will be presented that redox regulation of enzymes of the biosynthetic pathways first appeared in cyanobacteria possibly as a way to cope with the oxidants produced by oxygenic photosynthesis. It became more elaborate in the chloroplasts of higher plants where a co-ordinated functioning of the chloroplastic and extra chloroplastic metabolisms is required. CONTENTS Summary 543 I. Introduction 544 II. Thioredoxins from photosynthetic organisms as a structural model 545 III. Physiological functions 552 IV. The thioredoxin reduction systems 556 V. Structural aspects of target enzymes 558 VI. Concluding remarks 563 Acknowledgements 564 References 564.
Collapse
Affiliation(s)
- Jean-Pierre Jacquot
- Institut de Biotechnologie des Plantes, URA 1128 CNRS, Université de Paris-Sud, Bâilment 630, 91405 Orsay Cedex, France
| | - Jean-Marc Lancelin
- Laboratoire de RMN Biomoléculaire, ESA 5078 CNRS, Université de Lyon 1 et CPE-Lyon, Bâilment 308, 69622 Villeurbanne Cedex France
| | - Yves Meyer
- Laboratoire de Physiologic et Biologie Moléculaire des Plantes, UMR 5545 CNRS, Université de Perpignan, 66025 Perpignan Cedex France
| |
Collapse
|
6
|
Sahrawy M, Hecht V, Lopez-Jaramillo J, Chueca A, Chartier Y, Meyer Y. Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J Mol Evol 1996; 42:422-31. [PMID: 8642611 DOI: 10.1007/bf02498636] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequenced Arabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence of Chlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.
Collapse
Affiliation(s)
- M Sahrawy
- Department of Plant Biochemistry, Consejo Superior de Investigaciones, Granada, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Parmentier Y, Durr A, Marbach J, Hirsinger C, Criqui MC, Fleck J, Jamet E. A novel wound-inducible extensin gene is expressed early in newly isolated protoplasts of Nicotiana sylvestris. PLANT MOLECULAR BIOLOGY 1995; 29:279-92. [PMID: 7579179 DOI: 10.1007/bf00043652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A cDNA clone (6PExt 1.2) encoding a novel extensin was isolated from a cDNA library made from 6 h old mesophyll protoplasts of Nicotiana sylvestris. The screening was performed with a heterologous probe from carrot. The encoded polypeptide showed features characteristic of hydroxyproline-rich glycoproteins such as Ser-(Pro)4 repeats and a high content in Tyr and Lys residues. The presence of four Tyr-X-Tyr-Lys motifs suggests the possibility for intramolecular isodityrosine cross-links whereas three Val-Tyr-Lys motifs may participate in intermolecular cross-links. The analysis of genomic DNA gel blots using both the N. sylvestris and the carrot clones as probes showed that the 6PExt 1.2 gene belongs to a complex multigene family encoding extensin and extensin-related polypeptides in N. sylvestris as well as in related Nicotianeae including a laboratory hybrid. This was confirmed by the analysis of RNA gel blots: a set of mRNAs ranging in size from 0.3 kb to 3.5 kb was found by the carrot extensin probe. The 6PExt 1.2 probe found a 1.2 kb mRNA in protoplasts and in wounded tissues as well as a 0.9 kb mRNA which seemed to be stem-specific. The gene encoding 6PExt 1.2 was induced by wounding in protoplasts, in leaf strips and after Agrobacterium tumefaciens infection of stems.
Collapse
Affiliation(s)
- Y Parmentier
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 406, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Rivera-Madrid R, Mestres D, Marinho P, Jacquot JP, Decottignies P, Miginiac-Maslow M, Meyer Y. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1995; 92:5620-4. [PMID: 7777559 PMCID: PMC41748 DOI: 10.1073/pnas.92.12.5620] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Five different clones encoding thioredoxin homologues were isolated from Arabidopsis thaliana cDNA libraries. On the basis of the sequences they encode divergent proteins, but all belong to the cytoplasmic thioredoxins h previously described in higher plants. The five proteins obtained by overexpressing the coding sequences in Escherichia coli present typical thioredoxin activities (NADP(+)-malate dehydrogenase activation and reduction by Arabidopsis thioredoxin reductase) despite the presence of a variant active site, Trp-Cys-Pro-Pro-Cys, in three proteins in place of the canonical Trp-Cys-Gly-Pro-Cys sequence described for thioredoxins in prokaryotes and eukaryotes. Southern blots show that each cDNA is encoded by a single gene but suggest the presence of additional related sequences in the Arabidopsis genome. This very complex diversity of thioredoxins h is probably common to all higher plants, since the Arabidopsis sequences appear to have diverged very early, at the beginning of plant speciation. This diversity allows the transduction of a redox signal into multiple pathways.
Collapse
Affiliation(s)
- R Rivera-Madrid
- Laboratoire de Physiologie et Biologie Moléculaire des Plantes, Université, Perpignan, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Vargas C, Wu G, Davies AE, Downie JA. Identification of a gene encoding a thioredoxin-like product necessary for cytochrome c biosynthesis and symbiotic nitrogen fixation in Rhizobium leguminosarum. J Bacteriol 1994; 176:4117-23. [PMID: 8021193 PMCID: PMC205611 DOI: 10.1128/jb.176.13.4117-4123.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A Tn5-induced mutant of Rhizobium leguminosarum bv. viciae could not form nitrogen-fixing nodules on pea or vetch because of a lesion in electron transport to oxygen. The mutant lacked spectroscopically detectable cytochromes c and aa3. No proteins containing c-type cytochrome could be identified in the mutant by heme staining of proteins fractionated on polyacrylamide gels, indicating that the mutant was defective in maturation of all c-type cytochromes. The Tn5 mutation was determined to be located in a gene that was called cycY. The cycY gene product is homologous to the thioredoxin-like protein HelX involved in the assembly of c-type cytochromes in Rhodobacter capsulatus and to an open reading frame from a Bradyrhizobium japonicum gene cluster containing other genes involved in cytochrome c biogenesis. Our observations are consistent with CycY functioning as a thioredoxin that reduces cysteine residues in apocytochromes c before heme attachment.
Collapse
Affiliation(s)
- C Vargas
- John Innes Institute, Norwich, United Kingdom
| | | | | | | |
Collapse
|
10
|
The Ferredoxin-Thioredoxin System: Update on its Role in the Regulation of Oxygenic Photosynthesis. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1569-2558(08)60401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
11
|
Lübbers M, Andreesen JR. Components of glycine reductase from Eubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein PA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:791-8. [PMID: 8223622 DOI: 10.1111/j.1432-1033.1993.tb18307.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genes encoding thioredoxin reductase (trxB), thioredoxin (trxA), protein PA of glycine reductase (grdA) and the first 23 amino acids of the large subunit of protein PC of glycine reductase (grdC) belonging to the reductive deamination systems present in Eubacterium acidaminophilum were cloned and sequenced. The proteins were products of closely linked genes with 314 codons (thioredoxin reductase), 110 codons (thioredoxin), and 158 codons (protein PA). The protein previously called 'atypically small lipoamide dehydrogenase' or 'electron transferring flavoprotein' could now conclusively be identified as a thioredoxin reductase (subunit mass of 34781 Da) by the alignment with the enzyme of Escherichia coli showing the same typical order of the corresponding domains. The thioredoxin (molecular mass of 11742 Da) deviated considerably from the known consensus sequence, even in the most strongly conserved redox-active segment WCGPC that was now GCVPC. The selenocysteine of protein PA (molecular mass of 16609 Da) was encoded by TGA. The protein was highly similar to those of Clostridium purinolyticum and Clostridium sticklandii involved in glycine reductase. Thioredoxin reductase and thioredoxin of E. acidaminophilum could be successfully expressed in E. coli.
Collapse
Affiliation(s)
- M Lübbers
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
12
|
Brugidou C, Marty I, Chartier Y, Meyer Y. The Nicotiana tabacum genome encodes two cytoplasmic thioredoxin genes which are differently expressed. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:285-93. [PMID: 8479434 DOI: 10.1007/bf00279557] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A Nicotiana tabacum thioredoxin h gene (EMBL Accession No. Z11803) encoding a new thioredoxin (called h2) was isolated using thioredoxin h1 cDNA (X58527), and represents the first thioredoxin h gene isolated from a higher plant. It encodes a polypeptide of 118 amino acids with the conserved thioredoxin active site Trp-Cys-Gly-Pro-Cys. This gene comprises two introns which have lengths of 1071 and 147 bp respectively, and three exons which encode peptides of 29, 41 and 48 amino acids, respectively. This thioredoxin h shows 66% identity with the amino acid sequence of thioredoxin h1 (X58527) and only around 35% with the choroplastic thioredoxins. The two thioredoxins, h1 and h2, do not have any signal peptides and are most probably cytoplasmic. Using the 3' regions of the mRNAs, two probes specific for thioredoxins h1 and h2 have been prepared. Southern blot analysis shows that thioredoxin sequences are present in only two genomic EcoRI fragments: a 3.3 kb fragment encodes h1 and a 4.5 kb fragment encodes h2. Analysis of the ancestors of the allotetraploid N. tabacum shows that thioredoxin h2 is present in N. sylvestris and N. tomentosiformis but that thioredoxin h1 is absent from both putative ancestors. Thus, the thioredoxin h1 gene has probably been recently introduced in to N. tabacum as a gene of agronomic importance, or linked to such genes. Northern blot analysis shows that both genes are expressed in N. tabacum, mostly in organs or tissues that contain growing cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Brugidou
- Laboratoire de Biologie Moléculaire et Physiologie Végétale, Unité associée au CNRS 565, Université de Perpignan, France
| | | | | | | |
Collapse
|
13
|
Durr A, Jamet E, Criqui MC, Genschik P, Parmentier Y, Marbach J, Plesse B, Lett MC, Vernet T, Fleck J. Why are quiescent mesophyll protoplasts from Nicotiana sylvestris able to re-enter into the cell cycle and re-initiate a mitotic activity? Biochimie 1993; 75:539-45. [PMID: 8268254 DOI: 10.1016/0300-9084(93)90059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesophyll protoplasts of Nicotiana sylvestris incubated in an adequate culture medium re-enter very rapidly into the cell cycle and divide. The transition G0/G1 is accompanied by a complete reversion of the program of gene expression. The program of the photosynthetic differentiated mesophyll cell is abolished whereas a new multipartite program of a highly stressed but ready-to-divide cell is established. Some genes encode proteins which structure suggests they may play key roles in these events. Most of the induced genes are under multiple controls: stress and/or development. Stress response and cellular re-organization might thus be closely related events that cannot be dissociated. It is probable that the re-entry of a protoplast into the cell cycle, ie the initial step of totipotency, closely depends on the coordinated activation of a set of genes that share common regulatory mechanisms.
Collapse
Affiliation(s)
- A Durr
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Le Marechal P, Hoang BM, Schmitter JM, Van Dorsselaer A, Decottignies P. Purification, properties and primary structure of thioredoxin from Aspergillus nidulans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:421-9. [PMID: 1459127 DOI: 10.1111/j.1432-1033.1992.tb17437.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper reports the purification and the properties of a thioredoxin from the fungus Aspergillus nidulans. This thioredoxin is an acidic protein which exhibits an unusual fluorescence emission spectrum, characterized by a high contribution of tyrosine residues. Thioredoxin from A. nidulans cannot serve as a substrate for Escherichia coli thioredoxin reductase. Corn NADP-malate dehydrogenase is activated by this thioredoxin in the presence of dithiothreitol, while fructose-1,6-bisphosphatase is not. The amino acid sequence of Aspergillus thioredoxin was determined by automated Edman degradation after cleavage with trypsin, SV8 protease, chymotrypsin and cyanogen bromide. The masses of tryptic peptides were verified by plasma-desorption mass spectrometry. The mass of the protein was determined by electrospray mass spectrometry and shown to be in agreement with the calculated mass derived from the sequence (M(r) = 11,564). Compared to thioredoxins from other sources, the protein from A. nidulans displays a maximal sequence similarity with that from yeast (45%).
Collapse
Affiliation(s)
- P Le Marechal
- Laboratoire de Physiologie Végétale Moléculaire, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|