1
|
Chakauya E, Coxon KM, Wei M, Macdonald MV, Barsby T, Abell C, Smith AG. Towards engineering increased pantothenate (vitamin B(5)) levels in plants. PLANT MOLECULAR BIOLOGY 2008; 68:493-503. [PMID: 18726075 DOI: 10.1007/s11103-008-9386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.
Collapse
Affiliation(s)
- Ereck Chakauya
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Biotin-containing proteins are found in all forms of life, and they catalyze carboxylation, decarboxylation, or transcarboxylation reactions that are central to metabolism. In plants, five biotin-containing proteins have been characterized. Of these, four are catalysts, namely the two structurally distinct acetyl-CoA carboxylases (heteromeric and homomeric), 3-methylcrotonyl-CoA carboxylase and geranoyl-CoA carboxylase. In addition, plants contain a noncatalytic biotin protein that accumulates in seeds and is thought to play a role in storing biotin. Acetyl-CoA carboxylases generate two pools of malonyl-CoA, one in plastids that is the precursor for de novo fatty acid biosynthesis and the other in the cytosol that is the precursor for fatty acid elongation and a large number of secondary metabolites. 3-Methylcrotonyl-CoA carboxylase catalyzes a reaction in the mitochondrial pathway for leucine catabolism. The exact metabolic function of geranoyl-CoA carboxylase is as yet unknown, but it may be involved in isoprenoid metabolism. This minireview summarizes the recent developments in our understanding of the structure, regulation, and metabolic functions of these proteins in plants.
Collapse
|
3
|
Christoffers MJ, Berg ML, Messersmith CG. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome 2002; 45:1049-56. [PMID: 12502249 DOI: 10.1139/g02-080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wild oat (Avena fatua L.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) represent an increasingly important weed control problem. The objective of this study was to determine the ACCase mutation responsible for herbicide resistance in a well-studied wild oat biotype (UMI). A 2039-bp region encompassing the carboxybiotin and acetyl-CoA binding domains of multifunctional plastidic ACCase was analyzed. DNA sequences representing three plastidic ACCase gene loci were isolated from both the resistant UMI and a herbicide-susceptible biotype, consistent with the hexaploid nature of wild oat. Only one nonsynonymous point mutation was found among the resistant wild oat sequences, inferring an isoleucine to leucine substitution. The position of this substitution corresponds to residue 1769 of wheat (Triticum aestivum L.) plastidic ACCase (GenBank accession No. AF029895). Analysis of an F2 population derived from a cross between a herbicide-resistant and a susceptible biotype confirmed co-segregation of herbicide resistance with the mutated ACCase. We conclude that the isoleucine to leucine mutation is responsible for herbicide resistance in UMI wild oat based on a comparison of the substitution site across species and ACCase types. While isoleucine is conserved among plastidic ACCases of herbicide-susceptible grasses, leucine is found in plastidic and cytosolic forms of multifunctional herbicide-resistant ACCase.
Collapse
Affiliation(s)
- Michael J Christoffers
- Department of Plant Sciences, 474A Loftsgard Hall, North Dakota State University, Fargo, ND 58105, USA.
| | | | | |
Collapse
|
4
|
Vanhanen S, West M, Kroon JT, Lindner N, Casey J, Cheng Q, Elborough KM, Slabas AR. A consensus sequence for long-chain fatty-acid alcohol oxidases from Candida identifies a family of genes involved in lipid omega-oxidation in yeast with homologues in plants and bacteria. J Biol Chem 2000; 275:4445-52. [PMID: 10660617 DOI: 10.1074/jbc.275.6.4445] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Candida cloacae is capable of growing on alkanes and fatty acids as sole carbon sources. Transfer of cultures from a glucose medium to one containing oleic acid induced seven proteins of M(r) 102,000, 73,000, 61,000, 54,000, and 46,000 and two in the region of M(r) 45,000 and repressed a protein of M(r) 64,000. The induction of the M(r) 73,000 protein reached a 7-fold maximum 24 h after induction. The protein was confirmed by its enzyme activity to be a long-chain fatty-acid alcohol oxidase (LC-FAO) and purified to homogeneity from microsomes by a rapid procedure involving hydrophobic chromatography. An internal peptide of 30 amino acids was sequenced. A 1100-base pair cDNA fragment containing the LC-FAO peptide coding sequence was used to isolate a single exon genomic clone containing the full-length coding sequence of an LC-FAO (fao1). The fao1 gene product was expressed in Escherichia coli and was translated as a functional long-chain alcohol oxidase, which was present in the membrane fraction. In addition, full-length coding sequences for a Candida tropicalis LC-FAO (faoT) and a second C. cloacae LC-FAO (fao2) were isolated. The DNA sequences obtained had open reading frames of 2094 (fao1), 2091 (fao2), and 2112 (faoT) base pairs. The derived amino acid sequences of fao2 and faoT showed 89.4 and 76.2% similarities to fao1. The fao1 gene is much more highly induced on alkane than is fao2. Although this study describes the first known DNA sequences encoding LC-FAOs from any source, there are unassigned Arabidopsis sequences and an unassigned Mycobacterium sequence in the GenBank(TM) Data Bank that show strong homology to the described LC-FAO sequences. The conservation of sequence between yeast, plants, and bacteria suggests that an as yet undescribed family of long-chain fatty-acid oxidases exists in both eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- S Vanhanen
- Lipid Molecular Biology Group, Department of Biological Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci U S A 1997; 94:14179-84. [PMID: 9391173 PMCID: PMC28453 DOI: 10.1073/pnas.94.25.14179] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5'-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80-84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5'-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130-170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.
Collapse
Affiliation(s)
- P Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
6
|
Herbert D, Price LJ, Alban C, Dehaye L, Job D, Cole DJ, Pallett KE, Harwood JL. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem J 1996; 318 ( Pt 3):997-1006. [PMID: 8836149 PMCID: PMC1217716 DOI: 10.1042/bj3180997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The steady-state kinetics of two multifunctional isoforms of acetyl-CoA carboxylase (ACCase) from maize leaves (a major isoform, ACCase1 and a minor isoform, ACCase2) have been investigated with respect to reaction mechanism, inhibition by two graminicides of the aryloxyphenoxypropionate class (quizalofop and fluazifop) and some cellular metabolites. Substrate interaction and product inhibition patterns indicated that ADP and P(i) products from the first partial reaction were not released before acetyl-CoA bound to the enzymes. Product inhibition patterns did not match exactly those predicted for an ordered Ter Ter or a random Ter Ter mechanism, but were close to those postulated for an ordered mechanism. ACCase2 was about 1/2000 as sensitive as ACCase1 to quizalofop but only about 1/150 as sensitive to fluazifop. Fitting inhibition data to the Hill equation indicated that binding of quizalofop or fluazifop to ACCase1 was non-cooperative, as shown by the Hill constant (n(app)) values of 0.86 and 1.16 for quizalofop and fluazifop respectively. Apparent inhibition constant values (K' from the Hill equation) for ACCase1 were 0.054 microM for quizalofop and 21.8 microM for fluazifop. On the other hand, binding of quizalofop or fluazifop to ACCase2 exhibited positive co-operativity, as shown by the (napp) values of 1.85 and 1.59 for quizalofop and fluazifop respectively. K' values for ACCase2 were 1.7 mM for quizalofop and 140 mM for fluazifop. Kinetic parameters for the co-operative binding of quizalofop to maize ACCase2 were close to those of another multifunctional ACCase of limited sensitivity to graminicide, ACC220 from pea. Inhibition of ACCase1 by quizalofop was mixed-type with respect to acetyl-CoA or ATP, but the concentration of acetyl-CoA had the greater effect on the level of inhibition. Neither ACCase1 nor ACCase2 was appreciably sensitive to CoA esters of palmitic acid (16:0) or oleic acid (18:1). Approximate IC50 values were 10 microM (ACCase2) and 50 microM (ACCase1) for both CoA esters. Citrate concentrations up to 1 mM had no effect on ACCase1 activity. Above this concentration, citrate was inhibitory. ACCase2 activity was slightly stimulated by citrate over a broad concentration range (0.25-10 mM). The significance of possible effects of acyl-CoAs or citrate in vivo is discussed.
Collapse
Affiliation(s)
- D Herbert
- School of Molecular and Medical Biosciences, University of Wales College of Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Harwood JL. Recent advances in the biosynthesis of plant fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1301:7-56. [PMID: 8652653 DOI: 10.1016/0005-2760(95)00242-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J L Harwood
- School of Molecular and Medical Biosciences, University of Wales, Cardiff, UK
| |
Collapse
|
8
|
Elborough KM, Winz R, Deka RK, Markham JE, White AJ, Rawsthorne S, Slabas AR. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis. Biochem J 1996; 315 ( Pt 1):103-12. [PMID: 8670092 PMCID: PMC1217156 DOI: 10.1042/bj3150103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the oilseed rape Brassica napus there are two forms of acetyl-CoA carboxylase (ACCase). As in other dicotyledonous plants there is a type I ACCase, the single polypeptide 220 kDa form, and a type II multi-subunit complex analogous to that of Escherichia coli and Anabaena. This paper describes the cloning and characterization of a plant biotin carboxyl carrier protein (BCCP) from the type II ACCase complex that shows 61% identity/79% similarity with Anabaena BCCP at the amino acid level. Six classes of nuclear encoded oilseed rape BCCP cDNA were clones, two of which contained the entire coding region. The BCCP sequences allowed the assignment of function to two previously unassigned Arabidopsis expressed sequence tag (EST) sequences. We also report the cloning of a second type II ACCase component from oilseed rape, the beta-carboxyltransferase subunit (betaCT), which is chloroplast-encoded. Northern analysis showed that although the relative levels of BCCP and betaCT mRNA differed between different oilseed rape tissues, their temporal patterns of expression were identical during embryo development. At the protein level, expression of BCCP during embryo development was studied by Western blotting, using affinity-purified anti-biotin polyclonal sera. With this technique a 35 kDa protein thought to be BCCP was shown to reside within the chloroplast. This analysis also permitted us to view the differential expression of several unidentified biotinylated proteins during embryogenesis.
Collapse
Affiliation(s)
- K M Elborough
- Lipid Molecular Biology Group, Biological Sciences Department, University of Durham, U.K
| | | | | | | | | | | | | |
Collapse
|
9
|
Podkowinski J, Sroga GE, Haselkorn R, Gornicki P. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proc Natl Acad Sci U S A 1996; 93:1870-4. [PMID: 8700851 PMCID: PMC39874 DOI: 10.1073/pnas.93.5.1870] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.
Collapse
Affiliation(s)
- J Podkowinski
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
10
|
Gornicki P, Podkowinski J, Scappino LA, DiMaio J, Ward E, Haselkorn R. Wheat acetyl-coenzyme A carboxylase: cDNA and protein structure. Proc Natl Acad Sci U S A 1994; 91:6860-4. [PMID: 7913745 PMCID: PMC44297 DOI: 10.1073/pnas.91.15.6860] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
cDNA fragments encoding part of wheat (Triticum aestivum) acetyl-CoA carboxylase (ACC; EC 6.4.1.2) were cloned by PCR using primers based on the alignment of several biotin-dependent carboxylases. A set of overlapping clones encoding the entire wheat ACC was then isolated by using these fragments as probes. The cDNA sequence contains a 2257-amino acid reading frame encoding a 251-kDa polypeptide. The amino acid sequence of the most highly conserved domain, corresponding to the biotin carboxylases of prokaryotes, is 52-55% identical to ACC of yeast, rat, and diatom. Identity with the available C-terminal amino acid sequence of maize ACC is 66%. The biotin attachment site has the typical eukaryotic EVMKM sequence. The cDNA does not encode an obvious chloroplast targeting sequence. Various cDNA fragments hybridize in Northern blots to a 7.9-kb mRNA. Southern analysis with cDNA probes revealed multiple hybridizing fragments in hexaploid wheat DNA. Some of the wheat cDNA probes also hybridize with ACC-specific DNA from other plants, indicating significant conservation among plant ACCs.
Collapse
Affiliation(s)
- P Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|
11
|
Elborough KM, Swinhoe R, Winz R, Kroon JT, Farnsworth L, Fawcett T, Martinez-Rivas JM, Slabas AR. Isolation of cDNAs from Brassica napus encoding the biotin-binding and transcarboxylase domains of acetyl-CoA carboxylase: assignment of the domain structure in a full-length Arabidopsis thaliana genomic clone. Biochem J 1994; 301 ( Pt 2):599-605. [PMID: 7913805 PMCID: PMC1137123 DOI: 10.1042/bj3010599] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One independent and two overlapping rape cDNA clones have been isolated from a rape embryo library. We have shown that they encode a 2.3 kb and a 2.5 kb stretch of the full-length acetyl-CoA carboxylase (ACCase) cDNA, corresponding to the biotin-binding and transcarboxylase domains respectively. Using the cDNA in Northern-blot analysis we have shown that the mRNA for ACCase has a higher level of expression in rape seed than in rape leaf and has a full length of 7.5 kb. The level of expression during rape embryogenesis was compared with both oil deposition and expression of two fatty acid synthetase components enoyl-(acyl-carrier-protein) reductase and 3-oxoacyl-(acyl-carrier-protein) reductase. Levels of ACCase mRNA were shown to peak at 29 days after anthesis during embryonic development, similarly to enoyl-(acyl-carrier-protein) reductase and 3-oxoacyl-(acyl-carrier-protein) reductase mRNA. In addition, a full-length genomic clone (19 kb) of Arabidopsis ACCase has been isolated and partially sequenced. Analysis of the clone has allowed the first plant ACCase activity domains (biotin carboxylase-biotin binding-transcarboxylase) to be ordered and assigned. Southern-blot analysis using the Arabidopsis clone indicates that ACCase is a single-copy gene in Arabidopsis but is encoded by a small gene family in rape.
Collapse
Affiliation(s)
- K M Elborough
- Biological Sciences Department, University of Durham, U.K
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ashton AR, Jenkins CL, Whitfeld PR. Molecular cloning of two different cDNAs for maize acetyl CoA carboxylase. PLANT MOLECULAR BIOLOGY 1994; 24:35-49. [PMID: 7906562 DOI: 10.1007/bf00040572] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Acetyl CoA carboxylase (EC 6.4.1.2) in plants is a chloroplast-localized, biotin-containing enzyme that catalyses the carboxylation of acetyl CoA to malonyl CoA, the first committed step of the fatty acid biosynthesis pathway. Acetyl CoA carboxylase is the target site for the monocotyledon-specific aryloxyphenoxypropionate and cyclohexanedione groups of herbicides. We have purified a herbicide-sensitive acetyl CoA carboxylase from maize leaves to homogeneity (specific activity 7 mumol min-1 mg-1), separating it during the purification from a minor herbicide-resistant acetyl CoA carboxylase. The purified enzyme is a dimer of 230 kDa subunits. Antibodies raised to the purified acetyl CoA carboxylase detected three cross-reacting clones in a maize leaf cDNA expression library, each having an insert of 4-4.5 kb. Restriction analysis and sequencing showed that the cDNAs were derived from two different transcripts. Comparison of the deduced amino acid sequences with those of chicken and yeast acetyl CoA carboxylases confirmed that both types encoded acetyl CoA carboxylase, corresponding to the C-terminal half of the enzyme. The overall identity of the maize and chicken sequences was 37% (58% similarity) but for some shorter regions was much higher. Analysis of six other acetyl CoA carboxylase clones recovered from the maize cDNA library showed four belonged to one type and two to the other. The nucleotide sequence similarity between the two types of cDNA was approximately 95% in the coding region but considerably less in the 3'-untranslated region. Northern blot analysis of maize RNA showed a single band of 8.2-8.5 kb for acetyl CoA carboxylase mRNA. Southern blot hybridisations indicated that there are probably no more than two genes in maize for acetyl CoA carboxylase. The possible significance of two different cDNAs for acetyl CoA carboxylase is discussed.
Collapse
Affiliation(s)
- A R Ashton
- Division of Plant Industry, CSIRO, Canberra, Australia
| | | | | |
Collapse
|